References

SecReT6 contains data from 1045 references related to type VI secretion systems (T6SSs). Last Update: June 11th, 2021

Search

  

  

References of different categories

[1] Lennings J, West TE, Schwarz S. (2019) The Burkholderia Type VI Secretion System 5: Composition, Regulation and Role in Virulence.. Front Microbiol. 2.69375. [PudMed:30687298]
[2] Salomon D et al (2015) Type VI secretion system. Curr Biol. 25(7):R265-6. [PudMed:25829005]
[3] Pieretti I et al (2015) What makes Xanthomonas albilineans unique amongst xanthomonads?. Front Plant Sci. 0.450694444. [PudMed:25964795]
[4] Wang R et al (2015) The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol. 0.35. [PudMed:25798132]
[5] Costa TR et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 13(6):343-359. [PudMed:25978706]
[6] Li J et al (2015) Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 43(1):175-80. [PudMed:25541077]
[7] Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci. 5-Oct. [PudMed:26370934]
[8] Ryu CM (2015) Against friend and foe: Type 6 effectors in plant-associated bacteria. J Microbiol. 53(3):201-8. [PudMed:25732741]
[9] Alcoforado Diniz J et al (2015) Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cell Microbiol. doi: 10.1111/cmi.12532. [PudMed:26432982]
[10] Chen L et al (2015) Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res. 172C:19-25. [PudMed:25721475]
[11] Jamet A et al (2015) New Players in the Toxin Field: Polymorphic Toxin Systems in Bacteria. MBio. 6(3). [PudMed:25944858]
[12] Durand E et al (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature. 523(7562):555-60. [PudMed:26200339]
[13] LeRoux M et al (2015) Bacterial danger sensing. J Mol Biol. pii: S0022-2836(15)00541-0. [PudMed:26434507]
[14] Ceuleneer MD et al (2015) Role of the Bacterial Type VI Secretion System in the Modulation of Mammalian Host Cell Immunity. Curr Med Chem. 22(14):1734-44. [PudMed:25882545]
[15] Nunes-Alves C (2015) Structural biology: Hand in hand structure and function of T6SSs. Nat Rev Microbiol. 13(4):186-7. [PudMed:25749451]
[16] Benz J et al (2014) Antibacterial effector/immunity systems: it's just the tip of the iceberg. Curr Opin Microbiol. 17C:1-10. [PudMed:24581686]
[17] Russell AB et al (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 12(2):137-48. [PudMed:24384601]
[18] Steinert M (2014) Pathogen intelligence. Front Cell Infect Microbiol. 4:08. [PudMed:24551600]
[19] Zoued A et al (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta. 1843(8):1664-73. [PudMed:24681160]
[20] Durand E et al (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol. 22(9):498-507. [PudMed:25042941]
[21] Ceccarelli D et al (2013) Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol. 0.192361111. [PudMed:24377090]
[22] Filloux A (2013) The rise of the Type VI secretion system. F1000Prime Rep. 5:52. [PudMed:24381728]
[23] Pukatzki S et al (2013) Vibrio cholerae as a predator: lessons from evolutionary principles. Front Microbiol. 0.433333333. [PudMed:24368907]
[24] Tashiro Y et al (2013) Interspecies Interaction between Pseudomonas aeruginosa and Other Microorganisms. Microbes Environ. 28(1):13-24. [PudMed:23363620]
[25] Erken M et al (2013) The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. Microb Ecol. 65(4):860-8. [PudMed:23354181]
[26] Coulthurst SJ (2013) The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 164(6):640-54. [PudMed:23542428]
[27] Braun V et al (2013) Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett. 345(1):13-21. [PudMed:23701660]
[28] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[29] Miyata ST et al (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol. 62(Pt 5):663-76. [PudMed:23429693]
[30] Ho BT et al (2013) A View to a Kill: The Bacterial Type VI Secretion System. Cell Host Microbe. 15(1):9-21. [PudMed:24332978]
[31] Miller JF (2013) Gaming the competition in microbial cell-cell interactions. EMBO J. 32(6):778-80. [PudMed:23443046]
[32] Cascales E et al (2012) Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci. 367(1592):1102-11. [PudMed:22411981]
[33] Dalbey RE et al (2012) Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. FEMS Microbiol Rev. 36(6):1023-45. [PudMed:22250915]
[34] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[35] Hodges K et al (2012) Interspecies communication in the gut, from bacterial delivery to host-cell response. J Physiol. 590(Pt 3):433-40. [PudMed:22106176]
[36] Leung KY et al (2012) Edwardsiella tarda - virulence mechanisms of an emerging gastroenteritis pathogen. Microbes Infect. 14(1):26-34. [PudMed:21924375]
[37] Silverman JM et al (2012) Structure and Regulation of the Type VI Secretion System. Annu Rev Microbiol. 66:453-72. [PudMed:22746332]
[38] Silby MW et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev. 35(4):652-80. [PudMed:21361996]
[39] Leung KY et al (2011) Type VI secretion regulation: crosstalk and intracellular communication. Curr Opin Microbiol. 14(1):9-15. [PudMed:20971679]
[40] Li J et al (2011) [Advances in bacterial type VI secretion system--a review]. Wei Sheng Wu Xue Bao. 51(3):291-6. [PudMed:21604542]
[41] Veesler D et al (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev. 75(3):423-33. [PudMed:21885679]
[42] O'Brien HE et al (2011) Next-generation genomics of Pseudomonas syringae. Curr Opin Microbiol. 14(1):24-30. [PudMed:21233007]
[43] Kitaoka M et al (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol. 60(Pt 4):397-407. [PudMed:21252269]
[44] Miyata ST et al (2010) The Vibrio Cholerae Type VI Secretion System: Evaluating its Role in the Human Disease Cholera. Front Microbiol. 0.122916667. [PudMed:21607085]
[45] Schwarz S et al (2010) What is type VI secretion doing in all those bugs. Trends Microbiol. 18(12):531-7. [PudMed:20961764]
[46] Santic M et al (2010) Cell biology and molecular ecology of Francisella tularensis. Cell Microbiol. 12(2):129-39. [PudMed:19863554]
[47] Bonemann G et al (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol. 76(4):815-21. [PudMed:20444095]
[48] Jani AJ et al (2010) Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe. 8(1):2-6. [PudMed:20638635]
[49] Hayes CS et al (2010) Bacterial contact-dependent delivery systems. Annu Rev Genet. 44:71-90. [PudMed:21047256]
[50] Bleves S et al (2010) Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int J Med Microbiol. 300(8):534-43. [PudMed:20947426]
[51] Holland IB (2010) The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol Biol. 619:1-20. [PudMed:20419401]
[52] Bernard CS et al (2010) Nooks and crannies in type VI secretion regulation. J Bacteriol. 192(15):3850-60. [PudMed:20511495]
[53] Matsumoto H et al (2009) Translocated effectors of Yersinia. Curr Opin Microbiol. 12(1):94-100. [PudMed:19185531]
[54] Pukatzki S et al (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol. 12(1):11-7. [PudMed:19162533]
[55] Ray K et al (2009) Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol. 7(5):333-40. [PudMed:19369949]
[56] Satchell KJ (2009) Bacterial martyrdom: phagocytes disabled by type VI secretion after engulfing bacteria. Cell Host Microbe. 5(3):213-4. [PudMed:19286128]
[57] Filloux A et al (2008) The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology. 154(Pt 6):1570-83. [PudMed:18524912]
[58] Bingle LE et al (2008) Type VI secretion: a beginner's guide. Curr Opin Microbiol. 11(1):3-8. [PudMed:18289922]
[59] Nano FE et al (2007) The Francisella pathogenicity island. Ann N Y Acad Sci. 1105:122-37. [PudMed:17395722]
[60] Tamayo R et al (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol. 61:131-48. [PudMed:17480182]
[61] Gerlach RG et al (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 297(6):401-15. [PudMed:17482513]
[62] Titball RW et al (2007) Francisella tularensis genomics and proteomics. Ann N Y Acad Sci. 1105:98-121. [PudMed:17435122]
[63] Cambronne ED et al (2006) Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic. 7(8):929-39. [PudMed:16734660]
[64] Venturi V. (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev. 30(2):274-91. [PudMed:16472307]
[65] Costerton JW et al (1999) Bacterial biofilms: a common cause of persistent infections. Science. 284(5418):1318-22. [PudMed:10334980]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Smith S, Salvato F, Garikipati A, Kleiner M, Septer AN. (2021) Activation of the Type VI Secretion System in the Squid Symbiont Vibrio fischeri Requires the Transcriptional Regulator TasR and the Structural Proteins TssM and TssA.. J Bacteriol. 203(21):e0039921. [PudMed:34370559]
[3] Gomes SC, Ferreira MR, Tavares AF, Silva IN, Becker JD, Moreira LM. (2021) A Histone-Like Nucleoid Structuring Protein Regulates Several Virulence Traits in Burkholderia multivorans.. Appl Environ Microbiol. 87(14):e0036921. [PudMed:33931418]
[4] Zhang A, Han Y, Huang Y, Hu X, Liu P, Liu X, Kan B, Liang W. (2021) vgrG is separately transcribed from hcp in T6SS orphan clusters and is under the regulation of IHF and HapR.. Biochem Biophys Res Commun. 559:15-20. [PudMed:33932896]
[5] Nguyen VS, Spinelli S, Cascales É, Roussel A, Cambillau C, Leone P. (2021) Anchoring the T6SS to the cell wall: Crystal structure of the peptidoglycan binding domain of the TagL accessory protein.. PLoS One. 16(7):e0254232. [PudMed:34214145]
[6] Stolle AS, Meader BT, Toska J, Mekalanos JJ. (2021) Endogenous membrane stress induces T6SS activity in Pseudomonas aeruginosa.. Proc Natl Acad Sci U S A. 118(1). [PudMed:33443205]
[7] Wen H, Liu G, Geng Z, Zhang H, Li Y, She Z, Dong Y. (2021) Structure and SAXS studies unveiled a novel inhibition mechanism of the Pseudomonas aeruginosa T6SS TseT-TsiT complex.. Int J Biol Macromol. 188:450-459. [PudMed:34371041]
[8] Nolan LM, Cain AK, Clamens T, Furniss RCD, Manoli E, Sainz-Polo MA, Dougan G, Albesa-Jové D, Parkhill J, Mavridou DAI, Filloux A. (2021) Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells.. Nat Microbiol. 6(9):1199-1210. [PudMed:34413503]
[9] Kim N, Han G, Jung H, Lee HH, Park J, Seo YS. (2021) T6SS Accessory Proteins, Including DUF2169 Domain-Containing Protein and Pentapeptide Repeats Protein, Contribute to Bacterial Virulence in T6SS Group_5 of Burkholderia glumae BGR1.. Plants (Basel). 11(1). [PudMed:35009038]
[10] Lopez J, Le NH, Moon KH, Salomon D, Bosis E, Feldman MF. (2021) Formylglycine-Generating Enzyme-Like Proteins Constitute a Novel Family of Widespread Type VI Secretion System Immunity Proteins.. J Bacteriol. 203(21):e0028121. [PudMed:34398661]
[11] Lu W, Tan J, Lu H, Wang G, Dong W, Wang C, Li X, Tan C. (2021) Function of Rhs proteins in porcine extraintestinal pathogenic Escherichia coli PCN033.. J Microbiol. 59(9):854-860. [PudMed:34382147]
[12] Le NH, Pinedo V, Lopez J, Cava F, Feldman MF. (2021) Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector.. Proc Natl Acad Sci U S A. 118(40). [PudMed:34588306]
[13] Flaugnatti N, Isaac S, Lemos Rocha LF, Stutzmann S, Rendueles O, Stoudmann C, Vesel N, Garcia-Garcera M, Buffet A, Sana TG, Rocha EPC, Blokesch M. (2021) Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms.. Nat Commun. 12(1):5751. [PudMed:34599171]
[14] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[15] Kretsch AM, Morgan GL, Acken KA, Barr SA, Li B. (2021) Pseudomonas Virulence Factor Pathway Synthesizes Autoinducers That Regulate the Secretome of a Pathogen.. ACS Chem Biol. 16(3):501-509. [PudMed:33595276]
[16] Loeven NA, Perault AI, Cotter PA, Hodges CA, Schwartzman JD, Hampton TH, Bliska JB. (2021) The Burkholderia cenocepacia Type VI Secretion System Effector TecA Is a Virulence Factor in Mouse Models of Lung Infection.. mBio. 12(5):e0209821. [PudMed:34579569]
[17] Myint SL, Zlatkov N, Aung KM, Toh E, Sjstrm A, Nadeem A, Duperthuy M, Uhlin BE, Wai SN. (2021) Ecotin and LamB in Escherichia coli influence the susceptibility to Type VI secretion-mediated interbacterial competition and killing by Vibrio cholerae.. Biochim Biophys Acta Gen Subj. 1865(7):129912. [PudMed:33892013]
[18] Wang Z, Huang X, Jan M, Kong D, Pan J, Zhang X. (2021) The global regulator Hfq exhibits far more extensive and intensive regulation than Crc in Pseudomonas protegens H78.. Mol Plant Pathol. NA. [PudMed:33963656]
[19] Cai R, Gao F, Pan J, Hao X, Yu Z, Qu Y, Li J, Wang D, Wang Y, Shen X, Liu X, Yang Y. (2021) The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis.. Microbiol Res. 249:126787. [PudMed:33991717]
[20] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[21] Wang S, Geng Z, Zhang H, She Z, Dong Y. (2021) The Pseudomonasaeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector.. FEBS J. NA. [PudMed:33838074]
[22] Liang X, Pei TT, Wang ZH, Xiong W, Wu LL, Xu P, Lin S, Dong TG. (2021) Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU.. Appl Environ Microbiol. 87(12):e0043521. [PudMed:33837015]
[23] Li C, Zhu L, Wang D, Wei Z, Hao X, Wang Z, Li T, Zhang L, Lu Z, Long M, Wang Y, Wei G, Shen X. (2021) T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer.. ISME J. NA. [PudMed:34433898]
[24] Steele MI, Motta EVS, Gattu T, Martinez D, Moran NA. (2021) The Gut Microbiota Protects Bees from Invasion by a Bacterial Pathogen.. Microbiol Spectr. 9(2):e0039421. [PudMed:34523998]
[25] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[26] Liu Y, Wang J, Zhang Z, Wang F, Gong Y, Sheng DH, Li YZ. (2021) Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus.. Appl Environ Microbiol. 87(9). [PudMed:33608292]
[27] Manera K, Caro F, Li H, Pei TT, Hersch SJ, Mekalanos JJ, Dong TG. (2021) Sensing of intracellular Hcp levels controls T6SS expression in Vibrio cholerae.. Proc Natl Acad Sci U S A. 118(25). [PudMed:34161288]
[28] Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. (2021) Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction.. Front Plant Sci. 12:699590. [PudMed:34394152]
[29] Speare L, Woo M, Bultman KM, Mandel MJ, Wollenberg MS, Septer AN. (2021) Host-Like Conditions Are Required for T6SS-Mediated Competition among Vibrio fischeri Light Organ Symbionts.. mSphere. 6(4):e0128820. [PudMed:34287008]
[30] Liu L, Song L, Deng R, Lan R, Jin W, Tran Van Nhieu G, Cao H, Liu Q, Xiao Y, Li X, Meng G, Ren Z. (2021) Citrobacter freundii Activation of NLRP3 Inflammasome via the Type VI Secretion System.. J Infect Dis. 223(12):2174-2185. [PudMed:33151309]
[31] Crisan CV, Nichols HL, Wiesenfeld S, Steinbach G, Yunker PJ, Hammer BK. (2021) Glucose confers protection to Escherichia coli against contactkilling by Vibrio cholerae.. Sci Rep. 11(1):2935. [PudMed:33536444]
[32] Bernal P, Furniss RCD, Fecht S, Leung RCY, Spiga L, Mavridou DAI, Filloux A. (2021) A novel stabilization mechanism for the type VI secretion system sheath.. Proc Natl Acad Sci U S A. 118(7). [PudMed:33558227]
[33] Wang N, Han N, Tian R, Chen J, Gao X, Wu Z, Liu Y, Huang L. (2021) Role of the Type VI Secretion System in the Pathogenicity of Pseudomonas syringae pv. actinidiae, the Causative Agent of Kiwifruit Bacterial Canker.. Front Microbiol. 12:627785. [PudMed:33679650]
[34] Montenegro Benavides NA, Alvarez B A, Arrieta-Ortiz ML, Rodriguez-R LM, Botero D, Tabima JF, Castiblanco L, Trujillo C, Restrepo S, Bernal A. (2021) The type VI secretion system of Xanthomonas phaseoli pv. manihotis is involved in virulence and in vitro motility.. BMC Microbiol. 21(1):14. [PudMed:33407123]
[35] Dur��n D, Bernal P, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Mart��n M. (2021) Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the rhizosphere microbiome.. Sci Rep. 11(1):5772. [PudMed:33707614]
[36] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[37] Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. (2021) Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida.. Front Microbiol. 12:643498. [PudMed:33776977]
[38] Jiao H, Li F, Wang T, Yam JKH, Yang L, Liang H. (2021) The Pyocin Regulator PrtR Regulates Virulence Expression of Pseudomonas aeruginosa by Modulation of Gac/Rsm System and c-di-GMP Signaling Pathway.. Infect Immun. 89(2). [PudMed:33168590]
[39] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[40] Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. (2020) Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.. Nat Commun. 11(1):1865. [PudMed:32313027]
[41] Kim N, Kim JJ, Kim I, Mannaa M, Park J, Kim J, Lee HH, Lee SB, Park DS, Sul WJ, Seo YS. (2020) Type VI secretion systems of plant-pathogenic Burkholderia glumae BGR1 play a functionally distinct role in interspecies interactions and virulence.. Mol Plant Pathol. 21(8):1055-1069. [PudMed:32643866]
[42] Le NH, Peters K, Espaillat A, Sheldon JR, Gray J, Di Venanzio G, Lopez J, Djahanschiri B, Mueller EA, Hennon SW, Levin PA, Ebersberger I, Skaar EP, Cava F, Vollmer W, Feldman MF. (2020) Peptidoglycan editing provides immunity to Acinetobacter baumannii during bacterial warfare.. Sci Adv. 6(30):eabb5614. [PudMed:32832672]
[43] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[44] Stietz MS, Liang X, Li H, Zhang X, Dong TG. (2020) TssA-TssM-TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae.. Nat Commun. 11(1):5065. [PudMed:33033237]
[45] Antar A, Lee MA, Yoo Y, Cho MH, Lee SW. (2020) PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae.. Pathogens. 9(11). [PudMed:33212951]
[46] Bellieny-Rabelo D, Nkomo NP, Shyntum DY, Moleleki LN. (2020) Horizontally Acquired Quorum-Sensing Regulators Recruited by the PhoP Regulatory Network Expand the Host Adaptation Repertoire in the Phytopathogen Pectobacterium brasiliense.. mSystems. 5(1). [PudMed:31992632]
[47] Joshi A, Mahmoud SA, Kim SK, Ogdahl JL, Lee VT, Chien P, Yildiz FH. (2020) c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae.. PLoS Genet. 16(6):e1008897. [PudMed:32589664]
[48] Speare L, Smith S, Salvato F, Kleiner M, Septer AN. (2020) Environmental Viscosity Modulates Interbacterial Killing during Habitat Transition.. mBio. 11(1). [PudMed:32019799]
[49] Hersch SJ, Manera K, Dong TG. (2020) Defending against the Type Six Secretion System: beyond Immunity Genes.. Cell Rep. 33(2):108259. [PudMed:33053336]
[50] Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC, Cotter PA. (2020) Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex.. Cell Host Microbe. 28(4):534-547. [PudMed:32755549]
[51] Song H, Kang Y, Qian A, Shan X, Li Y, Zhang L, Zhang H, Sun W. (2020) Inactivation of the T6SS inner membrane protein DotU results in severe attenuation and decreased pathogenicity of Aeromonas veronii TH0426.. BMC Microbiol. 20(1):76. [PudMed:32245412]
[52] Hersch SJ, Watanabe N, Stietz MS, Manera K, Kamal F, Burkinshaw B, Lam L, Pun A, Li M, Savchenko A, Dong TG. (2020) Envelope stress responses defend against type six secretion system attacks independently of immunity proteins.. Nat Microbiol. 5(5):706-714. [PudMed:32094588]
[53] Kamal F, Liang X, Manera K, Pei TT, Kim H, Lam LG, Pun A, Hersch SJ, Dong TG. (2020) Differential Cellular Response to Translocated Toxic Effectors and Physical Penetration by the Type VI Secretion System.. Cell Rep. 31(11):107766. [PudMed:32553162]
[54] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[55] Knittel V, Sadana P, Seekircher S, Stolle AS, Krner B, Volk M, Jeffries CM, Svergun DI, Heroven AK, Scrima A, Dersch P. (2020) RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression.. PLoS Pathog. 16(9):e1008552. [PudMed:32966346]
[56] Zhu PC, Li YM, Yang X, Zou HF, Zhu XL, Niu XN, Xu LH, Jiang W, Huang S, Tang JL, He YQ. (2020) Type VI secretion system is not required for virulence on rice but for inter-bacterial competition in Xanthomonas oryzae pv. oryzicola.. Res Microbiol. 171(2):64-73. [PudMed:31676435]
[57] Ahmad S, Tsang KK, Sachar K, Quentin D, Tashin TM, Bullen NP, Raunser S, McArthur AG, Prehna G, Whitney JC. (2020) Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones.. Elife. 9. [PudMed:33320089]
[58] Brewer LK, Huang W, Hackert BJ, Kane MA, Oglesby AG. (2020) Static Growth Promotes PrrF and 2-Alkyl-4(1H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa.. J Bacteriol. 202(24). [PudMed:33020221]
[59] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[60] Lin HH, Yu M, Sriramoju MK, Hsu SD, Liu CT, Lai EM. (2020) A High-Throughput Interbacterial Competition Screen Identifies ClpAP in Enhancing Recipient Susceptibility to Type VI Secretion System-Mediated Attack by Agrobacterium tumefaciens.. Front Microbiol. 2.553472222. [PudMed:32117077]
[61] Guckes KR, Cecere AG, Williams AL, McNeil AE, Miyashiro T. (2020) The Bacterial Enhancer Binding Protein VasH Promotes Expression of a Type VI Secretion System in Vibrio fischeri during Symbiosis.. J Bacteriol. 202(7). [PudMed:31964698]
[62] Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK. (2020) Molecular characterization of megaplasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards.. Sci Rep. 10(1):12514. [PudMed:32719325]
[63] Kochanowsky RM, Bradshaw C, Forlastro I, Stock SP. (2020) Xenorhabdus bovienii strain jolietti uses a type 6 secretion system to kill closely related Xenorhabdus strains.. FEMS Microbiol Ecol. 96(8). [PudMed:32558899]
[64] Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. (2020) Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae.. BMC Genomics. 21(1):296. [PudMed:32272893]
[65] Alam A, Golovliov I, Javed E, Kumar R, d��n J, Sjstedt A. (2020) Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence.. PLoS Pathog. 16(4):e1008466. [PudMed:32275693]
[66] Qiu Y, Hu L, Yang W, Yin Z, Zhou D, Yang H, Zhang Y. (2020) The type VI secretion system 2 of Vibrio parahaemolyticus is regulated by QsvR.. Microb Pathog. 149:104579. [PudMed:33091577]
[67] Zhang W, Xie R, Zhang XD, Lee LTO, Zhang H, Yang M, Peng B, Zheng J. (2020) Organism dual RNA-seq reveals the importance of BarA/UvrY in Vibrio parahaemolyticus virulence.. FASEB J. 34(6):7561-7577. [PudMed:32281204]
[68] Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, Matsuyama BY, Mesnage S, Patel A, de Souza RF, Guzzo CR, Bayer-Santos E. (2020) A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan.. Cell Rep. 31(12):107813. [PudMed:32579939]
[69] Soria-Bustos J, Ares MA, G��mez-Aldapa CA, Gonz��lez-Y-Merchand JA, Gir��n JA, De la Cruz MA. (2020) Two Type VI Secretion Systems of Enterobacter cloacae Are Required for Bacterial Competition, Cell Adherence, and Intestinal Colonization.. Front Microbiol. 11:560488. [PudMed:33072020]
