Detailed information    

experimental Experimentally validated

Overview


Name   clpC   Type   Regulator
Locus tag   BSU_00860 Genome accession   NC_000964
Coordinates   103572..106004 (+) Length   810 a.a.
NCBI ID   NP_387967.1    Uniprot ID   P37571
Organism   Bacillus subtilis subsp. subtilis str. 168     
Function   degradation of ComK; degradation of DegU   
Competence regulation

Function


ComK is targeted by the adaptor protein MecA and degraded in a complex with ClpC and ClpP. Preferential degradation of DegU-P by ClpCP, but not of unphosphorylated DegU, was reported.


Genomic Context


Location: 98572..111004
Locus tag Gene name Coordinates (strand) Size (bp) Protein ID Product Description
  BSU_00830 (BSU00830) ctsR 101449..101913 (+) 465 NP_387964.1 transcriptional regulator of class III stress genes -
  BSU_00840 (BSU00840) mcsA 101927..102484 (+) 558 NP_387965.1 activator of protein kinase McsB -
  BSU_00850 (BSU00850) mcsB 102484..103575 (+) 1092 NP_387966.1 protein arginine kinase -
  BSU_00860 (BSU00860) clpC 103572..106004 (+) 2433 NP_387967.1 class III stress response-related ATPase, AAA+ superfamily Regulator
  BSU_00870 (BSU00870) radA 106096..107472 (+) 1377 NP_387968.1 DNA repair protein; 6-O-methylguanine-DNA methyltransferase Machinery gene
  BSU_00880 (BSU00880) disA 107476..108558 (+) 1083 NP_387969.1 diadenylate cyclase; DNA integrity scanning protein; cell cycle checkpoint DNA scanning protein -
  BSU_00890 (BSU00890) yacL 108674..109774 (+) 1101 NP_387970.1 putative membrane protein possibly involved in RNA binding -
  BSU_00900 (BSU00900) ispD 109789..110487 (+) 699 NP_387971.1 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, nonmevalonate isoprenoid pathway -
  BSU_00910 (BSU00910) ispF 110480..110956 (+) 477 NP_387972.1 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase -

Regulatory network


Positive effect      
Negative effect
Regulator Target Regulation
  clpC degU negative effect
  degU comK positive effect
  comK comK positive effect
  comK late competence genes positive effect
  codY comK negative effect
  clpP comK negative effect
  mecA comK negative effect
  kre comK negative effect
  abrB comK negative effect
  comS comK positive effect
  spo0A comK positive effect
  rok comK negative effect
  clpC comK negative effect
  med comK positive effect
  spo0A comK negative effect
  comK late competence genes positive effect
  clpP degU negative effect
  abrB rok negative effect
  spo0A abrB negative effect
  comA comS positive effect
  spo0A rok negative effect
  sinR spo0A negative effect
  sinR rok negative effect
  sinR degU negative effect
  degQ degU positive effect
  degS degU positive effect
  rapC comA negative effect
  rapF comA negative effect
  comP comA positive effect
  sinI sinR negative effect
  phrC rapC negative effect
  phrF rapF negative effect
  comX comP positive effect
  comQ comX positive effect

Sequence


Protein


Download         Length: 810 a.a.        Molecular weight: 90118.60 Da        Isoelectric Point: 6.0257

>NTDB_id=85 BSU_00860 NP_387967.1 103572..106004(+) (clpC) [Bacillus subtilis subsp. subtilis str. 168]
MMFGRFTERAQKVLALAQEEALRLGHNNIGTEHILLGLVREGEGIAAKALQALGLGSEKIQKEVESLIGRGQEMSQTIHY
TPRAKKVIELSMDEARKLGHSYVGTEHILLGLIREGEGVAARVLNNLGVSLNKARQQVLQLLGSNETGSSAAGTNSNANT
PTLDSLARDLTAIAKEDSLDPVIGRSKEIQRVIEVLSRRTKNNPVLIGEPGVGKTAIAEGLAQQIINNEVPEILRDKRVM
TLDMGTVVAGTKYRGEFEDRLKKVMDEIRQAGNIILFIDELHTLIGAGGAEGAIDASNILKPSLARGELQCIGATTLDEY
RKYIEKDAALERRFQPIQVDQPSVDESIQILQGLRDRYEAHHRVSITDDAIEAAVKLSDRYISDRFLPDKAIDLIDEAGS
KVRLRSFTTPPNLKELEQKLDEVRKEKDAAVQSQEFEKAASLRDTEQRLREQVEDTKKSWKEKQGQENSEVTVDDIAMVV
SSWTGVPVSKIAQTETDKLLNMENILHSRVIGQDEAVVAVAKAVRRARAGLKDPKRPIGSFIFLGPTGVGKTELARALAE
SIFGDEESMIRIDMSEYMEKHSTSRLVGSPPGYVGYDEGGQLTEKVRRKPYSVVLLDEIEKAHPDVFNILLQVLEDGRLT
DSKGRTVDFRNTILIMTSNVGASELKRNKYVGFNVQDETQNHKDMKDKVMGELKRAFRPEFINRIDEIIVFHSLEKKHLT
EIVSLMSDQLTKRLKEQDLSIELTDAAKAKVAEEGVDLEYGARPLRRAIQKHVEDRLSEELLRGNIHKGQHIVLDVEDGE
FVVKTTAKTN

