T4SS ID | 376 |
Strain | Brucella melitensis biovar Abortus 2308 |
Replicon | chromosome II [Browse all T4SS(s) in this replicon] |
Accession | NC_007624 |
Location | 56647..67080 |
Name | VirB |
Function | effector translocation |
Classification | Type IVA; Type P |
Experimental investigation has been performed on this T4SS. |
T4SS components |
Component | VirB1 | VirB2 | VirB3 | VirB4 | VirB5 | VirB6 | VirB7 | VirB8 | VirB9 |
Number | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Component | VirB10 | VirB11 | VirD4 | ||||||
Number | 1 | 1 | 0 |
The information of T4SS components from NC_007624 | ||||||
# | Locus tag (Gene) | Coordinates [+/-], size (bp) | Protein GI | Product | Component | |
1 | BAB2_0055 | 52960..54363 [-], 1404 | 83269009 | amino acid transporter | ||
2 | BAB2_0056 | 54581..55732 [-], 1152 | 83269010 | hypothetical protein | ||
3 | BAB2_0057 | 55983..56501 [-], 519 | 83269011 | outer membrane protein OprF | ||
4 | BAB2_0058 | 56647..57735 [-], 1089 | 83269012 | type II secretion system protein E | VirB11 | |
5 | BAB2_0059 | 57716..58882 [-], 1167 | 83269013 | glutelin | VirB10 | |
6 | BAB2_0060 | 58879..59748 [-], 870 | 83269014 | Type IV secretion system CagX conjugation protein | VirB9 | |
7 | BAB2_0061 | 59745..60464 [-], 720 | 83269015 | virulence protein | VirB8 | |
8 | BAB2_0062 | 60467..60640 [-], 174 | 83269016 | type IV secretion system protein VirB7 | VirB7 | |
9 | BAB2_0063 | 60804..61847 [-], 1044 | 83269017 | hypothetical protein | VirB6 | |
10 | BAB2_0064 | 62031..62747 [-], 717 | 83269018 | type IV secretion system protein VirB5 | VirB5 | |
11 | BAB2_0065 | 62752..65247 [-], 2496 | 83269019 | shikimate kinase | VirB4 | |
12 | BAB2_0066 | 65247..65597 [-], 351 | 83269020 | type IV secretion system protein VirB3-like protein | VirB3 | |
13 | BAB2_0067 | 65611..65928 [-], 318 | 83269021 | type IV secretion system protein VirB2 | VirB2 | |
14 | BAB2_0068 | 66364..67080 [-], 717 | 83269022 | SLT domain-containing protein | VirB1 | |
15 | BAB2_0069 | 67584..68822 [-], 1239 | 83269023 | peptidoglycan binding domain-containing protein | ||
16 | BAB2_0070 (galU) | 69222..70115 [+], 894 | 83269024 | UTP-glucose-1-phosphate uridylyltransferase | ||
17 | BAB2_0071 | 70168..71706 [-], 1539 | 83269025 | hypothetical protein | ||
Genes in the 5-Kb flanking regions if available, or non-essential genes in the T4SS gene cluster if any. |
Download FASTA format files |
Proteins Genes |
Effectors |
btp1, BspA, BspB, BtpB, BspC, BPE043, VceC, BPE275, RicA, SepA, VceA, BspE, BspF, BPE005, BPE123 |
The information of protein effectors | ||||||
# | Locus tag (Gene) | Coordinates [+/-], size (bp) | Protein GI | Product | * | |
1 | BAB1_0279 | 275959..276711 [-], 753 | 82699179 | hypothetical protein | btp1 | |
2 | BAB1_0678 | 667731..668303 [+], 573 | 82699546 | hypothetical protein | BspA | |
3 | BAB1_0712 | 696754..697317 [+], 564 | 82699580 | hypothetical protein | BspB | |
4 | BAB1_0756 | 739186..740019 [+], 834 | 82699619 | hypothetical protein | BtpB | |
5 | BAB1_0847 | 824094..824507 [-], 414 | 82699704 | hypothetical protein | BspC | |
6 | BAB1_1043 | 1004798..1009459 [-], 4662 | 82699875 | hypothetical protein | BPE043 | |
7 | BAB1_1058 | 1018574..1019830 [-], 1257 | 82699888 | hypothetical protein | VceC | |
8 | BAB1_1275 | 1237345..1238106 [-], 762 | 82700087 | rhomboid-like protein | BPE275 | |
9 | BAB1_1279 | 1240034..1240561 [-], 528 | 82700091 | hexapeptide repeat-containing transferase | RicA | |
10 | BAB1_1492 | 1443154..1443726 [-], 573 | 82700286 | hypothetical protein | SepA | |
11 | BAB1_1652 | 1596760..1597077 [+], 318 | 82700429 | hypothetical protein | VceA | |
12 | BAB1_1671 | 1620605..1621399 [-], 795 | 82700448 | two-component response regulator | BspE | |
13 | BAB1_1948 | 1891813..1893099 [+], 1287 | 82700711 | hypothetical protein | BspF | |
14 | BAB1_2005 | 1941656..1942117 [-], 462 | 82700764 | cAMP-dependent protein kinase | BPE005 | |
15 | BAB2_0123 | 121652..122113 [-], 462 | 83269070 | hypothetical protein | BPE123 |
Download FASTA format files |
Proteins Genes |
# | Name(Protein GI) | Host site/Substrate | Source | Function | Reference | |
1 | BPE005 (82700764) | Matrix metallopeptidase 9 (MMP-9) | human | BPE005 represses secretion of matrx metalloproteinase 9 (MMP-9) and induces deposition of concomitant collagen by hepatic stellate (LX-2) cells. | (1) PubMed: 26667834 | |