[70] Chien CF, Liu CY, Lu YY, Sung YH, Chen KY, Lin NC. (2020) HSI-II Gene Cluster of Pseudomonas syringae pv. tomato DC3000 Encodes a Functional Type VI Secretion System Required for Interbacterial Competition.. Front Microbiol. 1.234722222. [PudMed:32582082]
[71] Donato SL, Beck CM, Garza-S��nchez F, Jensen SJ, Ruhe ZC, Cunningham DA, Singleton I, Low DA, Hayes CS. (2020) The ��-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion.. Proc Natl Acad Sci U S A. NA. [PudMed:33323487]
[72] Wang T, Hu Z, Du X, Shi Y, Dang J, Lee M, Hesek D, Mobashery S, Wu M, Liang H. (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors.. Mol Microbiol. 114(2):308-321. [PudMed:32279364]
[73] Wang Z, Wang T, Cui R, Zhang Z, Chen K, Li M, Hua Y, Gu H, Xu L, Wang Y, Yang Y, Shen X. (2020) HpaR, the Repressor of Aromatic Compound Metabolism, Positively Regulates the Expression of T6SS4 to Resist Oxidative Stress in Yersinia pseudotuberculosis.. Front Microbiol. 0.947916667. [PudMed:32362886]
[74] Seibt H, Aung KM, Ishikawa T, Sjstrm A, Gullberg M, Atkinson GC, Wai SN, Shingler V. (2020) Elevated levels of VCA0117 (VasH) in response to external signals activate the type VI secretion system of Vibrio cholerae O1 El Tor A1552.. Environ Microbiol. 22(10):4409-4423. [PudMed:32592280]
[75] Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. (2020) tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system.. Mol Plant Pathol. 21(8):1042-1054. [PudMed:32608174]
[76] Yin K, Zhang J, Ma J, Jin P, Ma Y, Zhang Y, Liu X, Wang Q. (2020) MviN mediates the regulation of environmental osmotic pressure on esrB to control the virulence in the marine fish pathogen Edwardsiella piscicida.. Microbiol Res. 239:126528. [PudMed:32622286]
[77] Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. (2020) In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes.. Mol Plant Microbe Interact. 33(2):349-363. [PudMed:31609645]
[78] Brunet YR, Bernard CS, Cascales E. (2020) Fur-Dam Regulatory Interplay at an Internal Promoter of the Enteroaggregative Escherichia coli Type VI Secretion sci1 Gene Cluster.. J Bacteriol. 202(10). [PudMed:32152218]
[79] Guillemette R, Ushijima B, Jalan M, Hse CC, Azam F. (2020) Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus.. PLoS One. 15(1):e0227864. [PudMed:31990915]
[80] Kaiyu Yin, Yue Peng, Moamer A H Ahmed, Jiabao Ma 1, Rongjing Xu 2, Yuanxing Zhang 3, Yue Ma 4, Qiyao Wang (2020) PepA Binds to and Negatively Regulates esrB to Control Virulence in the Fish Pathogen Edwardsiella Piscicida. Microbiol Res. 232:126349. [PudMed:31816594]
[81] Hu L, Wang C, Lu W, Lu H, Chen H, Tan C. (2020) BaeSR activates type VI secretion system expression in porcine extra-intestinal pathogenic Escherichia coli to enhance bacterial resistance to zinc stress.. Microb Pathog. 147:104357. [PudMed:32603765]
[82] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[83] Choi Y, Kim N, Mannaa M, Kim H, Park J, Jung H, Han G, Lee HH, Seo YS. (2020) Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice.. Plant Pathol J. 36(3):289-296. [PudMed:32547344]
[84] Caro F, Caro JA, Place NM, Mekalanos JJ. (2020) Transcriptional Silencing by TsrA in the Evolution of Pathogenic Vibrio cholerae Biotypes.. mBio. 11(6). [PudMed:33234688]
[85] Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. (2020) Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system.. Vet Res. 51(1):71. [PudMed:32448355]
[86] T G Sana , R Lomas, M R Gimenez, A Laubier, C Soscia, C Chauvet, A Conesa, R Voulhoux, B Ize, S Bleves (2019) Differential Modulation of Quorum Sensing Signaling Through QslA in Pseudomonas Aeruginosa Strains PAO1 and PA14. J Bacteriol. 201(21):e00362-19. [PudMed:31405911]
[87] Rotem Ben-Yaakov, Dor Salomon (2019) The Regulatory Network of Vibrio Parahaemolyticus Type VI Secretion System 1. Environ Microbiol. 21(7):2248-2260. [PudMed:30882997]
[88] Guckes KR, Cecere AG, Wasilko NP, Williams AL, Bultman KM, Mandel MJ, Miyashiro T. (2019) Incompatibility of Vibrio fischeri Strains during Symbiosis Establishment Depends on Two Functionally Redundant hcp Genes.. J Bacteriol. 201(19). [PudMed:31331977]
[89] Josh S Sharp , Arne Rietsch, Simon L Dove (2019) RNase E Promotes Expression of Type III Secretion System Genes in Pseudomonas Aeruginosa. J Bacteriol. 201(22):e00336-19. [PudMed:31481542]
[90] Shaohui Wang, Denghui Yang, Xiaojun Wu, Zhengfei Yi, Yang Wang, Suhua Xin, Dong Wang, Mingxing Tian, Tao Li, Jingjing Qi, Chan Ding, Shengqing Yu (2019) The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the clpV Promoter in Salmonella enterica Serovar Typhimurium. Infect Immun. 87(10):e00562-19. [PudMed:31383745]
[91] Ronan R McCarthy, Manda Yu, Kira Eilers, Yi-Chieh Wang, Erh-Min Lai, Alain Filloux (2019) Cyclic di-GMP Inactivates T6SS and T4SS Activity in Agrobacterium Tumefaciens. Mol Microbiol. 112(2):632-648. [PudMed:31102484]
[92] Lennings J, Makhlouf M, Olejnik P, Mayer C, Brötz-Oesterhelt H, Schwarz S. (2019) Environmental and cellular factors affecting the localization of T6SS proteins in Burkholderia thailandensis.. Int J Med Microbiol. 309(6):151335. [PudMed:31378704]
[93] Vacheron J, P��chy-Tarr M, Brochet S, Heiman CM, Stojiljkovic M, Maurhofer M, Keel C. (2019) T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens.. ISME J. 13(5):1318-1329. [PudMed:30683920]
[94] Di Venanzio G, Moon KH, Weber BS, Lopez J, Ly PM, Potter RF, Dantas G, Feldman MF. (2019) Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination.. Proc Natl Acad Sci U S A. 116(4):1378-1383. [PudMed:30626645]
[95] Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. (2019) Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition.. Microbiologyopen. NA. [PudMed:30628184]
[96] Lisa C Metzger, Noémie Matthey, Candice Stoudmann, Esther J Collas, Melanie Blokesch (2019) Ecological Implications of Gene Regulation by TfoX and TfoY Among Diverse Vibrio Species. Environ Microbiol. 21(7):2231-2247. [PudMed:30761714]
[97] Lennings J, Mayer C, Makhlouf M, Brötz-Oesterhelt H, Schwarz S. (2019) Polar localization of the ATPase ClpV-5 occurs independent of type VI secretion system apparatus proteins in Burkholderia thailandensis.. BMC Res Notes. 12(1):109. [PudMed:30819219]
[98] Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. (2019) Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp.. Appl Environ Microbiol. 85(2). [PudMed:30413477]
[99] Santin YG, Camy CE, Zoued A, Doan T, Aschtgen MS, Cascales E. (2019) Role and Recruitment of the TagL Peptidoglycan-Binding Protein during Type VI Secretion System Biogenesis.. J Bacteriol. 201(12). [PudMed:30910811]
[100] Wood TE, Howard SA, Frster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. (2019) The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology.. Cell Rep. 29(1):187-201. [PudMed:31577948]
[101] Lennings J, West TE, Schwarz S. (2019) The Burkholderia Type VI Secretion System 5: Composition, Regulation and Role in Virulence.. Front Microbiol. 2.69375. [PudMed:30687298]
[102] Fernández-Bravo A, Kilgore PB, Andersson JA, Blears E, Figueras MJ, Hasan NA, Colwell RR, Sha J, Chopra AK. (2019) T6SS and ExoA of flesh-eating Aeromonas hydrophila in peritonitis and necrotizing fasciitis during mono- and polymicrobial infections.. Proc Natl Acad Sci U S A. 116(48):24084-24092. [PudMed:31712444]
[103] Xiaobing Yang, Yunhong Song, Qingyun Dai, Hongyun Zhang, Li Song, Zhuo Wang, Junfeng Pan, Yao Wang (2019) The Stringent Response Factor, RelA, Positively Regulates T6SS4 Expression Through the RovM/RovA Pathway in Yersinia Pseudotuberculosis. Microbiol Res. 220:32-41. [PudMed:30744817]
[104] Yuying Han, Tietao Wang, Gukui Chen, Qinqin Pu, Qiong Liu, Yani Zhang, Linghui Xu, Min Wu, Haihua Liang (2019) A Pseudomonas Aeruginosa Type VI Secretion System Regulated by CueR Facilitates Copper Acquisition. PLoS Pathog. 15(12):e1008198. [PudMed:31790504]
[105] Nicole M Bzdyl, Nichollas E Scott, Isobel H Norville, Andrew E Scott, Timothy Atkins, Stanley Pang, Derek S Sarovich, Geoffrey Coombs, Timothy J J Inglis, Charlene M Kahler, Mitali Sarkar-Tyson (2019) Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia Pseudomallei. Infect Immun. 87(10):e00528-19. [PudMed:31331957]
[106] Pei-Fang Hsieh, Yi-Rou Lu, Tzu-Lung Lin, Li-Yin Lai, Jin-Town Wang (2019) Klebsiella Pneumoniae Type VI Secretion System Contributes to Bacterial Competition, Cell Invasion, Type-1 Fimbriae Expression, and In Vivo Colonization. J Infect Dis. 219(4):637-647. [PudMed:30202982]
[107] Zhengfei Yi, Dong Wang, Suhua Xin, Dongliang Zhou, Tao Li, Mingxing Tian, Jingjing Qi, Chan Ding, Shaohui Wang, Shengqing Yu (2019) The CpxR Regulates Type VI Secretion System 2 Expression and Facilitates the Interbacterial Competition Activity and Virulence of Avian Pathogenic Escherichia Coli. Vet Res. 50(1):40. [PudMed:31126325]
[108] Giuseppina Mariano, Katharina Trunk, David J Williams, Laura Monlezun, Henrik Strahl, Samantha J Pitt, Sarah J Coulthurst (2019) A Family of Type VI Secretion System Effector Proteins That Form Ion-Selective Pores. Nat Commun. 10(1):5484. [PudMed:31792213]
[109] Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y, Zheng Y, Hu L, Li P, Chen H, Tan C. (2019) Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli.. Virulence. 10(1):118-132. [PudMed:30676217]
[110] Salinero-Lanzarote A, Pacheco-Moreno A, Domingo-Serrano L, Dur��n D, Ormeo-Orrillo E, Mart��nez-Romero E, Albareda M, Palacios JM, Rey L. (2019) The Type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis.. FEMS Microbiol Ecol. 95(5). [PudMed:30977796]
[111] Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. (2019) A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae.. Mol Microbiol. 111(6):1493-1509. [PudMed:30825339]
[112] Tekedar HC, Abdelhamed H, Kumru S, Blom J, Karsi A, Lawrence ML. (2019) Comparative Genomics of Aeromonas hydrophila Secretion Systems and Mutational Analysis of hcp1 and vgrG1 Genes From T6SS.. Front Microbiol. 2.608333333. [PudMed:30687246]
[113] Biswanath Jana, Chaya M Fridman, Eran Bosis, Dor Salomon (2019) A Modular Effector With a DNase Domain and a Marker for T6SS Substrates. Nat Commun. 10(1):3595. [PudMed:31399579]
[114] Tan J, Yang D, Wang Z, Zheng X, Zhang Y, Liu Q (2019) EvpP inhibits neutrophils recruitment via Jnk-caspy inflammasome signaling in vivo. Fish Shellfish Immunol. 92:851-860. [PudMed:31129187]
[115] Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. (2019) Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters.. Genome Biol. 20(1):163. [PudMed:31405375]
[116] Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. (2019) The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization.. Front Microbiol. 2.405555556. [PudMed:31921044]
[117] Berni B, Soscia C, Djermoun S, Ize B, Bleves S (2019) A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol. 1.2625. [PudMed:31231326]
[118] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[119] Li L, Wang YN, Jia HB, Wang P, Dong JF, Deng J, Lu FM, Zou QH. (2019) The type VI secretion system protein AsaA in Acinetobacter baumannii is a periplasmic protein physically interacting with TssM and required for T6SS assembly.. Sci Rep. 9(1):9438. [PudMed:31263148]
[120] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[121] Szwedziak P, Pilhofer M. (2019) Bidirectional contraction of a type six secretion system.. Nat Commun. 10(1):1565. [PudMed:30952865]
[122] Ahmad S, Wang B, Walker MD, Tran HR, Stogios PJ, Savchenko A, Grant RA, McArthur AG, Laub MT, Whitney JC (2019) An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 575(7784):674-678. [PudMed:31695193]
[123] Lifan Wei, Haoxian Qiao, Bing Liu, Kaiyu Yin, Qin Liu, Yuanxing Zhang, Yue Ma, Qiyao Wang (2019) MarTrack: A Versatile Toolbox of Mariner Transposon Derivatives Used for Functional Genetic Analysis of Bacterial Genomes. Microbiol Res. 228:126306. [PudMed:31422233]
[124] Zepeda-Rivera MA, Saak CC, Gibbs KA (2018) A Proposed Chaperone of the Bacterial Type VI Secretion System Functions To Constrain a Self-Identity Protein. J Bacteriol. 200(14). pii: e00688-17. [PudMed:29555703]
[125] Maroniche GA, Diaz PR, Borrajo MP, Valverde CF, Creus CM. (2018) Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization.. FEMS Microbiol Ecol. 94(12). [PudMed:30299474]
[126] Santin YG, Doan T, Lebrun R, Espinosa L, Journet L, Cascales E (2018) In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol. 3(11):1304-1313. [PudMed:30275513]
[127] Jask��lska M, Stutzmann S, Stoudmann C, Blokesch M. (2018) QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae.. Nucleic Acids Res. 46(20):10619-10634. [PudMed:30102403]
[128] Romero M, Silistre H, Lovelock L, Wright VJ, Chan KG, Hong KW, Williams P, Cámara M, Heeb S. (2018) Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN. Nucleic Acids Res. 46(13):6823-6840. [PudMed:29718466]
[129] Chourashi R, Das S, Dhar D, Okamoto K, Mukhopadhyay AK, Chatterjee NS. (2018) Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.. Microbiology (Reading). 164(5):751-763. [PudMed:29633936]
[130] Ethel Bayer-Santos, Lídia Dos Passos Lima, Lucas de Moraes Ceseti, Camila Yuri Ratagami, Eliane Silva de Santana, Aline Maria da Silva, Chuck Shaker Farah, Cristina Elisa Alvarez-Martinez (2018) Xanthomonas Citri T6SS Mediates Resistance to Dictyostelium Predation and Is Regulated by an ECF σ Factor and Cognate Ser/Thr Kinase. Environ Microbiol. 20(4):1562-1575. [PudMed:29488354]
[131] Jer-Sheng Lin, Panayiota Pissaridou, Hsin-Hui Wu, Ming-Daw Tsai, Alain Filloux, Erh-Min Lai (2018) TagF-mediated Repression of Bacterial Type VI Secretion Systems Involves a Direct Interaction With the Cytoplasmic Protein Fha. J Biol Chem. 293(23):8829-8842. [PudMed:29599293]
[132] Yuzhou Wang, Ye Li, Jianli Wang, Xiaoyuan Wang (2018) FleQ Regulates Both the Type VI Secretion System and Flagella in Pseudomonas Putida. Biotechnol Appl Biochem. 65(3):419-427. [PudMed:28968917]
[133] Corbitt J, Yeo JS, Davis CI, LeRoux M, Wiggins PA. (2018) Type VI Secretion System Dynamics Reveals a Novel Secretion Mechanism in Pseudomonas aeruginosa.. J Bacteriol. 200(11). [PudMed:29555704]
[134] Li P, Xu D, Ma T, Wang D, Li W, He J, Ran T, Wang W. (2018) Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism.. Biochem J. 475(13):2209-2224. [PudMed:29858276]
[135] Liliana Losada, April A Shea, David DeShazer (2018) A MarR Family Transcriptional Regulator and Subinhibitory Antibiotics Regulate Type VI Secretion Gene Clusters in Burkholderia Pseudomallei. Microbiology. 164(9):1196-1211. [PudMed:30052173]
[136] Pan J, Zhao M, Huang Y, Li J, Liu X, Ren Z, Kan B, Liang W. (2018) Integration Host Factor Modulates the Expression and Function of T6SS2 in Vibrio fluvialis.. Front Microbiol. 1.043055556. [PudMed:29867866]
[137] Wang M, Cao H, Wang Q, Xu T, Guo X, Liu B. (2018) The Roles of Two Type VI Secretion Systems in Cronobacter sakazakii ATCC 12868.. Front Microbiol. 2.110416667. [PudMed:30405562]
[138] Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS, Mandel MJ, Miyashiro T, Septer AN. (2018) Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host.. Proc Natl Acad Sci U S A. 115(36):E8528-E8537. [PudMed:30127013]
[139] Irina Debnath, Anne M Stringer, Sara N Smith, Emily Bae, Harry L T Mobley, Joseph T Wade, Melanie M Pearson (2018) MrpJ Directly Regulates Proteus Mirabilis Virulence Factors, Including Fimbriae and Type VI Secretion, During Urinary Tract Infection. Infect Immun. 86(10):e00388-18. [PudMed:30082479]
[140] Kaiyu Yin, Yunpeng Guan, Ruiqing Ma, Lifan Wei, Bing Liu, Xiaohong Liu, Xiangshan Zhou, Yue Ma, Yuanxing Zhang, Matthew K Waldor, Qiyao Wang (2018) Critical Role for a Promoter Discriminator in RpoS Control of Virulence in Edwardsiella Piscicida. PLoS Pathog. 14(8):e1007272. [PudMed:30169545]
[141] Zhang L, Jiang Z, Fang S, Huang Y, Yang D, Wang Q, Zhang Y, Liu Q (2018) Systematic Identification of Intracellular-Translocated Candidate Effectors in Edwardsiella piscicida. Front Cell Infect Microbiol. 8:37. [PudMed:29503811]
[142] Zhen Yang, Xiaohui Zhou , Yue Ma, Mian Zhou, Matthew K Waldor, Yuanxing Zhang, Qiyao Wang (2018) Serine/threonine Kinase PpkA Coordinates the Interplay Between T6SS2 Activation and Quorum Sensing in the Marine Pathogen Vibrio Alginolyticus. Environ Microbiol. 20(2):903-919. [PudMed:29314504]
[143] Zhen Yang, Xuetong Wang, Wensheng Xu, Mian Zhou, Yuanxing Zhang, Yue Ma, Qiyao Wang (2018) Phosphorylation of PppA at Threonine 253 Controls T6SS2 Expression and Bacterial Killing Capacity in the Marine Pathogen Vibrio Alginolyticus. Microbiol Res. 209:70-78. [PudMed:29580623]
[144] Troselj V, Treuner-Lange A, Søgaard-Andersen L, Wall D (2018) Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium. mBio. 9(1). pii: e01645-17. [PudMed:29437919]
[145] Xiating Gao, Xuetong Wang, Qiaoqiao Mao, Rongjing Xu, Xiaohui Zhou, Yue Ma, Qin Liu, Yuanxing Zhang, Qiyao Wang (2018) VqsA, a Novel LysR-Type Transcriptional Regulator, Coordinates Quorum Sensing (QS) and Is Controlled by QS To Regulate Virulence in the Pathogen Vibrio Alginolyticus. Appl Environ Microbiol. 84(12):e00444-18. [PudMed:29625990]
[146] Mariano G, Monlezun L, Coulthurst SJ. (2018) Dual Role for DsbA in Attacking and Targeted Bacterial Cells during Type VI Secretion System-Mediated Competition.. Cell Rep. 22(3):774-785. [PudMed:29346773]
[147] Gong Y, Zhang Z, Liu Y, Zhou XW, Anwar MN, Li ZS, Hu W1, Li YZ (2018) A nuclease-toxin and immunity system for kin discrimination in Myxococcus xanthus. Environ Microbiol. 20(7):2552-2567. [PudMed:29806725]
[148] Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol. 3(5):632-640. [PudMed:29632369]
[149] Shao X, Zhang X, Zhang Y, Zhu M, Yang P, Yuan J, Xie Y, Zhou T, Wang W, Chen S, Liang H, Deng X. (2018) RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1.. J Bacteriol. 200(16). [PudMed:29760208]
[150] Nannan Wang, Jin Liu, Maoda Pang, Yafeng Wu, Furqan Awan, Mark R Liles, Chengping Lu, Yongjie Liu (2018) Diverse Roles of Hcp Family Proteins in the Environmental Fitness and Pathogenicity of Aeromonas Hydrophila Chinese Epidemic Strain NJ-35. Appl Microbiol Biotechnol. 102(16):7083-7095. [PudMed:29862449]
[151] Panayiota Pissaridou, Luke P Allsopp, Sarah Wettstadt, Sophie A Howard, Despoina A I Mavridou, Alain Filloux (2018) The Pseudomonas aeruginosa T6SS-VgrG1b Spike Is Topped by a PAAR Protein Eliciting DNA Damage to Bacterial Competitors. Proc Natl Acad Sci U S A. 115(49):12519-12524. [PudMed:30455305]
[152] Adam Ostrowski, Francesca R Cianfanelli, Michael Porter, Giuseppina Mariano, Julien Peltier, Jun Jie Wong, Jason R Swedlow, Matthias Trost, Sarah J Coulthurst (2018) Killing With Proficiency: Integrated Post-Translational Regulation of an Offensive Type VI Secretion System. PLoS Pathog. 14(7):e1007230. [PudMed:30052683]
[153] Katharina Trunk, Julien Peltier, Yi-Chia Liu, Brian D Dill, Louise Walker, Neil A R Gow, Michael J R Stark, Janet Quinn, Henrik Strahl, Matthias Trost, Sarah J Coulthurst (2018) The Type VI Secretion System Deploys Antifungal Effectors Against Microbial Competitors. Nat Microbiol. 3(8):920-931. [PudMed:30038307]
[154] Jiale Ma, Min Sun, Zihao Pan, Chengping Lu, Huochun Yao (2018) Diverse Toxic Effectors Are Harbored by vgrG Islands for Interbacterial Antagonism in Type VI Secretion System. Biochim Biophys Acta Gen Subj. 1862(7):1635-1643. [PudMed:29674124]
[155] Byun B, Mahasenan KV, Dik DA, Marous DR, Speri E, Kumarasiri M, Fisher JF, Hermoso JA, Mobashery S. (2018) Mechanism of the Escherichia coli MltE lytic transglycosylase, the cell-wall-penetrating enzyme for Type VI secretion system assembly.. Sci Rep. 8(1):4110. [PudMed:29515200]
[156] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[157] Wang C, Pu T, Lou W, Wang Y, Gao Z, Hu B, Fan J. (2018) Hfq, a RNA Chaperone, Contributes to Virulence by Regulating Plant Cell Wall-Degrading Enzyme Production, Type VI Secretion System Expression, Bacterial Competition, and Suppressing Host Defense Response in Pectobacterium carotovorum.. Mol Plant Microbe Interact. 31(11):1166-1178. [PudMed:30198820]
[158] Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD (2018) Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell. 175(5):1380-1392.e14. [PudMed:30343895]
[159] Tang JY, Bullen NP, Ahmad S, Whitney JC (2018) Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem. 293(5):1504-1514. [PudMed:29237732]
[160] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[161] Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB, Powell D, Harper M#, Boyce JD (2018) Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. Infect Immun. 86(8). pii: e00297-18. [PudMed:29735524]
[162] Ledvina HE, Kelly KA, Eshraghi A, Plemel RL, Peterson SB, Lee B, Steele S, Adler M, Kawula TH, Merz AJ, Skerrett SJ, Celli J, Mougous JD (2018) A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe. 24(2):285-295.e8. [PudMed:30057173]
[163] Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM, Wettstadt S, Filloux A (2017) RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 114(29):7707-7712. [PudMed:28673999]
[164] Clayton W Hall, Li Zhang, Thien-Fah Mah (2017) PA3225 Is a Transcriptional Repressor of Antibiotic Resistance Mechanisms in Pseudomonas Aeruginosa. Antimicrob Agents Chemother. 61(8):e02114-16. [PudMed:28584154]
[165] Lingyu Zhang, George Osei-Adjei, Ying Zhang, He Gao, Wenhui Yang, Dongsheng Zhou, Xinxiang Huang, Huiying Yang, Yiquan Zhang (2017) CalR Is Required for the Expression of T6SS2 and the Adhesion of Vibrio Parahaemolyticus to HeLa Cells. Arch Microbiol. 199(6):931-938. [PudMed:28378143]
[166] Yiquan Zhang, He Gao, George Osei-Adjei, Ying Zhang, Wenhui Yang, Huiying Yang, Zhe Yin, Xinxiang Huang, Dongsheng Zhou (2017) Transcriptional Regulation of the Type VI Secretion System 1 Genes by Quorum Sensing and ToxR in Vibrio parahaemolyticus. Front Microbiol. 1.725694444. [PudMed:29085350]
[167] Meiru Si, Yao Wang, Bing Zhang, Chao Zhao, Yiwen Kang, Haonan Bai, Dawei Wei, Lingfang Zhu, Lei Zhang, Tao G Dong, Xihui Shen (2017) The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep. 20(4):949-959. [PudMed:28746878]