Nucleotide


Download         Length: 2433 bp        

>NTDB_id=85 BSU_00860 NP_387967.1 103572..106004(+) (clpC) [Bacillus subtilis subsp. subtilis str. 168]
ATGATGTTTGGAAGATTTACAGAACGAGCTCAAAAAGTACTGGCGCTAGCACAGGAAGAAGCACTTCGGTTAGGTCATAA
TAACATTGGCACTGAGCATATTTTATTAGGACTGGTAAGAGAAGGAGAGGGCATTGCTGCTAAAGCTCTTCAAGCGCTTG
GACTCGGTTCAGAAAAAATTCAGAAAGAAGTAGAAAGTTTGATCGGGCGCGGGCAGGAAATGTCTCAAACGATTCATTAT
ACTCCTAGAGCTAAAAAAGTCATTGAGCTTTCAATGGATGAGGCAAGAAAACTCGGTCATTCTTATGTGGGAACAGAACA
TATTCTTCTTGGTCTGATTCGTGAAGGAGAAGGTGTTGCTGCGAGAGTTCTGAATAATCTCGGTGTCAGCTTAAATAAAG
CAAGACAGCAGGTGCTCCAGCTTCTAGGAAGTAATGAAACAGGATCATCAGCGGCAGGAACAAACAGCAATGCGAATACG
CCTACGCTTGACAGCTTGGCAAGAGACTTAACTGCTATTGCGAAGGAAGACAGCCTTGACCCTGTAATCGGCAGAAGCAA
GGAGATCCAGCGTGTCATTGAAGTGTTAAGCCGCAGAACGAAAAACAACCCTGTTCTCATTGGGGAACCAGGTGTAGGTA
AAACGGCTATCGCAGAAGGTTTGGCACAGCAAATTATCAATAATGAAGTACCCGAAATTTTGCGTGATAAACGTGTGATG
ACATTAGACATGGGAACAGTTGTTGCCGGCACAAAATACCGCGGAGAATTTGAGGATCGCCTGAAGAAGGTCATGGATGA
AATTCGCCAGGCAGGAAATATCATTCTATTCATCGATGAGCTCCATACATTAATCGGGGCAGGCGGAGCAGAAGGTGCTA
TTGATGCATCTAATATTTTAAAACCTTCACTTGCTCGTGGCGAACTCCAATGTATTGGTGCAACGACTCTTGATGAGTAC
CGTAAATATATTGAAAAAGATGCAGCACTGGAACGCCGTTTTCAGCCGATTCAGGTTGATCAGCCATCTGTAGATGAAAG
TATTCAAATTTTACAAGGTCTGCGTGACAGATACGAAGCCCACCACCGCGTTTCTATCACTGATGATGCCATTGAAGCTG
CGGTTAAGCTTTCTGACAGATATATTTCTGACCGCTTCCTTCCGGATAAAGCAATTGACTTGATCGATGAAGCGGGTTCA
AAGGTGAGACTGCGCTCATTTACAACGCCTCCTAACTTAAAAGAGCTTGAGCAGAAGCTTGATGAGGTTCGTAAAGAGAA
GGATGCGGCAGTGCAAAGCCAAGAGTTTGAAAAAGCTGCTTCCTTGCGTGATACTGAACAACGCCTGCGCGAGCAAGTAG
AGGATACGAAGAAATCATGGAAAGAGAAGCAAGGGCAGGAAAACTCAGAGGTTACTGTGGATGATATTGCGATGGTTGTA
TCCAGCTGGACCGGTGTGCCTGTATCTAAAATCGCCCAAACTGAAACTGATAAGCTTCTCAATATGGAAAACATTCTTCA
CTCCCGTGTCATCGGCCAGGATGAAGCAGTTGTAGCGGTTGCAAAAGCCGTCAGACGTGCAAGAGCAGGATTGAAAGATC
CTAAACGCCCAATCGGCTCATTCATTTTCTTAGGCCCTACAGGTGTAGGTAAAACAGAACTTGCACGAGCACTTGCTGAA
TCCATTTTTGGCGATGAAGAATCCATGATCAGAATTGATATGTCTGAATACATGGAAAAACATTCAACTTCAAGACTTGT
TGGTTCACCTCCGGGTTATGTGGGATATGATGAAGGCGGTCAATTGACAGAGAAAGTCAGAAGAAAACCTTACTCTGTCG
TGCTTCTTGATGAGATCGAGAAAGCGCACCCTGATGTCTTCAATATCCTTCTGCAAGTTCTTGAAGACGGACGATTGACT
GATTCTAAAGGACGCACAGTCGATTTCCGCAATACCATTCTGATCATGACATCAAACGTCGGAGCAAGTGAGCTAAAACG
CAATAAATATGTCGGCTTTAACGTTCAGGATGAAACTCAAAATCATAAAGACATGAAAGATAAAGTGATGGGTGAATTAA
AACGAGCGTTCAGACCTGAGTTCATCAACCGTATTGATGAAATCATTGTCTTCCATTCACTTGAGAAAAAACATCTCACT
GAGATTGTGTCATTAATGTCTGATCAATTAACGAAACGCCTGAAAGAACAAGATCTTTCTATCGAATTGACAGATGCTGC
AAAAGCGAAAGTCGCGGAAGAGGGCGTTGACCTGGAATACGGTGCCCGTCCGTTAAGAAGAGCGATCCAAAAACATGTCG
AGGATCGTTTATCTGAAGAACTCCTCAGAGGAAATATTCATAAAGGACAGCATATTGTTCTTGATGTAGAAGATGGCGAA
TTTGTCGTAAAAACGACTGCTAAAACGAATTAA