2 | BspA (82699546) | unknown | unknown | BspA, BspB and BspF inhibited protein secretion. | (2) PubMed: 23950720 | |
3 | BspB (82699580) | conserved oligomeric Golgi (COG) | human | BspB interacts with tethering complex of GOG which is a major coordinator of Golgi vesicular trafficking to contribute to biogenesis of rBCV and replication of Brucella. | (3) PubMed: 28844886 | |
4 | BspF (82700711) | unknown | unknown | BspA, BspB and BspF inhibited protein secretion. | (4) PubMed: 23950720 | |
5 | btp1 (82699179) | unknown | unknown | Btp1 interfere with the TLR2 signaling pathway to down-modulating maturation of infected dendritic cells. | (5) PubMed: 18266466 | |
6 | BtpB (82699619) | MYD88 | murine | BtpB may interact with MYD88 to inhibit TLR signaling and interfere with activation of dendritic cells. | (6) PubMed: 23847770 | |
7 | RicA (82700091) | small GTPase Rab2 | human | RicA interacts with human small GTPase Rab2 involved in trafficking. | (7) PubMed: 21501366 | |
8 | SepA (82700286) | unknown | unknown | SepA represses the fusion of Brucella containing vacuole (BCV) with the lysosome. | (8) PubMed: 24119283 | |
9 | VceC (82699888) | unknown | unknown | VceC induces significant ER stress to trigger Inflammation and IL-6 production. | (9) PubMed: 27007849 |
(1) Arriola Benitez PC et al. (2015). The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells. Infect Immun. 84(2):598-606. [PudMed:26667834] |
(2) Myeni S et al. (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9(8):e1003556. [PudMed:23950720] |
(3) Miller CN et al. (2017). A Brucella Type IV Effector Targets the COG Tethering Complex to Remodel Host Secretory Traffic and Promote Intracellular Replication. Cell Host Microbe. 22(3):317-329.e7. [PudMed:28844886] |
(4) Myeni S et al. (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9(8):e1003556. [PudMed:23950720] |
(5) Salcedo SP et al. (2008). Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog. 4(2):e21. [PudMed:18266466] |
(6) Salcedo SP et al. (2013). BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. . Front. Cell. Infect. Microbiol. . 2013.00028 . [PudMed:23847770] |
(7) de Barsy M; Jamet A; Filopon D; Nicolas C; Laloux G; Rual JF; Muller A; Twizere JC; Nkengfac B; Vandenhaute J; Hill DE; Salcedo SP; Gorvel JP; Letesson JJ; De Bolle X (2011). Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol. 13(7):1044-58. [PudMed:21501366] |
(8) Döhmer PH et al. (2014). Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol. 16(3):396-410. [PudMed:24119283] |
(9) Keestra-Gounder AM et al. (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature. 532(7599):394-7. [PudMed:27007849] |
(1) Sieira R; Arocena GM; Zorreguieta A; Comerci DJ; Ugalde RA (2012). A MarR-type regulator directly activates transcription from the Brucella abortus virB promoter by sharing a redundant role with HutC. J Bacteriol. . [PudMed:23002224] |
(2) Sa JC; Silva TM; Costa EA; Silva AP; Tsolis RM; Paixao TA; Carvalho Neta AV; Santos RL (2012). The virB-encoded type IV secretion system is critical for establishment of infection and persistence of Brucella ovis infection in mice. Vet Microbiol. . [PudMed:22483850] |
(3) de Jong MF; Tsolis RM (2012). Brucellosis and type IV secretion. Future Microbiol. 7(1):47-58. [PudMed:22191446] |
(4) Caswell CC; Gaines JM; Roop RM 2nd (2012). The RNA chaperone Hfq independently coordinates expression of the VirB type IV secretion system and the LuxR-type regulator BabR in Brucella abortus 2308. J Bacteriol. 194(1):3-14. [PudMed:22020650] |
(5) Paschos A; den Hartigh A; Smith MA; Atluri VL; Sivanesan D; Tsolis RM; Baron C (2011). An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect Immun. 79(3):1033-43. [PudMed:21173315] |
(6) Martinez-Nunez C; Altamirano-Silva P; Alvarado-Guillen F; Moreno E; Guzman-Verri C; Chaves-Olarte E (2010). The two-component system BvrR/BvrS regulates the expression of the type IV secretion system VirB in Brucella abortus. J Bacteriol. 192(21):5603-8. [PudMed:20833814] |