[168] Brms JE, Meyer L, Sjstedt A. (2017) A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control Type VI system-mediated secretion.. Virulence. 8(6):821-847. [PudMed:27830989]
[169] Meiru Si, Chao Zhao, Brianne Burkinshaw, Bing Zhang, Dawei Wei, Yao Wang, Tao G Dong, Xihui Shen (2017) Manganese Scavenging and Oxidative Stress Response Mediated by Type VI Secretion System in Burkholderia thailandensis. Proc Natl Acad Sci U S A. 114(11):E2233-E2242. [PudMed:28242693]
[170] Santin YG, Cascales E. (2017) Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system.. EMBO Rep. 18(1):138-149. [PudMed:27920034]
[171] Anderson MC, Vonaesch P, Saffarian A, Marteyn BS, Sansonetti PJ. (2017) Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy.. Cell Host Microbe. 21(6):769-776. [PudMed:28618272]
[172] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[173] Wan B, Zhang Q, Ni J, Li S, Wen D, Li J, Xiao H, He P, Ou HY, Tao J, Teng Q, Lu J, Wu W, Yao YF (2017) Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog. 13(3):e1006246. [PudMed:28288207]
[174] Huang Y, Du P, Zhao M, Liu W, Du Y, Diao B, Li J, Kan B, Liang W. (2017) Functional Characterization and Conditional Regulation of the Type VI Secretion System in Vibrio fluvialis.. Front Microbiol. 0.7. [PudMed:28424671]
[175] Li P, Kinch LN, Ray A, Dalia AB, Cong Q, Nunan LM, Camilli A, Grishin NV, Salomon D, Orth K. (2017) Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires.. Appl Environ Microbiol. 83(13). [PudMed:28432099]
[176] Nicolle L Barbieri, Jessica A Vande Vorde, Alison R Baker, Fabiana Horn, Ganwu Li, Catherine M Logue, Lisa K Nolan (2017) FNR Regulates the Expression of Important Virulence Factors Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Front Cell Infect Microbiol. 0.475694444. [PudMed:28690981]
[177] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[178] Tian Y, Zhao Y, Shi L, Cui Z, Hu B, Zhao Y. (2017) Type VI Secretion Systems of Erwinia amylovora Contribute to Bacterial Competition, Virulence, and Exopolysaccharide Production.. Phytopathology. 107(6):654-661. [PudMed:28421913]
[179] Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H (2017) PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. (1):345-360. [PudMed:27871130]
[180] Alteri CJ, Himpsl SD, Zhu K, Hershey HL, Musili N, Miller JE, Mobley HLT. (2017) Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.. PLoS Pathog. 13(11):e1006729. [PudMed:29155899]
[181] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[182] Lin J, Zhang W, Cheng J, Yang X, Zhu K, Wang Y, Wei G, Qian PY, Luo ZQ, Shen X (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun. 28;8:14888. [PudMed:28348410]
[183] Jiale Ma, Zihao Pan, Jinhu Huang, Min Sun, Chengping Lu, Huochun Yao (2017) The Hcp Proteins Fused With Diverse Extended-Toxin Domains Represent a Novel Pattern of Antibacterial Effectors in Type VI Secretion Systems. Virulence. 8(7):1189-1202. [PudMed:28060574]
[184] Ho BT, Fu Y, Dong TG, Mekalanos JJ (2017) Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci U S A. 114(35):9427-9432. [PudMed:28808000]
[185] Lazzaro M, Feldman MF, Garc��a V��scovi E. (2017) A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.. mBio. 8(4). [PudMed:28830939]
[186] Wang T, Chen K, Gao F, Kang Y, Chaudhry MT, Wang Z, Wang Y, Shen X. (2017) ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis.. J Microbiol. 55(6):448-456. [PudMed:28281200]
[187] Ann Ray, Nika Schwartz, Marcela de Souza Santos, Junmei Zhang, Kim Orth, Dor Salomon (2017) Type VI Secretion System MIX-effectors Carry Both Antibacterial and Anti-Eukaryotic Activities. EMBO Rep.. 18(11):1978-1990. [PudMed:28912123]
[188] Chen H, Yang D, Han F, Tan J, Zhang L, Xiao J, Zhang Y, Liu Q (2017) The Bacterial T6SS Effector EvpP Prevents NLRP3 Inflammasome Activation by Inhibiting the Ca2+ -Dependent MAPK-Jnk Pathway. Cell Host Microbe. 21(1):47-58. [PudMed:28081443]
[189] de Campos SB, Lardi M, Gandolfi A, Eberl L, Pessi G. (2017) Mutations in Two Paraburkholderia phymatum Type VI Secretion Systems Cause Reduced Fitness in Interbacterial Competition.. Front Microbiol. 2.050694444. [PudMed:29312183]
[190] Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM (2016) Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A. 113(34):E5044-51. [PudMed:27503894]
[191] Stutzmann S, Blokesch M. (2016) Circulation of a Quorum-Sensing-Impaired Variant of Vibrio cholerae Strain C6706 Masks Important Phenotypes.. mSphere. 1(3). [PudMed:27303743]
[192] Daniel F Aubert, Hao Xu, Jieling Yang, Xuyan Shi, Wenqing Gao, Lin Li, Fabiana Bisaro, She Chen, Miguel A Valvano, Feng Shao (2016) A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe. 19(5):664-74. [PudMed:27133449]
[193] Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L (2016) A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol. 99(6):1099-118. [PudMed:26714038]
[194] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[195] Charlotte Majerczyk, Emily Schneider, E Peter Greenberg (2016) Quorum Sensing Control of Type VI Secretion Factors Restricts the Proliferation of Quorum-Sensing Mutants. Elife. 5:e14712. [PudMed:27183270]
[196] Jennifer Chua, Jeffrey L Senft, Stephen J Lockett, Paul J Brett, Mary N Burtnick, David DeShazer, Arthur M Friedlander (2016) pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infect Immun. 85(1):e00586-16. [PudMed:27799332]
[197] Rogers A, Townsley L, Gallego-Hernandez AL, Beyhan S, Kwuan L, Yildiz FH. (2016) The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio cholerae.. J Bacteriol. 198(6):973-85. [PudMed:26755629]
[198] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[199] Lisa C Metzger, Sandrine Stutzmann, Tiziana Scrignari, Charles Van der Henst, Noémie Matthey, Melanie Blokesch (2016) Independent Regulation of Type VI Secretion in Vibrio Cholerae by TfoX and TfoY. Cell Rep. 15(5):951-958. [PudMed:27117415]
[200] Cui S, Xiao J, Wang Q, Zhang Y. (2016) H-NS binding to evpB and evpC and repressing T6SS expression in fish pathogen Edwardsiella piscicida.. Arch Microbiol. 198(7):653-61. [PudMed:27125651]
[201] Wexler AG, Bao Y, Whitney JC, Bobay LM, Xavier JB, Schofield WB, Barry NA, Russell AB, Tran BQ, Goo YA, Goodlett DR, Ochman H, Mougous JD, Goodman AL. (2016) Human symbionts inject and neutralize antibacterial toxins to persist in the gut.. Proc Natl Acad Sci U S A. 113(13):3639-44. [PudMed:26957597]
[202] Church SR, Lux T, Baker-Austin C, Buddington SP, Michell SL. (2016) Vibrio vulnificus Type 6 Secretion System 1 Contains Anti-Bacterial Properties.. PLoS One. 11(10):e0165500. [PudMed:27798649]
[203] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[204] Tang L, Yue S, Li GY, Li J, Wang XR, Li SF, Mo ZL. (2016) Expression, secretion and bactericidal activity of type VI secretion system in Vibrio anguillarum.. Arch Microbiol. 198(8):751-60. [PudMed:27172981]
[205] Jiang F, Wang X, Wang B, Chen L, Zhao Z, Waterfield NR, Yang G, Jin Q (2016) The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep. 16(6):1502-1509. [PudMed:27477276]
[206] Qin A, Zhang Y, Clark ME, Moore EA, Rabideau MM, Moreau GB, Mann BJ. (2016) Components of the type six secretion system are substrates of Francisella tularensis Schu S4 DsbA-like FipB protein.. Virulence. 7(8):882-894. [PudMed:27028889]
[207] Peng Y, Wang X, Shou J, Zong B, Zhang Y, Tan J, Chen J, Hu L, Zhu Y, Chen H, Tan C. (2016) Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system.. Sci Rep. 6:26816. [PudMed:27229766]
[208] P��rinet S, Jeukens J, Kukavica-Ibrulj I, Ouellet MM, Charette SJ, Levesque RC. (2016) Molybdate transporter ModABC is important for Pseudomonas aeruginosa chronic lung infection.. BMC Res Notes. 9:23. [PudMed:26758577]
[209] Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE (2016) Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci U S A. 113(13):3627-32. [PudMed:26951680]
[210] Townsley L, Sison Mangus MP, Mehic S, Yildiz FH. (2016) Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton.. Appl Environ Microbiol. 82(14):4441-52. [PudMed:27208110]
[211] Chen R, Weng Y, Zhu F, Jin Y, Liu C, Pan X, Xia B, Cheng Z, Jin S, Wu W. (2016) Polynucleotide Phosphorylase Regulates Multiple Virulence Factors and the Stabilities of Small RNAs RsmY/Z in Pseudomonas aeruginosa.. Front Microbiol. 0.463194444. [PudMed:26973625]
[212] Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD (2016) Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe. 20(5):573-583. [PudMed:27832588]
[213] Guan J et al (2015) Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol. 53(9):633-42. [PudMed:26310305]
[214] Weber BS et al (2015) A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci U S A. 112(30):9442-7. [PudMed:26170289]
[215] Sun S et al (2015) Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms. ISME J. doi: 10.1038/ismej.2014.265. [PudMed:25615438]
[216] Dong TG et al (2015) Generation of reactive oxygen species by lethal attacks from competing microbes. Proc Natl Acad Sci U S A. 112(7):2181-6. [PudMed:25646446]
[217] Cheng AT et al (2015) Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System. PLoS Pathog. 11(5):e1004933. [PudMed:26000450]
[218] Decoin V et al (2015) A Pseudomonas fluorescens type 6 secretion system is related to mucoidy, motility and bacterial competition. BMC Microbiol. 15(1):72. [PudMed:25886496]
[219] Jones CL et al (2015) Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii With Enhanced Virulence. Clin Infect Dis. pii: civ225. [PudMed:25824815]
[220] Balsanelli E et al (2015) Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere. Environ Microbiol. doi: 10.1111/1462-2920.12887. [PudMed:25923055]
[221] Ruiz FM et al (2015) Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System. PLoS One. 10(6):e0129691. [PudMed:26079269]
[222] Salomon D et al (2015) Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog. 11(8):e1005128. [PudMed:26305100]
[223] Sabag-Daigle A et al (2015) Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Front Cell Infect Microbiol. 5:47. [PudMed:26075189]
[224] Repizo GD et al (2015) Differential Role of the T6SS in Acinetobacter baumannii Virulence. PLoS One. 10(9):e0138265. [PudMed:26401654]
[225] Hammond JH et al (2015) Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms. J Bacteriol. 197(17):2810-20. [PudMed:26078448]
[226] Wang N et al (2015) Protective efficacy of recombinant hemolysin co-regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio). Fish Shellfish Immunol. 46(2):297-304. [PudMed:26093203]
[227] Liang X et al (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A. 112(29):9106-11. [PudMed:26150500]
[228] Wong J et al (2015) Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. Cell Host Microbe. 18(1):38-48. [PudMed:26094804]
[229] Siddiqui F et al (2015) Molecular detection identified a Type Six Secretion System in Campylobacter jejuni from various sources but not from human cases. J Appl Microbiol. doi: 10.1111/jam.12748. [PudMed:25580664]
[230] Brunet YR et al (2015) H-NS silencing of the SPI-6-encoded Type VI secretion system limits Salmonella enterica serovar Typhimurium interbacterial killing. Infect Immun. pii: IAI.00198-15. [PudMed:25916986]
[231] Liu L et al (2015) Pseudomonas fluorescens: identification of Fur-regulated proteins and evaluation of their contribution to pathogenesis. Dis Aquat Organ. 115(1):67-80. [PudMed:26119301]
[232] Clemens DL et al (2015) Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell. 160(5):940-51. [PudMed:25723168]
[233] Wang T et al (2015) Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog. 11(7):e1005020. [PudMed:26134274]
[234] Bachmann V et al (2015) Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae. PLoS Negl Trop Dis. 9(8):e0004031. [PudMed:26317760]
[235] Unterweger D et al (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J. 34(16):2198-210. [PudMed:26194724]
[236] Yunhong Song, Xiao Xiao, Changfu Li, Tietao Wang, Ruoxi Zhao, Weipeng Zhang, Lei Zhang, Yao Wang, Xihui Shen (2015) The Dual Transcriptional Regulator RovM Regulates the Expression of AR3- And T6SS4-dependent Acid Survival Systems in Response to Nutritional Status in Yersinia Pseudotuberculosis. Environ Microbiol. 17(11):4631-45. [PudMed:26234561]
[237] S Massier et al (2015) Involvement of type VI secretion systems in virulence of adherent-invasive Escherichia coli isolated from patients with Crohn's disease. J Crohns Colitis. 9 Suppl 1:S67-8. [PudMed:25718291]
[238] Sana TG et al (2015) Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. MBio. 6(3):e00712. [PudMed:26037124]
[239] Aubert DF et al (2015) Quantification of Type VI secretion system activity in macrophages infected with Burkholderia cenocepacia. Microbiology. doi: 10.1099/mic.0.000174. [PudMed:26364149]
[240] Trampari E et al (2015) Bacterial Rotary Export ATPases Are Allosterically Regulated by the Nucleotide Second Messenger Cyclic-di-GMP. J Biol Chem. 290(40):24470-83. [PudMed:26265469]
[241] Watve SS et al (2015) CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae. PLoS One. 10(9):e0138834. [PudMed:26401962]
[242] Cui Z et al (2015) Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis. Int J Mol Sci. 16(9):22008-26. [PudMed:26378528]
[243] Kudryashev M et al (2015) Structure of the Type VI Secretion System Contractile Sheath. Cell. 160(5):952-62. [PudMed:25723169]
[244] Altindis E et al (2015) Secretome Analysis of Vibrio cholerae Type VI Secretion System Reveals a New Effector-Immunity Pair. MBio. pii: e00075-15. [PudMed:25759499]
[245] Yu Y et al (2015) VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages. Front Microbiol. 0.366666667. [PudMed:25784905]
[246] Nguyen VS et al (2015) Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody. PLoS One. 10(3):e0122187. [PudMed:25811612]
[247] LeRoux M et al (2015) Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. Elife. doi: 10.7554/eLife.05701. [PudMed:25643398]
[248] Blokesch M (2015) Competence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: Intestinal interbacterial killing by competence-induced V. cholera. Bioessays. doi: 10.1002/bies.201500101. [PudMed:26445388]
[249] Diniz JA et al (2015) Intra-species Competition in Serratia marcescens is Mediated by Type VI Secretion Rhs Effectors and a Conserved Effector-Associated Accessory Protein. J Bacteriol. pii: JB.00199-15. [PudMed:25939831]
[250] Bode NJ et al (2015) Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun. pii: IAI.02978-14. [PudMed:25847961]
[251] Aragon IM et al (2015) Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. Environ Microbiol. doi: 10.1111/1462-2920.12856. [PudMed:25809128]
[252] Corcionivoschi N et al (2015) Virulence characteristics of hcp (+) Campylobacter jejuni and Campylobacter coli isolates from retail chicken. Gut Pathog. 7:20. [PudMed:26207145]
[253] Liu L et al (2015) The type VI secretion system modulates flagellar gene expression and secretion in Citrobacter freundii and contributes to the adhesion and cytotoxicity to host cells. Infect Immun. pii: IAI.03071-14. [PudMed:25870231]
[254] Almblad H et al (2015) The cAMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by c-di-GMP. J Bacteriol. pii: JB.00193-15. [PudMed:25897033]
[255] Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD (2015) An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell. 163(3):607-19. [PudMed:26456113]
[256] Borgeaud S et al (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63-7. [PudMed:25554784]
[257] Kernell Burke A et al (2015) OpaR Controls a Network of Downstream Transcription Factors in Vibrio parahaemolyticus BB22OP. PLoS One. 10(4):e0121863. [PudMed:25901572]
[258] Grim CJ et al (2014) Functional Genomic Characterization of Virulence Factors from Necrotizing Fasciitis-Causing Strains of Aeromonas hydrophila. Appl Environ Microbiol. 80(14):4162-83. [PudMed:24795370]
[259] Pezoa D et al (2014) Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res. 45(1):2. [PudMed:24405577]
[260] Uda A et al (2014) Role of Pathogenicity Determinant Protein C (PdpC) in Determining the Virulence of the Francisella tularensis Subspecies tularensis SCHU. PLoS One. 9(2):e89075. [PudMed:24558472]
[261] Hare RF et al (2014) Francisella novicida Pathogenicity Island Encoded Proteins Were Secreted during Infection of Macrophage-Like Cells. PLoS One. 9(8):e105773. [PudMed:25158041]
[262] Dowling AJ et al (2014) An unbiased method for clustering bacterial effectors using host cellular phenotypes. Appl Environ Microbiol. 80(3):1185-96. [PudMed:24296505]
[263] Kamath KS et al (2014) Proteomics of hosts and pathogens in cystic fibrosis. Proteomics Clin Appl. 9(1-2):134-46. [PudMed:25418359]
[264] Angus AA et al (2014) Plant-associated symbiotic burkholderia species lack hallmark strategies required in Mammalian pathogenesis. PLoS One. 9(1):e83779. [PudMed:24416172]
[265] Whitaker WB et al (2014) Loss of Sigma Factor RpoN Increases Intestinal Colonization of Vibrio parahaemolyticus in an Adult Mouse Model. Infect Immun. 82(2):544-56. [PudMed:24478070]
[266] Aragon IM et al (2014) New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi. FEMS Microbiol Lett. 356(2):184-92. [PudMed:24606017]
[267] Decoin V et al (2014) A Type VI Secretion System Is Involved in Pseudomonas fluorescens Bacterial Competition. PLoS One. 9(2):e89411. [PudMed:24551247]
[268] Singha H et al (2014) Optimization and validation of indirect ELISA using truncated TssB protein for the serodiagnosis of glanders amongst equines. ScientificWorldJournal. 2014:469407. [PudMed:24672321]
[269] Yang W et al (2014) An invasive and low virulent Edwardsiella tarda esrB mutant promising as live attenuated vaccine in aquaculture. Appl Microbiol Biotechnol. 99(4):1765-77. [PudMed:25431010]
[270] Moule MG et al (2014) Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development. MBio. 5(1):e00926-13. [PudMed:24520057]
[271] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[272] Hu W et al (2014) A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding. PLoS One. 9(11):e110810. [PudMed:25401506]
[273] Brunet YR et al (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15(3):315-21. [PudMed:24488256]
[274] Gueguen E et al (2014) Transcriptional Frameshifting Rescues Citrobacter rodentium Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted tssM Gene. PLoS Genet. 10(12):e1004869. [PudMed:25474156]
[275] Shao Y et al (2014) Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol. 92(5):921-30. [PudMed:24698180]
[276] Zhang J et al (2014) Crystallization and preliminary X-ray study of TsiV3 from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 3):335-8. [PudMed:24598921]
[277] Shyntum D et al (2014) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact. doi:http://dx.doi.org/10.1094/MPMI-07-14-0219-R. [PudMed:25411959]
[278] Koskiniemi S et al (2014) Selection of Orphan Rhs Toxin Expression in Evolved Salmonella enterica Serovar Typhimurium. PLoS Genet. 10(3):e1004255. [PudMed:24675981]
[279] Law HT et al (2014) IglC and PdpA Are Important for Promoting Francisella Invasion and Intracellular Growth in Epithelial Cells. PLoS One. 9(8):e104881. [PudMed:25115488]
[280] Zhang J et al (2014) A new target for the old regulator: H-NS suppress T6SS secretory protein EvpP, the major virulence factor in the fish pathogen Edwardsiella tarda. Lett Appl Microbiol. 59(5):557-564. [PudMed:25131176]
[281] Hachani A et al (2014) The VgrG proteins are "A la carte" delivery systems for bacterial type VI effectors. J Biol Chem. 289(25):17872-17884. [PudMed:24794869]
[282] Li B et al (2014) Transcriptome analysis of Acidovorax avenae subsp. avenae cultivated in vivo and co-culture with Burkholderia seminalis. Sci Rep. 4.123611111. [PudMed:25027476]
[283] Heckel BC et al (2014) Agrobacterium tumefaciens ExoR Controls Acid Response Genes and Impacts Exopolysaccharide Synthesis, Horizontal Gene Transfer and Virulence Gene Expression. J Bacteriol. 196(18):3221-33. [PudMed:24982308]
[284] Whitney JC et al (2014) Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol. 92(3):529-42. [PudMed:24589350]
[285] Jiang F et al (2014) A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host Microbe. 15(5):600-10. [PudMed:24832454]
[286] Song C et al (2014) The Rsm regulon of plant growth-promoting Pseudomonas fluorescens SS101: role of small RNAs in regulation of lipopeptide biosynthesis. Microb Biotechnol. 8(2):296-310. [PudMed:25488342]
[287] Hopf V et al (2014) BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun. 82(5):2006-15. [PudMed:24595140]
[288] Kumari H et al (2014) LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics. 96:328-42. [PudMed:24291602]
[289] Bishop AH et al (2014) Identification of Genes Required for Soil Survival in Burkholderia thailandensis by Transposon-Directed Insertion Site Sequencing. Curr Microbiol. 68(6):693-701. [PudMed:24488501]
[290] Chen Z et al (2014) Cloning, purification, crystallization and preliminary X-ray studies of the putative type VI secretion immunity protein Tli5 (PA5088) from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun. 70(Pt 7):903-5. [PudMed:25005085]
[291] Burtnick MN et al (2014) Proteomic Analysis of the Burkholderia pseudomallei Type II Secretome Reveals Hydrolytic Enzymes, Novel Proteins and the Deubiquitinase TssM. Infect Immun. 82(8):3214-26. [PudMed:24866793]
[292] Duca D et al (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. UW4 that converts indole-3-acetonitrile to produce indole-3-acetic acid. Appl Environ Microbiol. 80(15):4640-9. [PudMed:24837382]
[293] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[294] Crnigoj M et al (2014) The Escherichia coli uropathogenic-specific-protein-associated immunity protein 3 (Imu3) has nucleic acid -binding activity. BMC Microbiol. 14:16. [PudMed:24472116]
[295] Unterweger D et al (2014) The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun. 2.672916667. [PudMed:24686479]
[296] Nguyen J et al (2014) Lipidation of the FPI Protein IglE contributes to Francisella tularensis subsp. novicida Intramacrophage Replication and Virulence. Pathog Dis. 72(1):10-8. [PudMed:24616435]