Secondary structure


Protein secondary structures were predicted by S4PRED and visualized by seqviz.



3D structure


Source ID Structure
  PDB 2K77
  PDB 2Y1Q
  PDB 2Y1R
  PDB 3J3R
  PDB 3J3S
  PDB 3J3T
  PDB 3J3U
  PDB 3PXG
  PDB 3PXI
  PDB 5HBN
  PDB 7ABR
  PDB 8B3S
  PDB 8OTK

Transmembrane helices


Transmembrane helices of protein were predicted by TMHMM 2.0 and visualized by seqviz and ECharts.



Visualization of predicted probability:


Similar proteins


Only experimentally validated proteins are listed.

Protein Organism Identities (%) Coverage (%) Ha-value
  clpC Lactococcus lactis subsp. lactis strain DGCC12653

50.499

99.012

0.5

  clpC Streptococcus thermophilus LMD-9

46.65

100

0.473

  clpC Streptococcus thermophilus LMG 18311

46.407

100

0.47

  clpC Lactococcus lactis subsp. cremoris KW2

48.664

95.053

0.463

  clpE Streptococcus mutans UA159

53.313

86.189

0.459

  clpE Streptococcus pneumoniae TIGR4

52.308

86.436

0.452

  clpE Streptococcus pneumoniae Rx1

52.308

86.436

0.452

  clpE Streptococcus pneumoniae D39

52.308

86.436

0.452

  clpE Streptococcus pneumoniae R6

52.308

86.436

0.452

  clpC Streptococcus pneumoniae D39

45.241

99.877

0.452

  clpC Streptococcus pneumoniae Rx1

45.241

99.877

0.452

  clpC Streptococcus pneumoniae TIGR4

45.117

99.877

0.451

  clpC Streptococcus mutans UA159

43.826

100

0.445

  clpA Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819

36.237

100

0.405


Multiple sequence alignment    



References


[1] Andrew W Tanner et al. (2018) ClpC and MecA, components of a proteolytic machine, prevent Spo0A-P-dependent transcription without degradation. Molecular Microbiology 108(2):178-186. [PMID: 29446505]
[2] Mitsuo Ogura et al. (2010) Autoregulation of the Bacillus subtilis response regulator gene degU is coupled with the proteolysis of DegU-P by ClpCP. Molecular Microbiology 75(5):1244-59. [PMID: 20070525]
[3] Tilman Schlothauer et al. (2003) MecA, an adaptor protein necessary for ClpC chaperone activity. Proceedings of The National Academy of Sciences of The United States of America 100(5):2306-11. [PMID: 12598648]
[4] K Turgay et al. (2001) Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response. Molecular Microbiology 42(3):717-27. [PMID: 11722737]
[5] K Turgay et al. (1997) Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes & Development 11(1):119-28. [PMID: 9000055]
[6] EIke Krüger et al. (1997) The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. Microbiology (Reading, England) 143 ( Pt 4):1309-1316. [PMID: 9141693]
[7] L Kong et al. (1994) Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proceedings of The National Academy of Sciences of The United States of America 91(13):5793-7. [PMID: 8016067]