(7) Arocena GM; Sieira R; Comerci DJ; Ugalde RA (2010). Identification of the quorum-sensing target DNA sequence and N-Acyl homoserine lactone responsiveness of the Brucella abortus virB promoter. J Bacteriol. 192(13):3434-40. [PudMed:20400542] |
(8) Sieira R; Arocena GM; Bukata L; Comerci DJ; Ugalde RA (2010). Metabolic control of virulence genes in Brucella abortus: HutC coordinates virB expression and the histidine utilization pathway by direct binding to both promoters. J Bacteriol. 192(1):217-24. [PudMed:19854911] |
(9) Lapaque N; Muller A; Alexopoulou L; Howard JC; Gorvel JP (2009). Brucella abortus induces Irgm3 and Irga6 expression via type-I IFN by a MyD88-dependent pathway, without the requirement of TLR2, TLR4, TLR5 and TLR9. Microb Pathog. 47(6):299-304. [PudMed:19747534] |
(10) Rolan HG; Xavier MN; Santos RL; Tsolis RM (2009). Natural antibody contributes to host defense against an attenuated Brucella abortus virB mutant. Infect Immun. 77(7):3004-13. [PudMed:19364836] |
(11) Delpino MV; Fossati CA; Baldi PC (2009). Proinflammatory response of human osteoblastic cell lines and osteoblast-monocyte interaction upon infection with Brucella spp. Infect Immun. 77(3):984-95. [PudMed:19103778] |
(12) de Jong MF; Sun YH; den Hartigh AB; van Dijl JM; Tsolis RM (2008). Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol. 70(6):1378-96. [PudMed:19019140] |
(13) den Hartigh AB; Rolan HG; de Jong MF; Tsolis RM (2008). VirB3 to VirB6 and VirB8 to VirB11, but not VirB7, are essential for mediating persistence of Brucella in the reticuloendothelial system. J Bacteriol. 190(13):4427-36. [PudMed:18469100] |
(14) Rolan HG; Tsolis RM (2008). Inactivation of the type IV secretion system reduces the Th1 polarization of the immune response to Brucella abortus infection. Infect Immun. 76(7):3207-13. [PudMed:18458071] |
(15) Rolan HG; den Hartigh AB; Kahl-McDonagh M; Ficht T; Adams LG; Tsolis RM (2008). VirB12 is a serological marker of Brucella infection in experimental and natural hosts. Clin Vaccine Immunol. 15(2):208-14. [PudMed:18077620] |
(16) Roux CM; Rolan HG; Santos RL; Beremand PD; Thomas TL; Adams LG; Tsolis RM (2007). Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell Microbiol. 9(7):1851-69. [PudMed:17441987] |
(17) Rolan HG; Tsolis RM (2007). Mice lacking components of adaptive immunity show increased Brucella abortus virB mutant colonization. Infect Immun. 75(6):2965-73. [PudMed:17420243] |
(18) Sun YH; Rolan HG; den Hartigh AB; Sondervan D; Tsolis RM (2005). Brucella abortus virB12 is expressed during infection but is not an essential component of the type IV secretion system. Infect Immun. 73(9):6048-54. [PudMed:16113325] |
(19) Celli J; Salcedo SP; Gorvel JP (2005). Brucella coopts the small GTPase Sar1 for intracellular replication. Proc Natl Acad Sci U S A. 102(5):1673-8. [PudMed:15632218] |
(20) Sieira R; Comerci DJ; Pietrasanta LI; Ugalde RA (2004). Integration host factor is involved in transcriptional regulation of the Brucella abortus virB operon. Mol Microbiol. 54(3):808-22. [PudMed:15491369] |
(21) den Hartigh AB; Sun YH; Sondervan D; Heuvelmans N; Reinders MO; Ficht TA; Tsolis RM (2004). Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect Immun. 72(9):5143-9. [PudMed:15322008] |
(22) Celli J; de Chastellier C; Franchini DM; Pizarro-Cerda J; Moreno E; Gorvel JP (2003). Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med. 198(4):545-56. [PudMed:12925673] |
(23) Rouot B; Alvarez-Martinez MT; Marius C; Menanteau P; Guilloteau L; Boigegrain RA; Zumbihl R; O'Callaghan D; Domke N; Baron C (2003). Production of the type IV secretion system differs among Brucella species as revealed with VirB5- and VirB8-specific antisera. Infect Immun. 71(3):1075-82. [PudMed:12595417] |
(24) Sanchez DO; Zandomeni RO; Cravero S; Verdun RE; Pierrou E; Faccio P; Diaz G; Lanzavecchia S; Aguero F; Frasch AC; Andersson SG; Rossetti OL; Grau O; Ugalde RA (2001). Gene discovery through genomic sequencing of Brucella abortus. Infect Immun. 69(2):865-8. [PudMed:11159979] |
(25) Sieira R; Comerci DJ; Sanchez DO; Ugalde RA (2000). A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol. 182(17):4849-55. [PudMed:10940027] |
(26) Hong PC; Tsolis RM; Ficht TA (2000). Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun. 68(7):4102-7. [PudMed:10858227] |
This literature contains experimental investigation |