[297] Bocsanczy AM et al (2014) Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors. BMC Genomics. 15(1):280. [PudMed:24725348]
[298] Broberg M et al (2014) The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193. Appl Environ Microbiol. 80(6):1972-84. [PudMed:24441162]
[299] Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion exported protein required for multinucleated giant cell formation and virulence. Infect Immun. 82(4):1445-52. [PudMed:24452686]
[300] Klaponski N et al (2014) The requirement for the LysR-type regulator PtrA for Pseudomonas chlororaphis PA23 biocontrol revealed through proteomic and phenotypic analysis. BMC Microbiol. 0.648611111. [PudMed:24739259]
[301] Tian Y et al (2014) The Type VI Protein Secretion System Contributes to Biofilm Formation and Seed-to-Seedling Transmission of Acidovorax citrulli on melon. Mol Plant Pathol. 16(1):38-47. [PudMed:24863458]
[302] Pegoraro G et al (2014) A high-content imaging assay for the quantification of the Burkholderia pseudomallei induced multinucleated giant cell (MNGC) phenotype in murine macrophages. BMC Microbiol. 14(1):98. [PudMed:24750902]
[303] Ma J et al (2014) Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infect Immun. 82(9):3867-79. [PudMed:24980972]
[304] Sall KM et al (2014) A gacS Deletion in Pseudomonas aeruginosa Cystic Fibrosis Isolate CHA Shapes Its Virulence. PLoS One. 9(4):e95936. [PudMed:24780952]
[305] Russell AB et al (2014) A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host Microbe. 16(2):227-36. [PudMed:25070807]
[306] Chirakul S et al (2014) Characterization of BPSS1521 (bprD), a Regulator of Burkholderia pseudomallei Virulence Gene Expression in the Mouse Model. PLoS One. 9(8):e104313. [PudMed:25111708]
[307] Lu D et al (2014) Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol Microbiol. 92(5):1092-112. [PudMed:24724564]
[308] Kube S et al (2014) Structure of the VipA/B Type VI Secretion Complex Suggests a Contraction-State-Specific Recycling Mechanism. Cell Rep. 16(1):94-104. [PudMed:24953649]
[309] Zhang L et al (2014) TssB is essential for virulence and required for Type VI secretion system in Ralstonia solanacearum. Microb Pathog. 74C:1-7. [PudMed:24972114]
[310] Sun K et al (2014) Screening for inhibition of the Vibrio cholerae VipA-VipB interaction identifies small molecule compounds active against type VI secretion. Antimicrob Agents Chemother. 58(7):4123-4130. [PudMed:24798289]
[311] English G et al (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG sub-complex. Biochem J. 461(2):291-304. [PudMed:24779861]
[312] Jitprasutwit S et al (2014) Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions. BMC Genomics. 15(1):787. [PudMed:25214426]
[313] Yang X et al (2014) Molecular mechanism for self-protection against the type VI secretion system in Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 70(Pt 4):1094-103. [PudMed:24699653]
[314] Ma LS et al (2014) Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta. Cell Host Microbe. 16(1):94-104. [PudMed:24981331]
[315] Bielecki P et al (2014) In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles. MBio. 5(4). [PudMed:25096872]
[316] Hu H et al (2014) Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallogr D Biol Crystallogr. 70(Pt 8):2175-2185. [PudMed:25084336]
[317] B��cker R, Heroven AK, Becker J, Dersch P, Wittmann C. (2014) The pyruvate-tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis.. J Biol Chem. 289(43):30114-32. [PudMed:25164818]
[318] Salomon D et al (2014) H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1. Microbiology. 160(Pt 9):1867-73. [PudMed:24987102]
[319] Steele S et al (2014) A method for functional trans-complementation of intracellular Francisella tularensis. PLoS One. 9(2):e88194. [PudMed:24505427]
[320] Chen Y et al (2014) Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon. BMC Microbiol. 14(1):206. [PudMed:25085508]
[321] Forster A et al (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem. 289(47):33032-43. [PudMed:25305017]
[322] Lindgren M et al (2014) Identification of Mechanisms for Attenuation of the FSC043 Mutant of Francisella tularensis SCHU S4. Infect Immun. 82(9):3622-35. [PudMed:24935978]
[323] Peano C et al (2014) Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis. PLoS One. 9(3):e93009. [PudMed:24671187]
[324] Lery LM et al (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 12(1):41. [PudMed:24885329]
[325] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[326] Patel H et al (2014) Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae. BMC Microbiol. 14(1):274. [PudMed:25394860]
[327] Chang YW et al (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods. 11(7):737-9. [PudMed:24813625]
[328] Jeong JH et al (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 9):1260-3. [PudMed:25195905]
[329] Jones CJ et al (2014) ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa. PLoS Pathog. 10(3):e1003984. [PudMed:24603766]
[330] Xu H et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 513(7517):237-41. [PudMed:24919149]
[331] Zhang J et al (2014) Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett. 588(10):1891-8. [PudMed:24751834]
[332] Castro-Gomes T et al (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol. 52(4):350-3. [PudMed:24535738]
[333] Pederick VG, Eijkelkamp BA, Ween MP, Begg SL, Paton JC, McDevitt CA. (2014) Acquisition and role of molybdate in Pseudomonas aeruginosa.. Appl Environ Microbiol. 80(21):6843-52. [PudMed:25172858]
[334] Sarkar A et al (2014) Transcriptional Profiling of Nitrogen Fixation and the Role of NifA in the Diazotrophic Endophyte Azoarcus sp. Strain BH72. PLoS One. 9(2):e86527. [PudMed:24516534]
[335] Lin JS et al (2014) Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLoS Pathog. 10(3):e1003991. [PudMed:24626341]
[336] Kakar KU et al (2014) Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol. 30(2):469-78. [PudMed:23990042]
[337] Toesca IJ et al (2014) The Type VI Secretion System Spike Protein VgrG5 Mediates Membrane Fusion during Intercellular Spread by Pseudomallei Group Burkholderia Species. Infect Immun. 82(4):1436-44. [PudMed:24421040]
[338] Preeprem S et al (2014) Isolation and Characterization of Vibrio cholerae Isolates from Seafood in Hat Yai City, Songkhla, Thailand. Foodborne Pathog Dis. 11(11):881-6. [PudMed:25188839]
[339] Pradhan S et al (2013) Vibrio cholerae Classical Biotype Is Converted to the Viable Non-Culturable State when Cultured with the El Tor Biotype. PLoS One. 8(1):e53504. [PudMed:23326443]
[340] Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem. 288(8):5928-39. [PudMed:23288853]
[341] van Delden C et al (2013) Involvement of Fe uptake systems and AmpC beta-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 57(5):2095-102. [PudMed:23422914]
[342] Eijkelkamp BA et al (2013) H-NS Plays a Role in Expression of Acinetobacter baumannii Virulence Features. Infect Immun. 81(7):2574-83. [PudMed:23649094]
[343] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[344] Morin N et al (2013) Characterization of the AggR regulon in enteroaggregative Escherichia coli. Infect Immun. 81(1):122-32. [PudMed:23090962]
[345] Lu D et al (2013) Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 5):524-7. [PudMed:23695568]
[346] Pezoa D et al (2013) The Type VI Secretion System Encoded in SPI-6 Plays a Role in Gastrointestinal Colonization and Systemic Spread of Salmonella enterica serovar Typhimurium in the Chicken. PLoS One. 8(5):e63917. [PudMed:23691117]
[347] Kaakoush NO et al (2013) The Secretome of Helicobacter Trogontum. Helicobacter. 18(4):316-20. [PudMed:23406293]
[348] Filiatrault MJ et al (2013) Pseudomonas aeruginosa PA1006, Which Plays a Role in Molybdenum Homeostasis, Is Required for Nitrate Utilization, Biofilm Formation, and Virulence. PLoS One. 8(2):e55594. [PudMed:23409004]
[349] Tashiro Y et al (2013) Interspecies Interaction between Pseudomonas aeruginosa and Other Microorganisms. Microbes Environ. 28(1):13-24. [PudMed:23363620]
[350] Dong TG et al (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A . 110(7):2623-8. [PudMed:23362380]
[351] Blondel CJ et al (2013) The Type VI Secretion System encoded in SPI-19 is required for Salmonella Gallinarum survival within infected macrophages. Infect Immun. 81(4):1207-20. [PudMed:23357385]
[352] Cattoir V et al (2013) Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. MBio. 3(6):e00410-12. [PudMed:23143799]
[353] Bebeacua C et al (2013) Visualizing a Complete Siphoviridae Member by Single-Particle Electron Microscopy: the Structure of Lactococcal Phage TP901-1. J Virol. 87(2):1061-8. [PudMed:23135714]
[354] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[355] Zhang L et al (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One. 8(4):e61625. [PudMed:23637868]
[356] Singh AP et al (2013) Evolutionary Analysis of Burkholderia pseudomallei Identifies Putative Novel Virulence Genes, Including a Microbial Regulator of Host Cell Autophagy. J Bacteriol. 195(24):5487-98. [PudMed:24097950]
[357] Kaakoush NO et al (2013) Do Type VI Secretion Systems Translocate More Than Proteins?. Helicobacter. 18(3):242-3. [PudMed:23305101]
[358] Gueguen E et al (2013) Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator. PLoS One. 8(6):e66615. [PudMed:23840509]
[359] Benz J et al (2013) Structural Insights into the Effector - Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS One. 8(6):e67362. [PudMed:23826277]
[360] Marin MA et al (2013) Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis. 7(2):e2049. [PudMed:23459673]
[361] Novotny LA et al (2013) Structural Stability of Burkholderia cenocepacia Biofilms Is Reliant on eDNA Structure and Presence of a Bacterial Nucleic Acid Binding Protein. PLoS One. 8(6):e67629. [PudMed:23799151]
[362] McCaig WD et al (2013) Production of Outer Membrane Vesicles and Outer Membrane Tubes by Francisella novicida. J Bacteriol. 195(6):1120-32. [PudMed:23264574]
[363] Duan J et al (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One. 8(3):e58640. [PudMed:23516524]
[364] Li L et al (2013) Structural Insights on the Bacteriolytic and Self-protection Mechanism of Muramidase Effector Tse3 in Pseudomonas aeruginosa. J Biol Chem. 288(42):30607-13. [PudMed:24025333]
[365] Marden JN et al (2013) An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 110(37):15055-60. [PudMed:23980177]
[366] Robertson GT et al (2013) IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of Type A Francisella tularensis. Infect Immun. 81(11):4026-40. [PudMed:23959721]
[367] Aubert DF et al (2013) The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol. 15(2):372-85. [PudMed:22830644]
[368] Ho BT et al (2013) Type 6 Secretion System-Mediated Immunity to Type 4 Secretion System-Mediated Gene Transfer. Science. 342(6155):250-253. [PudMed:24115441]
[369] Sha J et al (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology. 159(Pt 6):1120-35. [PudMed:23519162]
[370] Fritsch MJ et al (2013) Proteomic identification of novel secreted anti-bacterial toxins of the Serratia marcescens Type VI secretion system. Mol Cell Proteomics. 12(10):2735-2749. [PudMed:23842002]
[371] Alavi P et al (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405(T.). Front Plant Sci. 0.264583333. [PudMed:23717321]
[372] Kidarsa TA et al (2013) Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS . Environ Microbiol. 15(3):716-35. [PudMed:23297839]
[373] Robb CS et al (2013) Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 6):607-10. [PudMed:23722835]
[374] Lindgren M et al (2013) The Francisella tularensis LVS DeltapdpC mutant exhibits a unique phenotype during intracellular infection. BMC Microbiol. 13(1):20. [PudMed:23356941]
[375] Wei X et al (2013) Global control of GacA on secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol. 195(15):3387-400. [PudMed:23708134]
[376] Arvizu-Gomez JL et al (2013) Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: physiology of phytopathogenic bacteria. BMC Microbiol. 0.597916667. [PudMed:23587016]
[377] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[378] Ciprandi A et al (2013) Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies. Curr Microbiol. 67(1):100-6. [PudMed:23455494]
[379] Shneider MM et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350-3. [PudMed:23925114]
[380] Dong C et al (2013) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J. 454(1):59-68. [PudMed:23730712]
[381] Horton RE et al (2013) Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One. 8(5):e63394. [PudMed:23704903]
[382] Braun V et al (2013) Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett. 345(1):13-21. [PudMed:23701660]
[383] Casabona MG et al (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics. 13(16):2419-23. [PudMed:23744604]
[384] Khodai-Kalaki M et al (2013) Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem. 288(42):30473-84. [PudMed:24014026]
[385] Brunet YR et al (2013) Imaging Type VI Secretion-Mediated Bacterial Killing. Cell Rep. 3(1):36-41. [PudMed:23291094]
[386] Kapitein N et al (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol. 87(5):1013-28. [PudMed:23289512]
[387] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[388] Bartonickova L et al (2013) Hcp and VgrG1 are secreted components of the Helicobacter hepaticus type VI secretion system and VgrG1 increases the bacterial colitogenic potential. Cell Microbiol. 15(6):992-1011. [PudMed:23278999]
[389] Long ME et al (2013) Disruption of Francisella tularensis Schu S4 iglI, iglJ, and pdpC genes results in attenuation for growth in human macrophages and in vivo virulence in mice, and reveals a unique phenotype for pdpC. Infect Immun. 81(3):850-61. [PudMed:23275090]
[390] Frangipani E et al (2013) The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ Microbiol. 16(3):676-88. [PudMed:23796404]
[391] Broms JE et al (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol. 13(1):96. [PudMed:23642157]
[392] Wang L et al (2013) Cell Density- and Quorum Sensing-Dependent Expression of Type VI Secretion System 2 in Vibrio parahaemolyticus. PLoS One. 8(8):e73363. [PudMed:23977385]
[393] Lin JS et al (2013) Systematic Dissection of the Agrobacterium Type VI Secretion System Reveals Machinery and Secreted Components for Subcomplex Formation. PLoS One. 8(7):e67647. [PudMed:23861778]
[394] Wang L et al (2013) AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. Int J Food Microbiol. 160(3):245-51. [PudMed:23290231]
[395] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[396] Koiv V et al (2013) Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae. PLoS One. 8(1):e54248. [PudMed:23372695]
[397] Cheng X, et al (2013) The Gac regulon of Pseudomonas fluorescens SBW25. Environ Microbiol Rep. 5(4):608-19. [PudMed:23864577]
[398] Wang Y et al (2013) Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogen Edwardsiella tarda. FEMS Microbiol Lett. 343(2):145-55. [PudMed:23551118]
[399] Brooks TM et al (2013) Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 is Inhibited by the Antitoxin TsaB. J Biol Chem. 288(11):7618-25. [PudMed:23341465]
[400] Basler M et al (2013) Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions. Cell. 152(4):884-94. [PudMed:23415234]
[401] Suanyuk N et al (2013) Mortality and pathology of hybrid catfish, Clarias macrocephalus (Gunther) X Clarias gariepinus (Burchell), associated with Edwardsiella ictaluri infection in southern Thailand. J Fish Dis. 37(4):385-395. [PudMed:23763374]
[402] Li K et al (2013) SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa. MBio. 4(6):e00419-13. [PudMed:24169572]
[403] Wenren LM et al (2013) Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export. MBio. 4(4). [PudMed:23882014]
[404] Lossi NS et al (2013) The HsiB1C1 (TssB/TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath-like structure. J Biol Chem. 288(11):7536-48. [PudMed:23341461]
[405] Ciofu O et al (2013) P. aeruginosa in the paranasal sinuses and transplanted lungs have similar adaptive mutations as isolates from chronically infected CF lungs. J Cyst Fibros. 12(6):729-36. [PudMed:23478131]
[406] Weber BS et al (2013) Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter. PLoS One. 8(1):e55142. [PudMed:23365692]
[407] Hockett KL et al (2013) Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae. PLoS One. 8(3):e59850. [PudMed:23527276]
[408] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[409] Freeman BC et al (2013) Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in their epiphytic fitness and osmotolerance. J Bacteriol. 195(20):4742-52. [PudMed:23955010]
[410] Lindgren M et al (2013) Importance of PdpC, IglC, IglI, and IglG for modulation of a host cell death pathway induced by Francisella tularensis LVS. Infect Immun. 81(6):2076-84. [PudMed:23529623]
[411] Zoued A et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the Type VI secretion system. J Biol Chem. 288(38):27031-41. [PudMed:23921384]
[412] Whitney JC et al (2013) Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem. 288(37):26616-24. [PudMed:23878199]
[413] Sarris PF et al (2013) Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots. PLoS One. 8(3):e59366. [PudMed:23555661]
[414] Hachani A et al (2013) A Visual Assay to Monitor T6SS-mediated Bacterial Competition. J Vis Exp. (73):e50103. [PudMed:23542679]
[415] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[416] Koskiniemi S et al (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A. 110(17):7032-7. [PudMed:23572593]
[417] Russell AB et al (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature. 496(7446):508-12. [PudMed:23552891]
[418] Salomon D et al (2013) Vibrio parahaemolyticus Type VI Secretion System 1 Is Activated in Marine Conditions to Target Bacteria, and Is Differentially Regulated from System 2. PLoS One. 8(4):e61086. [PudMed:23613791]
[419] Burtnick MN et al (2013) Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc. PLoS One. 8(10):e76767. [PudMed:24146925]
[420] Varivarn K et al (2013) Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol. 13(1):92. [PudMed:23622502]
[421] Memisevic V et al (2013) Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions. Mol Cell Proteomics. 12(11):3036-51. [PudMed:23800426]
[422] Carruthers MD et al (2013) Acinetobacter baumannii Utilizes a Type VI Secretion System for Bacterial Competition. PLoS One. 8(3):e59388. [PudMed:23527179]
[423] Sana TG et al (2013) Divergent Control of Two Type VI Secretion Systems by RpoN in Pseudomonas aeruginosa. PLoS One. 8(10):e76030. [PudMed:24204589]
[424] Darrasse A et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics. 14(1):761. [PudMed:24195767]
[425] Bleumink-Pluym NM et al (2013) Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity. PLoS Pathog. 9(5):e1003393. [PudMed:23737749]
[426] Wang D et al (2013) Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. Microbiologyopen. 2(3):505-24. [PudMed:23606419]
[427] Nykyri J et al (2013) Role and Regulation of the Flp/Tad Pilus in the Virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS One. 8(9):e73718. [PudMed:24040039]
[428] Jones C et al (2013) Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System. PLoS One. 8(11):e81132. [PudMed:24260549]
[429] Jones C et al (2013) An rhs-encoding gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol. 196(4):800-10. [PudMed:24317402]
[430] Zhang XY et al (2013) Dissection of the TssB-TssC Interface during Type VI Secretion Sheath Complex Formation. PLoS One. 8(11):e81074. [PudMed:24282569]
[431] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[432] Hao B et al (2013) Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol. 97(6):2575-85. [PudMed:22940804]
[433] Miyata ST et al (2013) Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathog. 9(12):e1003752. [PudMed:24348240]
[434] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[435] Fu Y et al (2013) Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host Microbe. 14(6):652-63. [PudMed:24331463]
[436] Rosales-Reyes R et al (2012) The suhB gene of Burkholderia cenocepacia is required for protein secretion, biofilm formation, motility and polymyxin B resistance. Microbiology. 158(Pt 9):2315-24. [PudMed:22767545]
[437] Tolman JS et al (2012) Global changes in gene expression by the opportunistic pathogen Burkholderia cenocepacia in response to internalization by murine macrophages. BMC Genomics. 0.585416667. [PudMed:22321740]
[438] Babujee L et al (2012) Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. BMC Genomics. 0.618055556. [PudMed:22439737]
[439] Ma LS et al (2012) IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem. 287(19):15610-21. [PudMed:22393043]
[440] Dogan B et al (2012) Phylogroup and lpfA influence epithelial invasion by mastitis associated Escherichia coli. Vet Microbiol. 159(1-2):163-70. [PudMed:22510704]
[441] Casabona MG et al (2012) An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa. Environ Microbiol. 15(2):471-86. [PudMed:22765374]
[442] Browning C et al (2012) Phage pierces the host cell membrane with the iron-loaded spike. Structure. 20(2):326-39. [PudMed:22325780]
[443] Pilatova M et al (2012) Burkholderia thailandensis is virulent in Drosophila melanogaster. PLoS One. 7(11):e49745. [PudMed:23209596]
[444] Lossi NS et al (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol. 86(2):437-56. [PudMed:22906320]
[445] Lalaouna D et al (2012) Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA-dependent Rsm small RNAs. Appl Environ Microbiol. 78(6):1658-65. [PudMed:22247157]
[446] Iraola G et al (2012) Reduced set of virulence genes allows high accuracy prediction of bacterial pathogenicity in humans. PLoS One. 7(8):e42144. [PudMed:22916122]
[447] Zhou Y et al (2012) Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun. 80(3):1243-51. [PudMed:22184413]
[448] Lv Y et al (2012) Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda. Vet Microbiol. 157(1-2):190-9. [PudMed:22227416]
[449] Sheng L et al (2012) Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus. Arch Microbiol. 194(5):379-90. [PudMed:22173829]
