(1) Botelho J et al. (2018). Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES-6 carbapenemase. J Antimicrob Chemother. 73(1):77-83. [PudMed:29029083]
|
(2) Zamarro MT et al. (2016). The ICEXTD of Azoarcus sp. CIB, an integrative and conjugative element with aerobic and anaerobic catabolic properties. Environ Microbiol. 18(12):5018-5031. [PudMed:27450529]
|
(3) Martin-Moldes Z et al. (2015). Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol. 38(7):462-71. [PudMed:26259823]
|
(4) Miyazaki R et al. (2015). Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds. Environ Microbiol. 17(1):91-104. [PudMed:24803113]
|
(5) Miyazaki R et al. (2012). Cellular variability of RpoS expression underlies subpopulation activation of an integrative and conjugative element. PLoS Genet. 8(7):e1002818. [PudMed:22807690]
|
(6) Miyazaki R et al. (2011). How can a dual oriT system contribute to efficient transfer of an integrative and conjugative element. Mob Genet Elements. 1(1):82-84. [PudMed:22016851]
|
(7) Miyazaki R et al. (2011). A dual functional origin of transfer in the ICEclc genomic island of Pseudomonas knackmussii B13. Mol Microbiol. 79(3):743-58. [PudMed:21255116]
|
(8) Gaillard M et al. (2010). Transcriptome analysis of the mobile genome ICEclc in Pseudomonas knackmussii B13. BMC Microbiol. 0.522916667. [PudMed:20504315]
|
(9) Lechner M et al. (2009). Genomic island excisions in Bordetella petrii. BMC Microbiol. 0.472916667. [PudMed:19615092]
|
(10) Sentchilo V et al. (2009). Intracellular excision and reintegration dynamics of the ICEclc genomic island of Pseudomonas knackmussii sp. strain B13. Mol Microbiol. 72(5):1293-306. [PudMed:19432799]
|
(11) Gaillard M et al. (2008). Host and invader impact of transfer of the clc genomic island into Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci U S A. 105(19):7058-63. [PudMed:18448680]
|
(12) Chain PS et al. (2006). Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A. 103(42):15280-7. [PudMed:17030797]
|
(13) Gaillard M et al. (2006). The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol. 188(5):1999-2013. [PudMed:16484212]
|
(14) She Q et al. (2004). Archaeal integrases and mechanisms of gene capture. Biochem Soc Trans. 32(Pt 2):222-6. [PudMed:15046576]
|
(15) Sentchilo V et al. (2003). Characterization of two alternative promoters for integrase expression in the clc genomic island of Pseudomonas sp. strain B13. Mol Microbiol. 49(1):93-104. [PudMed:12823813]
|
(16) Muller TA et al. (2003). Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. Environ Microbiol. 5(3):163-73. [PudMed:12588296]
|
(17) Larbig KD et al. (2002). Gene islands integrated into tRNA(Gly) genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol. 184(23):6665-80. [PudMed:12426355]
|
(18) Ravatn R et al. (1998). Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. Strain B13. J Bacteriol. 180(21):5505-14. [PudMed:9791097]
|