[450] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[451] Sirianni A et al (2012) The Pathogenic Potential of Helicobacter pullorum: Possible Role for the Type VI Secretion System. Helicobacter. 18(2):102-11. [PudMed:23067230]
[452] Ishikawa T et al (2012) Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun. 80(2):575-84. [PudMed:22083711]
[453] Silva CA et al (2012) Infection of mice by Salmonella enterica serovar Enteritidis involves additional genes that are absent in the genome of serovar Typhimurium. Infect Immun. 80(2):839-49. [PudMed:22083712]
[454] Henry R et al (2012) Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-beta-1,6-N-acetylglucosamine. Antimicrob Agents Chemother. 56(1):59-69. [PudMed:22024825]
[455] Rosales-Reyes R et al (2012) The Type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol. 14(2):255-73. [PudMed:22023353]
[456] Flannagan RS et al (2012) Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42. Cell Microbiol. 14(2):239-54. [PudMed:22023324]
[457] Elvers M et al (2012) A novel role for phospholipase D as an endogenous negative regulator of platelet sensitivity. Cell Signal. 24(9):1743-52. [PudMed:22579635]
[458] Gavrilin MA et al (2012) Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J Immunol. 188(7):3469-77. [PudMed:22368275]
[459] Russell AB et al (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe. 11(5):538-49. [PudMed:22607806]
[460] Yu Y et al (2012) VPA1045 and VPA1049 of Vibrio parahaemolyticus regulate translocation of Hcp2. Wei Sheng Wu Xue Bao. 52(8):954-61. [PudMed:23173431]
[461] Shidore T et al (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Environ Microbiol. 14(10):2775-87. [PudMed:22616609]
[462] Liu H et al (2012) Investigation of the roles of T6SS genes in motility, biofilm formation, and extracellular protease Asp production in Vibrio alginolyticus with modified Gateway-compatible plasmids. Lett Appl Microbiol. 55(1):73-81. [PudMed:22563695]
[463] Robb CS et al (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol. 419(5):277-83. [PudMed:22504227]
[464] Yang G et al (2012) Pdl1 is a putative lipase that enhances Photorhabdus toxin complex secretion. PLoS Pathog. 8(5):e1002692. [PudMed:22615559]
[465] He Y et al (2012) FliC, a flagellin protein, is essential for the growth and virulence of fish pathogen Edwardsiella tarda. PLoS One. 7(9):e45070. [PudMed:23024793]
[466] Broms JE et al (2012) Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection. PLoS One. 7(11):e50473. [PudMed:23185631]
[467] Gueguen E et al (2012) Promoter swapping unveils the role of the Citrobacter rodentium CTS1 Type VI secretion system in inter-bacterial competition. Appl Environ Microbiol. 79(1):32-8. [PudMed:23064344]
[468] Aschtgen MS et al (2012) The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. Microbiologyopen. 1(1):71-82. [PudMed:22950014]
[469] Dong TG et al (2012) Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Res. 40(16):7766-75. [PudMed:22723378]
[470] Shang G et al (2012) Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function. Biochem J. 448(2):201-11. [PudMed:22931054]
[471] Nykyri J et al (2012) Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11):e1003013. [PudMed:23133391]
[472] Ma L et al (2012) Expression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in Vibrio parahaemolyticus. Scientific World Journal. 2012:982140. [PudMed:22924031]
[473] Kamada N et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 336(6086):1325-9. [PudMed:22582016]
[474] Liu J et al (2012) The type VI secretion system gene cluster of Salmonella typhimurium: required for full virulence in mice. J Basic Microbiol. 53(7):600-7. [PudMed:22961625]
[475] Lertpiriyapong K et al (2012) Campylobacter jejuni Type VI Secretion System: Roles in Adaptation to Deoxycholic Acid, Host Cell Adherence, Invasion, and In Vivo Colonization. PLoS One. 7(8):e42842. [PudMed:22952616]
[476] English G et al (2012) New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol. 86(4):921-36. [PudMed:22957938]
[477] Ibrahim M et al (2012) Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PLoS One. 7(11):e49657. [PudMed:23166741]
[478] Unterweger D et al (2012) Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One. 7(10):e48320. [PudMed:23110230]
[479] Leroux M et al (2012) Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc Natl Acad Sci U S A. 109(48):19804-9. [PudMed:23150540]
[480] Zhang W et al (2012) A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol. 15(2):557-69. [PudMed:23094603]
[481] Rosales-Reyes R et al (2012) Burkholderia cenocepacia Type VI Secretion System Mediates Escape of Type II Secreted Proteins into the Cytoplasm of Infected Macrophages. PLoS One. 7(7):e41726. [PudMed:22848580]
[482] Broms JE et al (2012) DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity. PLoS One. 7(4):e34639. [PudMed:22514651]
[483] Haapalainen M et al (2012) Hcp2, a Secreted Protein of the Phytopathogen Pseudomonas syringae pv. Tomato DC3000, Is Required for Fitness for Competition against Bacteria and Yeasts. J Bacteriol. 194(18):4810-22. [PudMed:22753062]
[484] Kung VL et al (2012) An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci U S A. 109(4):1275-80. [PudMed:22232685]
[485] Sana TG et al (2012) The Second Type VI Secretion System of Pseudomonas aeruginosa Strain PAO1 Is Regulated by Quorum Sensing and Fur and Modulates Internalization in Epithelial Cells. J Biol Chem. 287(32):27095-105. [PudMed:22665491]
[486] Yu Y et al (2012) Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Arch Microbiol. 194(10):827-35. [PudMed:22535222]
[487] Reen FJ et al (2012) Respiratory pathogens adopt a chronic lifestyle in response to bile. PLoS One. 7(9):e45978. [PudMed:23049911]
[488] Weyrich LS et al (2012) A Type VI Secretion System Encoding Locus Is Required for Bordetella bronchiseptica Immunomodulation and Persistence In Vivo. PLoS One. 7(10):e45892. [PudMed:23071529]
[489] Wu CF et al (2012) Acid-Induced Type VI Secretion System Is Regulated by ExoR-ChvG/ChvI Signaling Cascade in Agrobacterium tumefaciens. PLoS Pathog. 8(9):e1002938. [PudMed:23028331]
[490] Sheng L et al (2012) Connecting type VI secretion, quorum sensing, and c-di-GMP production in fish pathogen Vibrio alginolyticus through phosphatase PppA. Vet Microbiol. 162(2-4):652-62. [PudMed:23021863]
[491] Mulder DT et al (2012) Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect Immun. 80(6):1996-2007. [PudMed:22493086]
[492] Bai L et al (2012) Isolation and characterization of cytotoxic, aggregative Citrobacter freundii. PLoS One. 7(3):e33054. [PudMed:22470435]
[493] Olivares J et al (2012) Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol. 14(8):1968-81. [PudMed:22417660]
[494] Stauff DL, Bassler BL. (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.. J Bacteriol. 193(15):3871-8. [PudMed:21622734]
[495] Brunet YR, Bernard CS, Gavioli M, Lloub��s R, Cascales E. (2011) An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster.. PLoS Genet. 7(7):e1002205. [PudMed:21829382]
[496] Opota O et al (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog. 7(9):e1002259. [PudMed:21980286]
[497] Mikkelsen H et al (2011) The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One. 6(12):e29113. [PudMed:22216178]
[498] Mandlik A et al (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe. 10(2):165-74. [PudMed:21843873]
[499] Newell PD et al (2011) A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 9(2):e1000587. [PudMed:21304920]
[500] Navarro MV et al (2011) Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol. 9(2):e1000588. [PudMed:21304926]
[501] Dai S et al (2011) The acid phosphatase AcpA is secreted in vitro and in macrophages by Francisella spp. Infect Immun . 80(3):1088-97. [PudMed:22184418]
[502] Gonzalez A et al (2011) Detection and functional characterization of a large genomic deletion resulting in decreased pathogenicity in Ralstonia solanacearum race 3 biovar 2 strains. Environ Microbiol. 13(12):3172-85. [PudMed:22050636]
[503] Murdoch SL et al (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol. 193(21):6057-69. [PudMed:21890705]
[504] Silverman JM et al (2011) Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol Microbiol. 82(5):1277-90. [PudMed:22017253]
[505] Loeffelholz MJ et al (2011) Comparison of the FilmArray Respiratory Panel and Prodesse real-time PCR assays for detection of respiratory pathogens. J Clin Microbiol. 49(12):4083-8. [PudMed:21998418]
[506] Dalloneau E et al (2011) Prmt2 regulates the lipopolysaccharide-induced responses in lungs and macrophages. J Immunol. 187(9):4826-34. [PudMed:21957146]
[507] Moscoso JA et al (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol. 13(12):3128-38. [PudMed:21955777]
[508] Kitaoka M et al (2011) VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J Bacteriol. 193(23):6471-82. [PudMed:21949076]
[509] Zheng J et al (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One. 6(8):e23876. [PudMed:21909372]
[510] Poole SJ et al (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet. 7(8):e1002217. [PudMed:21829394]
[511] Podladchikova O et al (2011) Yersinia pestis autoagglutination factor is a component of the type six secretion system. Int J Med Microbiol. 301(7):562-9. [PudMed:21784704]
[512] Franco AA et al (2011) Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 77(10):3255-67. [PudMed:21421789]
[513] Zhang L et al (2011) Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol. 193(19):5510-3. [PudMed:21784934]
[514] de Pace F et al (2011) Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology. 157(Pt 10):2954-62. [PudMed:21778203]
[515] Russell AB et al (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 475(7356):343-7. [PudMed:21776080]
[516] Weber B et al (2011) The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum. Microbiology. 157(Pt 12):3324-39. [PudMed:21948044]
[517] French CT et al (2011) Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc Natl Acad Sci U S A. 108(29):12095-100. [PudMed:21730143]
[518] Gode-Potratz CJ et al (2011) Quorum sensing and silencing in Vibrio parahaemolyticus. J Bacteriol. 193(16):4224-37. [PudMed:21705592]
[519] Broms JE et al (2011) IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun. 79(9):3683-96. [PudMed:21690239]
[520] Chen Y et al (2011) Regulation of type VI secretion system during Burkholderia pseudomallei infection. Infect Immun. 79(8):3064-73. [PudMed:21670170]
[521] Miyata ST et al (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun. 79(7):2941-9. [PudMed:21555399]
[522] Rogge ML et al (2011) Regulation of the Edwardsiella ictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl Environ Microbiol. 77(13):4293-302. [PudMed:21551284]
[523] Gaus K et al (2011) Destabilization of YopE by the ubiquitin-proteasome pathway fine-tunes Yop delivery into host cells and facilitates systemic spread of Yersinia enterocolitica in host lymphoid tissue. Infect Immun. 79(3):1166-75. [PudMed:21149597]
[524] Somnuke P et al (2011) N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology. 413(2):253-64. [PudMed:21429549]
[525] Wang M et al (2011) Molecular characterization of a functional type VI secretion system in Salmonella enterica serovar Typhi. Curr Microbiol. 63(1):22-31. [PudMed:21487806]
[526] Hachani A et al (2011) Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem. 286(14):12317-27. [PudMed:21325275]
[527] O'Grady EP et al (2011) Burkholderia cenocepacia Differential Gene Expression during Host-Pathogen Interactions and Adaptation to the Host Environment. Front Cell Infect Microbiol. 1:15. [PudMed:22919581]
[528] Pietrosiuk A et al (2011) Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem. 286(34):30010-21. [PudMed:21733841]
[529] Bernard CS et al (2011) Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins. J Bacteriol. 193(9):2158-67. [PudMed:21378190]
[530] de Bruin OM et al (2011) The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiology. 157(Pt 12):3483-91. [PudMed:21980115]
[531] Burtnick MN et al (2011) The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 79(4):1512-25. [PudMed:21300775]
[532] Mutschler H et al (2011) A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9(3):e1001033. [PudMed:21445328]
[533] Zhang W et al (2011) Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol. 193(5):351-63. [PudMed:21298257]
[534] Miyata ST et al (2010) The Vibrio Cholerae Type VI Secretion System: Evaluating its Role in the Human Disease Cholera. Front Microbiol. 0.122916667. [PudMed:21607085]
[535] Fang N et al (2010) Improvement of extracellular production of a thermophilic subtilase expressed in Escherichia coli by random mutagenesis of its N-terminal propeptide. Appl Microbiol Biotechnol. 85(5):1473-81. [PudMed:19697018]
[536] Hassan KA et al (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 12(4):899-915. [PudMed:20089046]
[537] Hentschke M et al (2010) Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation. PLoS One. 5(10). [PudMed:20957203]
[538] Burtnick MN et al (2010) Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun. 78(1):88-99. [PudMed:19884331]
[539] Andrews GP et al (2010) Identification of in vivo-induced conserved sequences from Yersinia pestis during experimental plague infection in the rabbit. Vector Borne Zoonotic Dis. 10(8):749-56. [PudMed:20055582]
[540] Dowling AJ et al (2010) Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243. PLoS One. 5(12):e15693. [PudMed:21203527]
[541] Hood RD et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 7(1):25-37. [PudMed:20114026]
[542] Morin N et al (2010) Autoactivation of the AggR regulator of enteroaggregative Escherichia coli in vitro and in vivo. FEMS Immunol Med Microbiol. 58(3):344-55. [PudMed:20132305]
[543] Suarez G et al (2010) Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. Microbiology. 156(Pt 12):3678-88. [PudMed:20798163]
[544] Santic M et al (2010) Cell biology and molecular ecology of Francisella tularensis. Cell Microbiol. 12(2):129-39. [PudMed:19863554]
[545] Sun GW et al (2010) Identification of a regulatory cascade controlling Type III Secretion System 3 gene expression in Burkholderia pseudomallei. Mol Microbiol. 76(3):677-89. [PudMed:20345664]
[546] Blondel CJ et al (2010) Contribution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS One. 5(7):e11724. [PudMed:20661437]
[547] Asare R et al (2010) Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by Francisella tularensis. Environ Microbiol. 12(9):2559-86. [PudMed:20482590]
[548] Broms JE et al (2010) The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front Microbiol. 0.136111111. [PudMed:21687753]
[549] Tan KS et al (2010) Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. J Immunol. 184(9):5160-71. [PudMed:20335533]
[550] Bordi C et al (2010) Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol. 76(6):1427-43. [PudMed:20398205]
[551] Aschtgen MS et al (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol. 75(4):886-99. [PudMed:20487285]
[552] Al-Khodor S et al (2010) Triggering Ras signalling by intracellular Francisella tularensis through recruitment of PKCalpha and betaI to the SOS2/GrB2 complex is essential for bacterial proliferation in the cytosol. Cell Microbiol. 12(11):1604-21. [PudMed:20618341]
[553] Suarez G et al (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol. 192(1):155-68. [PudMed:19880608]
[554] Wang X et al (2010) Hemolysin EthA in Edwardsiella tarda is essential for fish invasion in vivo and in vitro and regulated by two-component system EsrA-EsrB and nucleoid protein HhaEt. Fish Shellfish Immunol. 29(6):1082-91. [PudMed:20832475]
[555] Sanchez S et al (2010) Pheno-genotypic characterisation of Escherichia coli O157:H7 isolates from domestic and wild ruminants. Vet Microbiol. 142(3-4):445-9. [PudMed:19914011]
[556] Renzi F et al (2010) Identification of genes regulated by the MvaT-like paralogues TurA and TurB of Pseudomonas putida KT2440. Environ Microbiol. 12(1):254-63. [PudMed:19788653]
[557] Records AR et al (2010) Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol. 192(14):3584-96. [PudMed:20472799]
[558] MacIntyre DL et al (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A. 107(45):19520-4. [PudMed:20974937]
[559] Zheng J et al (2010) Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci U S A. 107(49):21128-33. [PudMed:21084635]
[560] Bell BL et al (2010) Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect Immun. 78(5):2189-98. [PudMed:20231408]
[561] Schwarz S et al (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6(8):e1001068. [PudMed:20865170]
[562] Chow J et al (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe. 7(4):265-76. [PudMed:20413095]
[563] Chakraborty S et al (2010) Temperature and Mg2+ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda. J Biol Chem. 285(50):38876-88. [PudMed:20937832]
[564] Aoki SK et al (2010) A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature. 468(7322):439-42. [PudMed:21085179]
[565] Asare R et al (2010) Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol. 0.142361111. [PudMed:21687747]
[566] Shanks J et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun. 77(4):1636-48. [PudMed:19168747]
[567] Barker JR et al (2009) The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol. 74(6):1459-70. [PudMed:20054881]
[568] Vaysse PJ et al (2009) Proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm formation at the alkane-water interface reveals novel proteins and cellular processes involved in hexadecane assimilation. Res Microbiol. 160(10):829-37. [PudMed:19786096]
[569] Mueller RS et al (2009) Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol. 191(11):3504-16. [PudMed:19329638]
[570] Sakai T et al (2009) Identification of novel putative virulence factors, adhesin AIDA and type VI secretion system, in atypical strains of fish pathogenic Edwardsiella tarda by genomic subtractive hybridization. Microbiol Immunol. 53(3):131-9. [PudMed:19302523]
[571] Lesic B et al (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology. 155(Pt 9):2845-55. [PudMed:19497948]
[572] Byrd MS et al (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol. 73(4):622-38. [PudMed:19659934]
[573] Brencic A et al (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol. 73(3):434-45. [PudMed:19602144]
[574] Ueda A et al (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog. 5(6):e1000483. [PudMed:19543378]
[575] Lloyd AL et al (2009) Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol. 191(11):3469-81. [PudMed:19329634]
[576] Wehrly TD et al (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol. 11(7):1128-50. [PudMed:19388904]
[577] Starkey M et al (2009) Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc. 4(2):117-24. [PudMed:19180083]
[578] Brencic A et al (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol. 72(3):612-32. [PudMed:19426209]
[579] Syed KA et al (2009) The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol. 191(21):6555-70. [PudMed:19717600]
[580] Carranza P et al (2009) Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen. Proteomics. 9(13):3564-79. [PudMed:19609963]
[581] Hsu F et al (2009) TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol. 72(5):1111-25. [PudMed:19400797]
[582] Charity JC et al (2009) Small molecule control of virulence gene expression in Francisella tularensis. PLoS Pathog. 5(10):e1000641. [PudMed:19876386]
[583] Robinson JB et al (2009) Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog. 47(5):243-51. [PudMed:19716410]
[584] Ma AT et al (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe. 5(3):234-43. [PudMed:19286133]
[585] Buchan BW et al (2009) Identification of migR, a regulatory element of the Francisella tularensis live vaccine strain iglABCD virulence operon required for normal replication and trafficking in macrophages. Infect Immun. 77(6):2517-29. [PudMed:19349423]
[586] Bonemann G et al (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28(4):315-25. [PudMed:19131969]
[587] Clemens DL et al (2009) Francisella tularensis phagosomal escape does not require acidification of the phagosome. Infect Immun. 77(5):1757-73. [PudMed:19237528]
[588] Meibom KL et al (2009) Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun. 77(5):1866-80. [PudMed:19223477]
[589] Weber B et al (2009) Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol. 11(12):3018-28. [PudMed:19624706]
[590] Schmerk CL et al (2009) A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology. 155(Pt 5):1498-504. [PudMed:19372155]
[591] Schmerk CL et al (2009) Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology. 155(Pt 5):1489-97. [PudMed:19372153]
[592] Wang X et al (2009) Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol. 27(3):469-77. [PudMed:19563898]
[593] Winter SE et al (2009) The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol. 74(1):175-93. [PudMed:19703107]
[594] Pieper R et al (2009) Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology. 155(Pt 2):498-512. [PudMed:19202098]
[595] Ishikawa T et al (2009) Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One. 4(8):e6734. [PudMed:19701456]
[596] Termine E et al (2009) Transcriptome and secretome analyses of the adaptive response of Pseudomonas aeruginosa to suboptimal growth temperature. Int Microbiol. 12(1):7-12. [PudMed:19440978]
[597] Haneda T et al (2009) Genome-wide identification of novel genomic islands that contribute to Salmonella virulence in mouse systemic infection. FEMS Microbiol Lett. 297(2):241-9. [PudMed:19583791]
[598] O'Grady EP et al (2009) Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics. 0.722916667. [PudMed:19761612]
[599] Ma LS et al (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol. 191(13):4316-29. [PudMed:19395482]
[600] Khajanchi BK et al (2009) N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology. 155(Pt 11):3518-31. [PudMed:19729404]
[601] Aschtgen MS et al (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol. 190(22):7523-31. [PudMed:18805985]
[602] Ge Z et al (2008) Helicobacter hepaticus HHGI1 is a pathogenicity island associated with typhlocolitis in B6.129-IL10 tm1Cgn mice. Microbes Infect. 10(7):726-33. [PudMed:18538610]
[603] Wu HY et al (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol. 190(8):2841-50. [PudMed:18263727]
[604] Kang Y et al (2008) The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology. 154(Pt 6):1584-98. [PudMed:18524913]
[605] Chong A et al (2008) The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun. 76(12):5488-99. [PudMed:18852245]
[606] Aubert DF et al (2008) A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia. Infect Immun. 76(5):1979-91. [PudMed:18316384]
[607] Bonquist L et al (2008) MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect Immun. 76(8):3502-10. [PudMed:18474647]
[608] Butchar JP et al (2008) Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion. PLoS One. 3(8):e2924. [PudMed:18698339]
[609] Castang S et al (2008) H-NS family members function coordinately in an opportunistic pathogen. Proc Natl Acad Sci U S A. 105(48):18947-52. [PudMed:19028873]
[610] Cole LE et al (2008) Macrophage proinflammatory response to Francisella tularensis live vaccine strain requires coordination of multiple signaling pathways. J Immunol. 180(10):6885-91. [PudMed:18453609]
[611] Ludu JS et al (2008) The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol. 190(13):4584-95. [PudMed:18469101]
[612] Brotcke A et al (2008) Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect Immun. 76(8):3473-80. [PudMed:18559431]
[613] Liu H et al (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 4(6):e1000093. [PudMed:18566662]
[614] Suarez G et al (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog. 44(4):344-61. [PudMed:18037263]
[615] Waterfield NR et al (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci U S A. 105(41):15967-72. [PudMed:18838673]
[616] Gibbs KA et al (2008) Genetic determinants of self identity and social recognition in bacteria. Science. 321(5886):256-9. [PudMed:18621670]
[617] Pieper R et al (2008) Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics. 8(7):1442-58. [PudMed:18383009]
[618] de Berardinis V et al (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol. 0.2875. [PudMed:18319726]
[619] Nemoto M et al (2008) ORF334 in Vibrio phage KVP40 plays the role of gp27 in T4 phage to form a heterohexameric complex. J Bacteriol. 190(10):3606-12. [PudMed:18326574]
[620] Schell MA et al (2007) Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 64(6):1466-85. [PudMed:17555434]
[621] Lesic B et al (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog. 3(9):1229-39. [PudMed:17941706]
[622] Smith MG et al (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5):601-14. [PudMed:17344419]
[623] Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol. 9(7):797-803. [PudMed:17558395]
[624] Lombardo MJ et al (2007) An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci U S A. 104(46):18229-34. [PudMed:17986616]
[625] de Bruin OM et al (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 7:01. [PudMed:17233889]
[626] Bosio CM et al (2007) Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J Immunol. 178(7):4538-47. [PudMed:17372012]
[627] Charity JC et al (2007) Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog. 3(6):e84. [PudMed:17571921]
[628] Chugani S et al (2007) The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microb Pathog. 42(1):29-35. [PudMed:17166692]
[629] Guina T et al (2007) MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J Bacteriol. 189(18):6580-6. [PudMed:17644593]
[630] Santic M et al (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol. 9(10):2391-403. [PudMed:17517064]
[631] Shalom G et al (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 153(Pt 8):2689-99. [PudMed:17660433]
[632] Lenco J et al (2007) Proteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC. FEMS Microbiol Lett. 269(1):11-21. [PudMed:17227466]
[633] Mohapatra NP et al (2007) Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun. 75(7):3305-14. [PudMed:17452468]
[634] Pukatzki S et al (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A. 104(39):15508-13. [PudMed:17873062]
[635] Zheng J et al (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol. 66(5):1192-206. [PudMed:17986187]
[636] Mattinen L et al (2007) Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics. 7(19):3527-37. [PudMed:17726675]
[637] Klumpp J et al (2007) Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology. 153(Pt 4):1207-20. [PudMed:17379730]
[638] Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 312(5779):1526-30. [PudMed:16763151]
[639] Ventre I et al (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A. 103(1):171-6. [PudMed:16373506]
[640] Liberati NT et al (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A. 103(8):2833-8. [PudMed:16477005]
[641] Kulasakara H et al (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Natl Acad Sci U S A. 103(8):2839-44. [PudMed:16477007]
[642] Cathelyn JS et al (2006) RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A. 103(36):13514-9. [PudMed:16938880]
[643] Brotcke A et al (2006) Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun. 74(12):6642-55. [PudMed:17000729]
[644] Cole LE et al (2006) Immunologic consequences of Francisella tularensis live vaccine strain infection: role of the innate immune response in infection and immunity. J Immunol. 176(11):6888-99. [PudMed:16709849]
[645] Gavrilin MA et al (2006) Internalization and phagosome escape required for Francisella to induce human monocyte IL-1beta processing and release. Proc Natl Acad Sci U S A. 103(1):141-6. [PudMed:16373510]
[646] Dudley EG et al (2006) Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol. 61(5):1267-82. [PudMed:16925558]
[647] Pukatzki S et al (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A. 103(5):1528-33. [PudMed:16432199]
[648] Yang G et al (2006) Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J Bacteriol. 188(6):2254-61. [PudMed:16513755]
[649] Pilatz S et al (2006) Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 74(6):3576-86. [PudMed:16714590]
[650] Southey-Pillig CJ et al (2005) Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol. 187(23):8114-26. [PudMed:16291684]
[651] Zheng J et al (2005) Regulation of a type III and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect Immun. 73(7):4127-37. [PudMed:15972502]
[652] Juhas M et al (2005) GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol Lett. 242(2):287-95. [PudMed:15621450]
[653] Lewenza S et al (2005) Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res. 15(2):321-9. [PudMed:15687295]
[654] Enos-Berlage JL et al (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol. 55(4):1160-82. [PudMed:15686562]
[655] Bosio CM et al (2005) Francisella tularensis induces aberrant activation of pulmonary dendritic cells. J Immunol. 175(10):6792-801. [PudMed:16272336]
[656] Clemens DL et al (2005) Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect Immun. 73(9):5892-902. [PudMed:16113308]
[657] Deziel E et al (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol. 55(4):998-1014. [PudMed:15686549]
[658] Santic M et al (2005) The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 7(7):969-79. [PudMed:15953029]
[659] Parsons DA et al (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun. 73(7):4338-45. [PudMed:15972528]
[660] Lawlor MS et al (2005) Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol Microbiol. 58(4):1054-73. [PudMed:16262790]
[661] Rao PS et al (2004) Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol. 53(2):573-86. [PudMed:15228535]
[662] Clemens DL et al (2004) Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun. 72(6):3204-17. [PudMed:15155622]
[663] Lauriano CM et al (2004) MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A. 101(12):4246-9. [PudMed:15010524]
[664] Nano FE et al (2004) A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol. 186(19):6430-6. [PudMed:15375123]
[665] Yildiz FH et al (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol. 53(2):497-515. [PudMed:15228530]
[666] Lenz DH et al (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell. 118(1):69-82. [PudMed:15242645]
[667] Bladergroen MR et al (2003) Infection-Blocking Genes of a Symbiotic Rhizobium leguminosarum Strain That Are Involved in Temperature-Dependent Protein Secretion. Mol Plant Microbe Interact. 16(1):53-64. [PudMed:12580282]
[668] Alarcon-Chaidez FJ et al (2003) RpoN (sigma(54)) is required for plasmid-encoded coronatine biosynthesis in Pseudomonas syringae. Plasmid. 49(2):106-17. [PudMed:12726764]
[669] Potvin E et al (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol. 5(12):1294-308. [PudMed:14641575]
[670] Moore MM et al (2002) Cloning and characterization of Edwardsiella ictaluri proteins expressed and recognized by the channel catfish Ictalurus punctatus immune response during infection. Dis Aquat Organ. 52(2):93-107. [PudMed:12542086]
[671] Folkesson A et al (2002) The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol. 153(8):537-45. [PudMed:12437215]
[672] Das S et al (2002) Involvement of in vivo induced icmF gene of Vibrio cholerae in motility, adherence to epithelial cells, and conjugation frequency. Biochem Biophys Res Commun. 295(4):922-8. [PudMed:12127983]
[673] Zhu J et al (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A. 99(5):3129-34. [PudMed:11854465]
[674] Parkins MD et al (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol. 40(5):1215-26. [PudMed:11401724]
[675] Perna NT et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 409(6819):529-33. [PudMed:11206551]
[676] Singh PK et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 407(6805):762-4. [PudMed:11048725]
[677] Tan MW et al (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A. 96(5):2408-13. [PudMed:10051655]
[678] Costerton JW et al (1999) Bacterial biofilms: a common cause of persistent infections. Science. 284(5418):1318-22. [PudMed:10334980]
[679] Baron GS et al (1998) MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol. 29(1):247-59. [PudMed:9701818]
[680] Williams SG et al (1996) Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun. 64(1):283-9. [PudMed:8557353]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Wen H, Liu G, Geng Z, Zhang H, Li Y, She Z, Dong Y. (2021) Structure and SAXS studies unveiled a novel inhibition mechanism of the Pseudomonas aeruginosa T6SS TseT-TsiT complex.. Int J Biol Macromol. 188:450-459. [PudMed:34371041]
[3] Nolan LM, Cain AK, Clamens T, Furniss RCD, Manoli E, Sainz-Polo MA, Dougan G, Albesa-Jové D, Parkhill J, Mavridou DAI, Filloux A. (2021) Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells.. Nat Microbiol. 6(9):1199-1210. [PudMed:34413503]
[4] Lopez J, Le NH, Moon KH, Salomon D, Bosis E, Feldman MF. (2021) Formylglycine-Generating Enzyme-Like Proteins Constitute a Novel Family of Widespread Type VI Secretion System Immunity Proteins.. J Bacteriol. 203(21):e0028121. [PudMed:34398661]
[5] Lu W, Tan J, Lu H, Wang G, Dong W, Wang C, Li X, Tan C. (2021) Function of Rhs proteins in porcine extraintestinal pathogenic Escherichia coli PCN033.. J Microbiol. 59(9):854-860. [PudMed:34382147]
[6] Brodmann M, Schnider ST, Basler M. (2021) Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to Francisella Virulence in Galleria mellonella Larvae.. Infect Immun. 89(7):e0057920. [PudMed:33875476]
[7] Le NH, Pinedo V, Lopez J, Cava F, Feldman MF. (2021) Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector.. Proc Natl Acad Sci U S A. 118(40). [PudMed:34588306]
[8] Zhu L, Xu L, Wang C, Li C, Li M, Liu Q, Wang X, Yang W, Pan D, Hu L, Yang Y, Lu Z, Wang Y, Zhou D, Jiang Z, Shen X. (2021) T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese.. Proc Natl Acad Sci U S A. 118(42). [PudMed:34625471]
[9] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[10] Loeven NA, Perault AI, Cotter PA, Hodges CA, Schwartzman JD, Hampton TH, Bliska JB. (2021) The Burkholderia cenocepacia Type VI Secretion System Effector TecA Is a Virulence Factor in Mouse Models of Lung Infection.. mBio. 12(5):e0209821. [PudMed:34579569]
[11] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[12] Wang S, Geng Z, Zhang H, She Z, Dong Y. (2021) The Pseudomonasaeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector.. FEBS J. NA. [PudMed:33838074]
[13] Liang X, Pei TT, Wang ZH, Xiong W, Wu LL, Xu P, Lin S, Dong TG. (2021) Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU.. Appl Environ Microbiol. 87(12):e0043521. [PudMed:33837015]
[14] Li C, Zhu L, Wang D, Wei Z, Hao X, Wang Z, Li T, Zhang L, Lu Z, Long M, Wang Y, Wei G, Shen X. (2021) T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer.. ISME J. NA. [PudMed:34433898]
[15] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[16] Liu Y, Wang J, Zhang Z, Wang F, Gong Y, Sheng DH, Li YZ. (2021) Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus.. Appl Environ Microbiol. 87(9). [PudMed:33608292]
[17] Howard SA, Furniss RCD, Bonini D, Amin H, Paracuellos P, Zlotkin D, Costa TRD, Levy A, Mavridou DAI, Filloux A. (2021) The Breadth and Molecular Basis of Hcp-Driven Type VI Secretion System Effector Delivery.. mBio. NA. [PudMed:34061601]
[18] Liu L, Song L, Deng R, Lan R, Jin W, Tran Van Nhieu G, Cao H, Liu Q, Xiao Y, Li X, Meng G, Ren Z. (2021) Citrobacter freundii Activation of NLRP3 Inflammasome via the Type VI Secretion System.. J Infect Dis. 223(12):2174-2185. [PudMed:33151309]
[19] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[20] Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. (2021) Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida.. Front Microbiol. 12:643498. [PudMed:33776977]
[21] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[22] Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. (2020) Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.. Nat Commun. 11(1):1865. [PudMed:32313027]
[23] Kim N, Kim JJ, Kim I, Mannaa M, Park J, Kim J, Lee HH, Lee SB, Park DS, Sul WJ, Seo YS. (2020) Type VI secretion systems of plant-pathogenic Burkholderia glumae BGR1 play a functionally distinct role in interspecies interactions and virulence.. Mol Plant Pathol. 21(8):1055-1069. [PudMed:32643866]
[24] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[25] Stietz MS, Liang X, Li H, Zhang X, Dong TG. (2020) TssA-TssM-TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae.. Nat Commun. 11(1):5065. [PudMed:33033237]
[26] Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC, Cotter PA. (2020) Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex.. Cell Host Microbe. 28(4):534-547. [PudMed:32755549]
[27] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[28] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[29] Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, Matsuyama BY, Mesnage S, Patel A, de Souza RF, Guzzo CR, Bayer-Santos E. (2020) A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan.. Cell Rep. 31(12):107813. [PudMed:32579939]
[30] Donato SL, Beck CM, Garza-S��nchez F, Jensen SJ, Ruhe ZC, Cunningham DA, Singleton I, Low DA, Hayes CS. (2020) The ��-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion.. Proc Natl Acad Sci U S A. NA. [PudMed:33323487]
[31] Wang T, Hu Z, Du X, Shi Y, Dang J, Lee M, Hesek D, Mobashery S, Wu M, Liang H. (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors.. Mol Microbiol. 114(2):308-321. [PudMed:32279364]
[32] Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. (2020) In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes.. Mol Plant Microbe Interact. 33(2):349-363. [PudMed:31609645]
[33] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[34] Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. (2020) Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system.. Vet Res. 51(1):71. [PudMed:32448355]
[35] Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. (2019) Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition.. Microbiologyopen. NA. [PudMed:30628184]
[36] Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. (2019) Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp.. Appl Environ Microbiol. 85(2). [PudMed:30413477]
[37] Wood TE, Howard SA, Frster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. (2019) The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology.. Cell Rep. 29(1):187-201. [PudMed:31577948]
[38] Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. (2019) A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae.. Mol Microbiol. 111(6):1493-1509. [PudMed:30825339]
[39] Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. (2019) Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters.. Genome Biol. 20(1):163. [PudMed:31405375]
[40] Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. (2019) The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization.. Front Microbiol. 2.405555556. [PudMed:31921044]
[41] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[42] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[43] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[44] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[45] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[46] Alteri CJ, Himpsl SD, Zhu K, Hershey HL, Musili N, Miller JE, Mobley HLT. (2017) Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.. PLoS Pathog. 13(11):e1006729. [PudMed:29155899]
[47] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[48] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[49] Pang M et al (2015) Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep. 7.036805556. [PudMed:26014286]
[50] Gao R et al (2015) Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated Burkholderia glumae strain PG1. Appl Environ Microbiol. pii: AEM.01043-15. [PudMed:26362987]
[51] Burroughs AM et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Biol Direct. 10(1):21. [PudMed:25976611]
[52] Martinez-Garcia PM et al (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci. 10:10. [PudMed:25685259]
[53] Jones CL et al (2015) Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii With Enhanced Virulence. Clin Infect Dis. pii: civ225. [PudMed:25824815]
[54] Li J et al (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. doi: 10.1111/1462-2920.12794. [PudMed:25640659]
[55] Ge P et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. doi: 10.1038/nsmb.2995. [PudMed:25822993]
[56] Collins AJ et al (2015) Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Front Microbiol. 0.335416667. [PudMed:25755651]
[57] Cui Y et al (2015) Epidemic clones, oceanic gene pools and eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol Biol Evol. pii: msv009. [PudMed:25605790]
[58] Martinez-Garcia PM et al (2015) Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle. PLoS One. 10(8):e0136101. [PudMed:26313942]
[59] Liu C et al (2015) Genome analysis and in vivo virulence of porcine extraintestinal pathogenic Escherichia coli strain PCN033. BMC Genomics. 16(1):717. [PudMed:26391348]
[60] Suzuki M et al (2015) Genome Sequence of a Carbapenem-Resistant Strain of Ralstonia mannitolilytica. Genome Announc. 3(3). [PudMed:25953190]
[61] Trantas EA et al (2015) Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol. 0.813194444. [PudMed:26300874]
[62] Choudhury JD et al (2015) The Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile Is a New Strain of Pseudoalteromonas agarivorans Containing Abundant and Diverse Virulence-Related Genes. Mar Biotechnol (NY). doi:10.1007/s10126-015-9627-y. [PudMed:25837832]
[63] Kang H et al (2015) Characterization and Genomic Analysis of Quinolone-Resistant Delftia sp. 670 Isolated from a Patient Who Died from Severe Pneumonia. Curr Microbiol. . [PudMed:25935202]
[64] Grube M et al (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9(2):412-24. [PudMed:25072413]
[65] Raveh-Sadka T et al (2015) Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. Elife. 4. [PudMed:25735037]
[66] Seo YS et al (2015) Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. BMC Genomics. 0.909027778. [PudMed:25943361]
[67] Osterman J et al (2015) Genomic features separating ten strains of Neorhizobium galegae with different symbiotic phenotypes. BMC Genomics. 0.908333333. [PudMed:25933608]
[68] Richards VP et al (2015) Genome Based Phylogeny and Comparative Genomic Analysis of Intra-Mammary Pathogenic Escherichia coli. PLoS One. 10(3):e0119799. [PudMed:25807497]
[69] Martinez-Garica PM et al (2015) T346Hunter: A Novel Web-Based Tool for the Prediction of Type III, Type IV and Type VI Secretion Systems in Bacterial Genomes. PLoS One. 10(4):e0119317. [PudMed:25867189]
[70] Li P et al (2015) Comparative Genome Analyses of Serratia marcescens FS14 Reveals Its High Antagonistic Potential. PLoS One. 10(4):e0123061. [PudMed:25856195]
[71] Langridge GC et al (2015) Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc Natl Acad Sci U S A. 112(3):863-8. [PudMed:25535353]
[72] Kingry LC et al (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol. 4:35. [PudMed:24660164]
[73] Gardiner DM et al (2014) Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems. PLoS One. 9(1):e84995. [PudMed:24416331]
[74] Ali S et al (2014) A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp.. J Theor Biol. 343:193-8. [PudMed:24513137]
[75] Ramos PI et al (2014) Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics. 15(1):54. [PudMed:24450656]
[76] Wright MS et al (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):e00963-13. [PudMed:24449752]
[77] Zhou H et al (2014) Population structural analysis of O1 El Tor Vibrio cholerae isolated in China among the seventh cholera pandemic on the basis of multilocus sequence typing and virulence gene profiles. Infect Genet Evol. 22:72-80. [PudMed:24448269]
[78] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[79] Jousset A et al (2014) Full-Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas protegens CHA0. Genome Announc. 2(2). [PudMed:24762936]
[80] Sarris PF et al (2014) A Phage Tail-Derived Element with Wide Distribution among Both Prokaryotic Domains: A Comparative Genomic and Phylogenetic Study. Genome Biol Evol. 6(7):1739-1747. [PudMed:25015235]
[81] Brunet YR et al (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15(3):315-21. [PudMed:24488256]
[82] Bachmann NL et al (2014) Genome analysis and CRISPR typing of Salmonella enterica serovar Vircho. BMC Genomics. 0.895138889. [PudMed:24885207]
[83] Jaradat ZW et al (2014) Cronobacter, an opportunistic food borne pathogen; a review of its virulence and environmental adaptive traits. J Med Microbiol. 63(Pt 8):1023-1037. [PudMed:24878566]
[84] Zhang J et al (2014) Crystallization and preliminary X-ray study of TsiV3 from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 3):335-8. [PudMed:24598921]
[85] Rydzewski K et al (2014) Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol. 14(1):169. [PudMed:24961323]
[86] Liu F et al (2014) Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genomics. 15(1):1163. [PudMed:25534766]
[87] Kenzaka T et al (2014) Draft Genome Sequences of Amoeba-Resistant Aeromonas spp. Isolated from Aquatic Environments. Genome Announc. 2(5). [PudMed:25359918]
[88] Raspoet R et al (2014) Microarray-based detection of Salmonella Enteritidis genes involved in chicken reproductive tract colonization. Appl Environ Microbiol. 80(24):7710-6. [PudMed:25281378]
[89] Memisevic V et al (2014) DBSecSys: a database of Burkholderia mallei secretion systems. BMC Bioinformatics. 0.794444444. [PudMed:25030112]
[90] Rudder S et al (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics. 15(1):268. [PudMed:24708309]
[91] Zhu Ge X et al (2014) Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains. PLoS One. 9(11):e112048. [PudMed:25397580]
[92] Ushijima B et al (2014) Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol. 80(7):2102-9. [PudMed:24463971]
[93] Chen Z et al (2014) Cloning, purification, crystallization and preliminary X-ray studies of the putative type VI secretion immunity protein Tli5 (PA5088) from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun. 70(Pt 7):903-5. [PudMed:25005085]
[94] Yap KP et al (2014) Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics. 15(1):1007. [PudMed:25412680]
[95] Alavi P et al (2014) Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics. 0.959722222. [PudMed:24939220]
[96] Gopinath G et al (2014) Draft Genome Sequences of Nine Salmonella enterica Serovar Bovismorbificans Isolates from Various Sources. Genome Announc. 2(2). [PudMed:24604660]
[97] Lu D et al (2014) The structural basis of the Tle4-Tli4 complex reveals the self-protection mechanism of H2-T6SS in Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr. 70(Pt 12):3233-43. [PudMed:25478841]
[98] Shen Z et al (2014) Draft genome sequences of six enterohepatic helicobacter species isolated from humans and one from rhesus macaques. Genome Announc. 2(5). [PudMed:25212613]
[99] Egan F et al (2014) Tle Distribution and Diversity in Metagenomic Datasets Reveals Niche Specialisation. Environ Microbiol Rep. 7(2):194-203. [PudMed:25345349]
[100] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[101] Abby SS et al (2014) Bacteria in Ostreococcus tauri cultures - friends, foes or hitchhikers?. Front Microbiol. 0.559027778. [PudMed:25426102]
[102] Li H et al (2014) Evolution of carbapenem-resistant Acinetobacter baumannii through whole genome sequencing and comparative genomic analysis. Antimicrob Agents Chemother. 59(2):1168-76. [PudMed:25487793]
[103] Shao S et al (2014) Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: Propose a novel species as Edwardsiella anguillarum sp. nov . Syst Appl Microbiol. 38(1):36-47. [PudMed:25466920]
[104] Aravena-Roman M et al (2014) Distribution of 13 virulence genes among clinical and environmental Aeromonas spp. in Western Australia. Eur J Clin Microbiol Infect Dis. 33(11):1889-95. [PudMed:24859908]
[105] Dudnik A et al (2014) Genome and Transcriptome Sequences of Pseudomonas syringae pv. syringae B301D-R. Genome Announc. 2(2). [PudMed:24723725]
[106] Russell AB et al (2014) A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host Microbe. 16(2):227-36. [PudMed:25070807]
[107] Ye L et al (2014) Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens. PLoS One. 9(11):e110038. [PudMed:25369289]
[108] Ugarte-Ruiz M et al (2014) Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates. Zoonoses Public Health. doi: 10.1111/zph.12176. [PudMed:25496466]
[109] Wang S et al (2014) Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics. 15(1):440. [PudMed:24906389]
[110] Lu D et al (2014) Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol Microbiol. 92(5):1092-112. [PudMed:24724564]
[111] Eijkelkamp BA et al (2014) Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 15(1):1020. [PudMed:25422040]
[112] Yang X et al (2014) Molecular mechanism for self-protection against the type VI secretion system in Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 70(Pt 4):1094-103. [PudMed:24699653]
[113] Zuleta LF et al (2014) The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics. 15(1):535. [PudMed:24972629]
[114] Chang JH et al (2014) Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol. 53(1):32-7. [PudMed:25471186]
[115] Harrison JW et al (2014) Identification of Possible Virulence Marker from Campylobacter jejuni Isolates. Emerg Infect Dis. 20(6):1026-9. [PudMed:24856088]
[116] Livny J et al (2014) Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Res. 42(19):12212-23. [PudMed:25262354]
[117] Shyntum DY et al (2014) Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics. 15(1):163. [PudMed:24571088]
[118] Hu H et al (2014) Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallogr D Biol Crystallogr. 70(Pt 8):2175-2185. [PudMed:25084336]
[119] Mora Y et al (2014) Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl Environ Microbiol. 80(18):5644-54. [PudMed:25002426]
[120] Forster A et al (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem. 289(47):33032-43. [PudMed:25305017]
[121] Coyne MJ et al (2014) Evidence of Extensive DNA Transfer between Bacteroidales Species within the Human Gut. MBio. 5(3). [PudMed:24939888]
[122] Adamek M et al (2014) Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: A genome sequencing and gene expression approach. Microb Pathog. 67-68:20-30. [PudMed:24530922]
[123] Lery LM et al (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 12(1):41. [PudMed:24885329]
[124] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[125] De Maayer P et al (2014) Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics. 15(1):404. [PudMed:24884520]
[126] Jeong JH et al (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 9):1260-3. [PudMed:25195905]
[127] Zhang J et al (2014) Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett. 588(10):1891-8. [PudMed:24751834]
[128] Siqueira AF et al (2014) Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics. 0.916666667. [PudMed:24888481]
[129] Pedron J et al (2014) Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics. 15(1):283. [PudMed:24735398]
[130] Kwong WK et al (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A. 111(31):11509-14. [PudMed:25053814]
[131] Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem. 288(8):5928-39. [PudMed:23288853]
[132] Grim CJ et al (2013) Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 0.8375. [PudMed:23724777]
[133] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[134] Thapa SP et al (2013) Comparative genomics of Japanese Erwinia pyrifoliae strain Ejp617 with closely related erwinias. Genome. 56(2):83-90. [PudMed:23517317]
[135] Marchler-Bauer A et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41(D1):D348-52. [PudMed:23197659]
[136] Cattoir V et al (2013) Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. MBio. 3(6):e00410-12. [PudMed:23143799]
[137] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[138] Mann RA et al (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS One. 8(2):e55644. [PudMed:23409014]
[139] Benz J et al (2013) Structural Insights into the Effector - Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS One. 8(6):e67362. [PudMed:23826277]
[140] Redondo-Nieto M et al (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics. 14:54. [PudMed:23350846]
[141] Bondarev V et al (2013) The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol. 15(7):2095-113. [PudMed:23601235]
[142] Marin MA et al (2013) Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis. 7(2):e2049. [PudMed:23459673]
[143] Duan J et al (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One. 8(3):e58640. [PudMed:23516524]
[144] Li L et al (2013) Structural Insights on the Bacteriolytic and Self-protection Mechanism of Muramidase Effector Tse3 in Pseudomonas aeruginosa. J Biol Chem. 288(42):30607-13. [PudMed:24025333]
[145] Grad YH et al (2013) Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. MBio. 4(1):e00452-12. [PudMed:23341549]
[146] Robb CS et al (2013) Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 6):607-10. [PudMed:23722835]
[147] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[148] Hornung C et al (2013) The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One. 8(2):e55045. [PudMed:23405110]
[149] Mitter B et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants . Front Plant Sci. 0.25. [PudMed:23641251]
[150] Shneider MM et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350-3. [PudMed:23925114]
[151] Dong C et al (2013) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J. 454(1):59-68. [PudMed:23730712]
[152] Smits TH et al (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol. 36(7):449-56. [PudMed:23726521]
[153] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[154] Koiv V et al (2013) Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae. PLoS One. 8(1):e54248. [PudMed:23372695]
[155] Ma J et al (2013) Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. Infect Genet Evol. 20:454-64. [PudMed:24120694]
[156] Sugawara M et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 14(2):R17. [PudMed:23425606]
[157] Desai PT et al (2013) Evolutionary Genomics of Salmonella enterica Subspecies. MBio. 4(2):e00198-13. [PudMed:23462113]
[158] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[159] Liu WY et al (2013) Comparative Genome Analysis of Enterobacter cloacae. PLoS One. 8(9):e74487. [PudMed:24069314]
[160] Sarris PF et al (2013) Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots. PLoS One. 8(3):e59366. [PudMed:23555661]
[161] Wang T et al (2013) Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein. Acta Crystallogr D Biol Crystallogr. 69(Pt 10):1889-1900. [PudMed:24100309]
[162] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[163] Khan A et al (2013) Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards. World J Microbiol Biotechnol. 29(11):2033-44. [PudMed:23653265]
[164] Barret M et al (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep. 5(1):117-26. [PudMed:23757140]
[165] Fory PA et al (2013) Comparative analysis of two emerging rice seed bacterial pathogens. Phytopathology. 104(5):436-44. [PudMed:24261408]
[166] Bullman S et al (2013) Genomic investigation into strain heterogeneity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus. PLoS One. 8(8):e71515. [PudMed:24023611]
[167] Memisevic V et al (2013) Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions. Mol Cell Proteomics. 12(11):3036-51. [PudMed:23800426]
[168] Grigoryeva TV et al (2013) Draft Genome of the Nitrogen-Fixing Bacterium Pseudomonas stutzeri Strain KOS6 Isolated from Industrial Hydrocarbon Sludge. Genome Announc. 1(1). [PudMed:23405317]
[169] Darrasse A et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics. 14(1):761. [PudMed:24195767]
[170] Gao X et al (2013) Genomic study of polyhydroxyalkanoates producing Aeromonas hydrophila 4AK4. Appl Microbiol Biotechnol. 97(20):9099-109. [PudMed:24000047]
[171] Franca FL et al (2013) Genotypic and phenotypic characterisation of enteroaggregative Escherichia coli from children in Rio de Janeiro, Brazil. PLoS One. 8(7):e69971. [PudMed:23936127]
[172] Vandroemme J et al (2013) Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics. 14(1):829. [PudMed:24274055]
[173] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[174] Hayward MR et al (2013) Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 0.836805556. [PudMed:23725633]
[175] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[176] Babujee L et al (2012) Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. BMC Genomics. 0.618055556. [PudMed:22439737]
[177] Dias GM et al (2012) Genome sequence of the marine bacterium Vibrio campbellii DS40M4, isolated from open ocean water. J Bacteriol. 194(4):904. [PudMed:22275102]
[178] Joseph S et al (2012) Comparative analysis of genome sequences covering the seven cronobacter species. PLoS One. 7(11):e49455. [PudMed:23166675]
[179] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[180] Brankatschk K et al (2012) Comparative genomic analysis of Salmonella enterica subsp. enterica serovar Weltevreden foodborne strains with other serovars. Int J Food Microbiol. 155(3):247-56. [PudMed:22341936]
[181] Russell AB et al (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe. 11(5):538-49. [PudMed:22607806]
[182] Shidore T et al (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Environ Microbiol. 14(10):2775-87. [PudMed:22616609]
[183] Robb CS et al (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol. 419(5):277-83. [PudMed:22504227]
[184] Goto T et al (2012) Complete genome sequence of Helicobacter cinaedi strain PAGU611, isolated in a case of human bacteremia. J Bacteriol. 194(14):3744-5. [PudMed:22740670]
[185] Benz J et al (2012) Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS One. 7(7):e40453. [PudMed:22792331]
[186] Shang G et al (2012) Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function. Biochem J. 448(2):201-11. [PudMed:22931054]
[187] Nykyri J et al (2012) Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11):e1003013. [PudMed:23133391]
[188] Ibrahim M et al (2012) Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PLoS One. 7(11):e49657. [PudMed:23166741]
[189] Loper JE et al (2012) Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genet. 8(7):e1002784. [PudMed:22792073]
[190] Black M et al (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel). 3(1):138-66. [PudMed:24704847]
[191] Zhang D et al (2012) Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct. 7:18. [PudMed:22731697]
[192] Yang M et al (2012) Edwardsiella comparative phylogenomics reveal the new intra/inter-species taxonomic relationships, virulence evolution and niche adaptation mechanisms. PLoS One. 7(5):e36987. [PudMed:22590641]
[193] Hebert L et al (2012) Genomic characterization of the Taylorella genus. PLoS One. 7(1):e29953. [PudMed:22235352]
[194] Stauff DL, Bassler BL. (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.. J Bacteriol. 193(15):3871-8. [PudMed:21622734]
[195] De Maayer P et al (2011) Comparative genomics of the Type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics. 0.9. [PudMed:22115407]
[196] Smits TH et al (2011) Metabolic versatility and antibacterial metabolite biosynthesis are distinguishing genomic features of the fire blight antagonist Pantoea vagans C9-1. PLoS One. 6(7):e22247. [PudMed:21789243]
[197] Lu S et al (2011) Complete genome sequence of the neonatal-meningitis-associated Escherichia coli strain CE10. J Bacteriol. 193(24):7005. [PudMed:22123760]
[198] Thompson CC et al (2011) Genome sequence of the human pathogen Vibrio cholerae Amazonia. J Bacteriol. 193(20):5877-8. [PudMed:21952545]
[199] Franco AA et al (2011) Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 77(10):3255-67. [PudMed:21421789]
[200] Sarris PF et al (2011) Pseudomonas entomophila and Pseudomonas mendocina: potential models for studying the bacterial type VI secretion system. Infect Genet Evol. 11(6):1352-60. [PudMed:21600307]
[201] Sarris PF et al (2011) Distribution of the putative type VI secretion system core genes in Klebsiella spp. Infect Genet Evol. 11(1):157-66. [PudMed:20932940]
[202] Pedrosa FO et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet. 7(5):e1002064. [PudMed:21589895]
[203] Ortet P et al (2011) Complete genome sequence of a beneficial plant root-associated bacterium, Pseudomonas brassicacearum. J Bacteriol. 193(12):3146. [PudMed:21515771]
[204] Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact. 24(7):751-7. [PudMed:21361789]
[205] Van Puyvelde S et al (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol. 61(4):723-8. [PudMed:21340736]
[206] Barret M et al (2011) Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology. 157(Pt 6):1726-39. [PudMed:21474537]
[207] Fookes M et al (2011) Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog. 7(8):e1002191. [PudMed:21876672]
[208] Wu X et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. 35(2):299-323. [PudMed:20796030]
[209] Smits TH et al (2010) Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity. BMC Genomics. 11:02. [PudMed:20047678]
[210] Roy PH et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 5(1):e8842. [PudMed:20107499]
[211] Kampenusa I et al (2010) Distinguishable codon usage and amino acid composition patterns among substrates of leaderless secretory pathways from proteobacteria. Appl Microbiol Biotechnol. 86(1):285-93. [PudMed:20107986]
[212] Guindon S et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307-21. [PudMed:20525638]
[213] Green S et al (2010) Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One. 5(4):e10224. [PudMed:20419105]
[214] Petty NK et al (2010) The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol. 192(2):525-38. [PudMed:19897651]
[215] Sarris PF et al (2010) In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol Plant Pathol. 11(6):795-804. [PudMed:21091602]
[216] Chao G et al (2010) Distribution of genes encoding four pathogenicity islands (VPaIs), T6SS, biofilm, and type I pilus in food and clinical strains of Vibrio parahaemolyticus in China. Foodborne Pathog Dis. 7(6):649-58. [PudMed:20132020]
[217] Shrivastava S et al (2010) INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms. J Biosci. 35(3):351-64. [PudMed:20826944]
[218] Kucerova E1, Clifton SW, Xia XQ, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 5(3):e9556. [PudMed:20221447]
[219] Miquel S et al (2010) Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82. PLoS One. 5(9). [PudMed:20862302]
[220] Chaudhuri RR et al (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One. 5(1):e8801. [PudMed:20098708]
[221] Boyer F et al (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources. BMC Genomics. 0.488888889. [PudMed:19284603]
[222] Yang JC et al (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One. 4(7):e6085. [PudMed:19568419]
[223] Sakai T et al (2009) Identification of novel putative virulence factors, adhesin AIDA and type VI secretion system, in atypical strains of fish pathogenic Edwardsiella tarda by genomic subtractive hybridization. Microbiol Immunol. 53(3):131-9. [PudMed:19302523]
[224] Persson OP et al (2009) High abundance of virulence gene homologues in marine bacteria. Environ Microbiol. 11(6):1348-57. [PudMed:19207573]
[225] Wang Q et al (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4(10):e7646. [PudMed:19865481]
[226] Larsson P et al (2009) Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog. 5(6):e1000472. [PudMed:19521508]
[227] Champion MD et al (2009) Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog. 5(5):e1000459. [PudMed:19478886]
[228] Di Bonaventura MP et al (2009) Complete genome sequence of Aggregatibacter (Haemophilus) aphrophilus NJ8700. J Bacteriol. 191(14):4693-4. [PudMed:19447908]
[229] Blondel CJ et al (2009) Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics. 0.6625. [PudMed:19653904]
[230] Tseng TT et al (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 Suppl 1:S2. [PudMed:19278550]
[231] Yen YT et al (2008) Genome-wide in silico mapping of the secretome in pathogenic Yersinia pestis KIM. FEMS Microbiol Lett . 279(1):56-63. [PudMed:18070074]
[232] Butchar JP et al (2008) Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion. PLoS One. 3(8):e2924. [PudMed:18698339]
[233] Smith MG et al (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5):601-14. [PudMed:17344419]
[234] Glass MB et al (2006) Burkholderia oklahomensis sp. nov., a Burkholderia pseudomallei-like species formerly known as the Oklahoma strain of Pseudomonas pseudomallei. Int J Syst Evol Microbiol. 6(Pt 9):2171-6. [PudMed:16957116]
[235] Chambers CE et al (2006) Identification of potential CepR regulated genes using a cep box motif-based search of the Burkholderia cenocepacia genome. BMC Microbiol. 0.322222222. [PudMed:17187664]
[236] Lewenza S et al (2005) Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res. 15(2):321-9. [PudMed:15687295]
[237] Das S et al (2003) Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol. 3(3):287-300. [PudMed:12954091]
[238] Perna NT et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 409(6819):529-33. [PudMed:11206551]
[1] Pang M et al (2015) Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep. 7.036805556. [PudMed:26014286]
[2] Gao R et al (2015) Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated Burkholderia glumae strain PG1. Appl Environ Microbiol. pii: AEM.01043-15. [PudMed:26362987]
[3] Borges V et al (2015) Helicobacter pullorum isolated from fresh chicken meat - antibiotic resistance and genomic traits of an emerging foodborne pathogen. Appl Environ Microbiol. pii: AEM.02394-15. [PudMed:26386065]
[4] Martinez-Garcia PM et al (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci. 10:10. [PudMed:25685259]
[5] Behar A et al (2015) Whole genome analysis to detect potential vaccine-induced changes on Shigella sonnei genome. Vaccine. pii: S0264-410X(15)00550-2. [PudMed:25936664]
[6] Lin LC et al (2015) Draft Genome Sequence of Vibrio owensii GRA50-12, Isolated from Green Algae in the Intertidal Zone of Eastern Taiwan. Genome Announc. 3(1). [PudMed:25593265]
[7] Siddiqui F et al (2015) Molecular detection identified a Type Six Secretion System in Campylobacter jejuni from various sources but not from human cases. J Appl Microbiol. doi: 10.1111/jam.12748. [PudMed:25580664]
[8] Nandi T et al (2015) Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Res. 25(1):129-41. [PudMed:25236617]
[9] Torres D et al (2015) Genome Sequence of Bradyrhizobium japonicum E109, One of the Most Agronomically Used Nitrogen-Fixing Rhizobacteria in Argentina. Genome Announc. 3(1). [PudMed:25700406]
[10] Martinez-Garcia PM et al (2015) Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle. PLoS One. 10(8):e0136101. [PudMed:26313942]
[11] Liu C et al (2015) Genome analysis and in vivo virulence of porcine extraintestinal pathogenic Escherichia coli strain PCN033. BMC Genomics. 16(1):717. [PudMed:26391348]
[12] Suzuki M et al (2015) Genome Sequence of a Carbapenem-Resistant Strain of Ralstonia mannitolilytica. Genome Announc. 3(3). [PudMed:25953190]
[13] Chieng S et al (2015) Transcriptome analysis of Burkholderia pseudomallei T6SS identifies Hcp1 as a potential serodiagnostic marker. Microb Pathog. 79:47-56. [PudMed:25616255]
[14] Sapountzis P et al (2015) The Enterobacterium Trabulsiella odontotermitis Presents Novel Adaptations Related to Its Association with Fungus-Growing Termites. Appl Environ Microbiol. 81(19):6577-88. [PudMed:26162887]
[15] Trantas EA et al (2015) Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol. 0.813194444. [PudMed:26300874]
[16] Quibod IL et al (2015) Rice-Infecting Pseudomonas Genomes Are Highly Accessorized and Harbor Multiple Putative Virulence Mechanisms to Cause Sheath Brown Rot. PLoS One. 10(9):e0139256. [PudMed:26422147]
[17] Desilets M et al (2015) Genome-based Definition of an Inflammatory Bowel Disease-associated Adherent-Invasive Escherichia coli Pathovar. Inflamm Bowel Dis. . [PudMed:26444104]
[18] Kang H et al (2015) Characterization and Genomic Analysis of Quinolone-Resistant Delftia sp. 670 Isolated from a Patient Who Died from Severe Pneumonia. Curr Microbiol. . [PudMed:25935202]
[19] Osterman J et al (2015) Genomic features separating ten strains of Neorhizobium galegae with different symbiotic phenotypes. BMC Genomics. 0.908333333. [PudMed:25933608]
[20] Richards VP et al (2015) Genome Based Phylogeny and Comparative Genomic Analysis of Intra-Mammary Pathogenic Escherichia coli. PLoS One. 10(3):e0119799. [PudMed:25807497]
[21] Lee JH et al (2014) Draft genome sequence of Xanthomonas axonopodis pv. glycines 8ra possessing transcription activator-like effectors used for genetic engineering. J Biotechnol. 179C:15-16. [PudMed:24657734]
[22] Gardiner DM et al (2014) Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems. PLoS One. 9(1):e84995. [PudMed:24416331]
[23] Wright MS et al (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):e00963-13. [PudMed:24449752]
[24] Jousset A et al (2014) Full-Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas protegens CHA0. Genome Announc. 2(2). [PudMed:24762936]
[25] Okada K et al (2014) Complete Genome Sequence of Bordetella bronchiseptica S798, an Isolate from a Pig with Atrophic Rhinitis. Genome Announc. 2(3). [PudMed:24831150]
[26] Rydzewski K et al (2014) Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol. 14(1):169. [PudMed:24961323]
[27] Liu F et al (2014) Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genomics. 15(1):1163. [PudMed:25534766]
[28] Gopinath G et al (2014) Whole-Genome Sequences of Six Salmonella enterica Serovar Bovismorbificans Isolates Associated with a 2011 Multistate Hummus-Borne Outbreak. Genome Announc. 6;2(2). [PudMed:24604659]
[29] Adam Z et al (2014) Draft Genome Sequence of Pantoea ananatis Strain LMG 2665T, a Bacterial Pathogen of Pineapple Fruitlets. Genome Announc. 2(3). [PudMed:24855311]
[30] Kenzaka T et al (2014) Draft Genome Sequences of Amoeba-Resistant Aeromonas spp. Isolated from Aquatic Environments. Genome Announc. 2(5). [PudMed:25359918]
[31] Rudder S et al (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics. 15(1):268. [PudMed:24708309]
[32] Ushijima B et al (2014) Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol. 80(7):2102-9. [PudMed:24463971]
[33] Darby A et al (2014) Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals. PLoS One. 9(7):e100542. [PudMed:25057966]
[34] Bishop AH et al (2014) Identification of Genes Required for Soil Survival in Burkholderia thailandensis by Transposon-Directed Insertion Site Sequencing. Curr Microbiol. 68(6):693-701. [PudMed:24488501]
[35] Gopinath G et al (2014) Draft Genome Sequences of Nine Salmonella enterica Serovar Bovismorbificans Isolates from Various Sources. Genome Announc. 2(2). [PudMed:24604660]
[36] Shen Z et al (2014) Draft genome sequences of six enterohepatic helicobacter species isolated from humans and one from rhesus macaques. Genome Announc. 2(5). [PudMed:25212613]
[37] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[38] Li H et al (2014) Evolution of carbapenem-resistant Acinetobacter baumannii through whole genome sequencing and comparative genomic analysis. Antimicrob Agents Chemother. 59(2):1168-76. [PudMed:25487793]
[39] Mohd Suhaimi NS et al (2014) Genome Sequence of Kosakonia radicincitans UMEnt01/12, a Bacterium Associated with Bacterial Wilt Diseased Banana Plant. FEMS Microbiol Lett. 358(1):11-3. [PudMed:25047976]
[40] Weller-Stuart T et al (2014) Draft Genome Sequences of the Onion Center Rot Pathogen Pantoea ananatis PA4 and Maize Brown Stalk Rot Pathogen P. ananatis BD442. Genome Announc. 2(4). [PudMed:25103759]
[41] Dudnik A et al (2014) Genome and Transcriptome Sequences of Pseudomonas syringae pv. syringae B301D-R. Genome Announc. 2(2). [PudMed:24723725]
[42] Ohtsubo Y et al (2014) Complete Genome Sequence of Pseudomonas aeruginosa MTB-1, Isolated from a Microbial Community Enriched by the Technical Formulation of Hexachlorocyclohexane. Genome Announc. 2(1). [PudMed:24459257]
[43] Ugarte-Ruiz M et al (2014) Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates. Zoonoses Public Health. doi: 10.1111/zph.12176. [PudMed:25496466]
[44] Wang S et al (2014) Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics. 15(1):440. [PudMed:24906389]
[45] Zuleta LF et al (2014) The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics. 15(1):535. [PudMed:24972629]
[46] Medrano EG et al (2014) Complete Genome Sequence of a Klebsiella pneumoniae Strain Isolated from a Known Cotton Insect Boll Vector. Genome Announc. 2(4). [PudMed:25146146]
[47] Adamek M et al (2014) Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: A genome sequencing and gene expression approach. Microb Pathog. 67-68:20-30. [PudMed:24530922]
[48] Sasaki H et al (2014) Draft Genome Sequence of the Rodent Opportunistic Pathogen Pasteurella pneumotropica ATCC 35149T. Genome Announc. 2(4). [PudMed:25103762]
[49] Pedron J et al (2014) Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics. 15(1):283. [PudMed:24735398]
[50] Kwong WK et al (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A. 111(31):11509-14. [PudMed:25053814]
[51] Thapa SP et al (2013) Comparative genomics of Japanese Erwinia pyrifoliae strain Ejp617 with closely related erwinias. Genome. 56(2):83-90. [PudMed:23517317]
[52] Dong TG et al (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A . 110(7):2623-8. [PudMed:23362380]
[53] Redondo-Nieto M et al (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics. 14:54. [PudMed:23350846]
[54] Guardiola-Avila I et al (2013) Draft Genome Sequence of Vibrio mimicus Strain CAIM 602T. Genome Announc. 1(2):e0008413. [PudMed:23516211]
[55] Hornung C et al (2013) The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One. 8(2):e55045. [PudMed:23405110]
[56] Smits TH et al (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol. 36(7):449-56. [PudMed:23726521]
[57] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[58] Zhang JX et al (2013) Genome Sequence of the Banana Pathogen Dickeya zeae Strain MS1, Which Causes Bacterial Soft Rot. Genome Announc. 1(3). [PudMed:23766402]
[59] Desai PT et al (2013) Evolutionary Genomics of Salmonella enterica Subspecies. MBio. 4(2):e00198-13. [PudMed:23462113]
[60] Sarris PF et al (2013) Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots. PLoS One. 8(3):e59366. [PudMed:23555661]
[61] Grigoryeva TV et al (2013) Draft Genome of the Nitrogen-Fixing Bacterium Pseudomonas stutzeri Strain KOS6 Isolated from Industrial Hydrocarbon Sludge. Genome Announc. 1(1). [PudMed:23405317]
[62] Darrasse A et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics. 14(1):761. [PudMed:24195767]
[63] Gao X et al (2013) Genomic study of polyhydroxyalkanoates producing Aeromonas hydrophila 4AK4. Appl Microbiol Biotechnol. 97(20):9099-109. [PudMed:24000047]
[64] Vandroemme J et al (2013) Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics. 14(1):829. [PudMed:24274055]
[65] Hayward MR et al (2013) Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 0.836805556. [PudMed:23725633]
[66] Carruthers MD et al (2013) Draft Genome Sequence of the Clinical Isolate Acinetobacter nosocomialis Strain M2. Genome Announc. 1(6). [PudMed:24201195]
[67] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[68] Fu Y et al (2013) Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host Microbe. 14(6):652-63. [PudMed:24331463]
[69] Amaral GR et al (2012) Genome sequence of the bacterioplanktonic, mixotrophic Vibrio campbellii strain PEL22A, isolated in the Abrolhos Bank. J Bacteriol. 194(10):2759-60. [PudMed:22535939]
[70] Dias GM et al (2012) Genome sequence of the marine bacterium Vibrio campbellii DS40M4, isolated from open ocean water. J Bacteriol. 194(4):904. [PudMed:22275102]
[71] Joseph S et al (2012) Comparative analysis of genome sequences covering the seven cronobacter species. PLoS One. 7(11):e49455. [PudMed:23166675]
[72] Goto T et al (2012) Complete genome sequence of Helicobacter cinaedi strain PAGU611, isolated in a case of human bacteremia. J Bacteriol. 194(14):3744-5. [PudMed:22740670]
[73] Nykyri J et al (2012) Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11):e1003013. [PudMed:23133391]
[74] Mandlik A et al (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe. 10(2):165-74. [PudMed:21843873]
[75] Thompson CC et al (2011) Genome sequence of the human pathogen Vibrio cholerae Amazonia. J Bacteriol. 193(20):5877-8. [PudMed:21952545]
[76] Pedrosa FO et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet. 7(5):e1002064. [PudMed:21589895]
[77] Roy PH et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 5(1):e8842. [PudMed:20107499]
[78] Penz T et al (2010) The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" encodes an afp-like prophage possibly used for protein secretion. Virulence. 1(6):541-5. [PudMed:21178499]
[79] Kucerova E1, Clifton SW, Xia XQ, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 5(3):e9556. [PudMed:20221447]
[80] Miquel S et al (2010) Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82. PLoS One. 5(9). [PudMed:20862302]
[81] Chaudhuri RR et al (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One. 5(1):e8801. [PudMed:20098708]
[82] Yang JC et al (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One. 4(7):e6085. [PudMed:19568419]
[83] Wang Q et al (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4(10):e7646. [PudMed:19865481]
[84] Champion MD et al (2009) Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog. 5(5):e1000459. [PudMed:19478886]
[85] Smith MG et al (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5):601-14. [PudMed:17344419]
[86] Perna NT et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 409(6819):529-33. [PudMed:11206551]
[1] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[2] Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD (2018) Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell. 175(5):1380-1392.e14. [PudMed:30343895]
[3] Tang JY, Bullen NP, Ahmad S, Whitney JC (2018) Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem. 293(5):1504-1514. [PudMed:29237732]
[4] Gerc AJ et al (2015) Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly. Cell Rep. 12(12):2131-42. [PudMed:26387948]
[5] Lim YT et al (2015) Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei. Sci Rep. 5.927083333. [PudMed:25648885]
[6] Clemens DL et al (2015) Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell. 160(5):940-51. [PudMed:25723168]
[7] Ge P et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. doi: 10.1038/nsmb.2995. [PudMed:25822993]
[8] Wang RY et al (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods. 12(4):335-338. [PudMed:25707029]
[9] Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci. 5-Oct. [PudMed:26370934]
[10] Kudryashev M et al (2015) Structure of the Type VI Secretion System Contractile Sheath. Cell. 160(5):952-62. [PudMed:25723169]
[11] Nguyen VS et al (2015) Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody. PLoS One. 10(3):e0122187. [PudMed:25811612]
[12] Diniz JA et al (2015) Intra-species Competition in Serratia marcescens is Mediated by Type VI Secretion Rhs Effectors and a Conserved Effector-Associated Accessory Protein. J Bacteriol. pii: JB.00199-15. [PudMed:25939831]
[13] Durand E et al (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature. 523(7562):555-60. [PudMed:26200339]
[14] Nguyen VS et al (2015) Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody. Acta Crystallogr F Struct Biol Commun. 71(Pt 3):266-71. [PudMed:25760699]
[15] Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD (2015) An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell. 163(3):607-19. [PudMed:26456113]
[16] Nunes-Alves C (2015) Structural biology: Hand in hand structure and function of T6SSs. Nat Rev Microbiol. 13(4):186-7. [PudMed:25749451]
[17] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[18] Hu W et al (2014) A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding. PLoS One. 9(11):e110810. [PudMed:25401506]
[19] Brunet YR et al (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15(3):315-21. [PudMed:24488256]
[20] Zhang J et al (2014) Crystallization and preliminary X-ray study of TsiV3 from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 3):335-8. [PudMed:24598921]
[21] Zoued A et al (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta. 1843(8):1664-73. [PudMed:24681160]
[22] Lu D et al (2014) Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol Microbiol. 92(5):1092-112. [PudMed:24724564]
[23] Kube S et al (2014) Structure of the VipA/B Type VI Secretion Complex Suggests a Contraction-State-Specific Recycling Mechanism. Cell Rep. 16(1):94-104. [PudMed:24953649]
[24] Yang X et al (2014) Molecular mechanism for self-protection against the type VI secretion system in Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 70(Pt 4):1094-103. [PudMed:24699653]
[25] Chang JH et al (2014) Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol. 53(1):32-7. [PudMed:25471186]
[26] Hu H et al (2014) Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallogr D Biol Crystallogr. 70(Pt 8):2175-2185. [PudMed:25084336]
[27] Forster A et al (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem. 289(47):33032-43. [PudMed:25305017]
[28] Chang YW et al (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods. 11(7):737-9. [PudMed:24813625]
[29] Jeong JH et al (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 9):1260-3. [PudMed:25195905]
[30] Zhang J et al (2014) Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett. 588(10):1891-8. [PudMed:24751834]
[31] Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem. 288(8):5928-39. [PudMed:23288853]
[32] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[33] Lu D et al (2013) Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 5):524-7. [PudMed:23695568]
[34] Bebeacua C et al (2013) Visualizing a Complete Siphoviridae Member by Single-Particle Electron Microscopy: the Structure of Lactococcal Phage TP901-1. J Virol. 87(2):1061-8. [PudMed:23135714]
[35] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[36] Benz J et al (2013) Structural Insights into the Effector - Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS One. 8(6):e67362. [PudMed:23826277]
[37] Li L et al (2013) Structural Insights on the Bacteriolytic and Self-protection Mechanism of Muramidase Effector Tse3 in Pseudomonas aeruginosa. J Biol Chem. 288(42):30607-13. [PudMed:24025333]
[38] Coulthurst SJ (2013) The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 164(6):640-54. [PudMed:23542428]
[39] Robb CS et al (2013) Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 6):607-10. [PudMed:23722835]
[40] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[41] Shneider MM et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350-3. [PudMed:23925114]
[42] Dong C et al (2013) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J. 454(1):59-68. [PudMed:23730712]
[43] Brunet YR et al (2013) Imaging Type VI Secretion-Mediated Bacterial Killing. Cell Rep. 3(1):36-41. [PudMed:23291094]
[44] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[45] Broms JE et al (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol. 13(1):96. [PudMed:23642157]
[46] Heymann JB et al (2013) Three-dimensional structure of the toxin-delivery particle antifeeding prophage of Serratia entomophila. J Biol Chem. 288(35):25276-84. [PudMed:23857636]
[47] Ho BT et al (2013) A View to a Kill: The Bacterial Type VI Secretion System. Cell Host Microbe. 15(1):9-21. [PudMed:24332978]
[48] Lossi NS et al (2013) The HsiB1C1 (TssB/TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath-like structure. J Biol Chem. 288(11):7536-48. [PudMed:23341461]
[49] Zoued A et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the Type VI secretion system. J Biol Chem. 288(38):27031-41. [PudMed:23921384]
[50] Whitney JC et al (2013) Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem. 288(37):26616-24. [PudMed:23878199]
[51] Wang T et al (2013) Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein. Acta Crystallogr D Biol Crystallogr. 69(Pt 10):1889-1900. [PudMed:24100309]
[52] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[53] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[54] Durand E et al (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae Type VI secretion system. J Biol Chem. 287(45):38190-9. [PudMed:22898822]
[55] Cascales E et al (2012) Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci. 367(1592):1102-11. [PudMed:22411981]
[56] Basler M et al (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 483(7388):182-6. [PudMed:22367545]
[57] Zou T et al (2012) Crystal structure of Pseudomonas aeruginosa Tsi2 reveals a stably folded superhelical antitoxin. J Mol Biol. 417(4):351-61. [PudMed:22310046]
[58] Leiman PG et al (2012) Contractile tail machines of bacteriophages. Adv Exp Med Biol. 726:93-114. [PudMed:22297511]
[59] Lossi NS et al (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol. 86(2):437-56. [PudMed:22906320]
[60] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[61] Kefala K et al (2012) Purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal fragment of the MvfR protein from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 68(Pt 6):695-7. [PudMed:22684073]
[62] Robb CS et al (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol. 419(5):277-83. [PudMed:22504227]
[63] Durand E et al (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem. 287(17):14157-68. [PudMed:22371492]
[64] Aschtgen MS et al (2012) The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. Microbiologyopen. 1(1):71-82. [PudMed:22950014]
[65] Benz J et al (2012) Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS One. 7(7):e40453. [PudMed:22792331]
[66] Shang G et al (2012) Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function. Biochem J. 448(2):201-11. [PudMed:22931054]
[67] English G et al (2012) New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol. 86(4):921-36. [PudMed:22957938]
[68] Chou S et al (2012) Structure of a Peptidoglycan Amidase Effector Targeted to Gram-Negative Bacteria by the Type VI Secretion System. Cell Rep. 1(6):656-64. [PudMed:22813741]
[69] Zhang H et al (2012) Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS Lett. 586(19):3193-9. [PudMed:22750141]
[70] Li M et al (2012) Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathog. 8(4):e1002613. [PudMed:22511866]
[71] Rao VA et al (2011) The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system. Acta Crystallogr D Biol Crystallogr. 67(Pt 12):1065-72. [PudMed:22120744]
[72] Navarro MV et al (2011) Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol. 9(2):e1000588. [PudMed:21304926]
[73] Felisberto-Rodrigues C et al (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7(11):e1002386. [PudMed:22102820]
[74] Veesler D et al (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev. 75(3):423-33. [PudMed:21885679]
[75] Lossi NS et al (2011) Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology. 157(Pt 12):3292-305. [PudMed:21873404]
[76] Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact. 24(7):751-7. [PudMed:21361789]
[77] Osipiuk J et al (2011) Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa. J Struct Funct Genomics. 12(1):21-6. [PudMed:21476004]
[78] Bonemann G et al (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol. 76(4):815-21. [PudMed:20444095]
[79] Robb CS et al (2010) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of intracellular growth locus E (IglE) protein from Francisella tularensis subsp. novicida. Acta Crystallogr Sect F Struct Biol Cryst Commun. 66(Pt 12):1596-8. [PudMed:21139203]
[80] Jobichen C et al (2010) Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda. PLoS One. 5(9):e12910. [PudMed:20886112]
[81] Filloux A (2009) The type VI secretion system: a tubular story. EMBO J. 28(4):309-10. [PudMed:19225443]
[82] Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A. 106(11):4154-9. [PudMed:19251641]
[83] Broms JE et al (2009) A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis. J Bacteriol. 191(8):2431-46. [PudMed:19201795]
[84] Pell LG et al (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A. 106(11):4160-5. [PudMed:19251647]
[85] Ballister ER et al (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A. 105(10):3733-8. [PudMed:18310321]
[86] Forouhar F et al (2007) Functional insights from structural genomics. J Struct Funct Genomics. 8(2-3):37-44. [PudMed:17588214]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Kim N, Han G, Jung H, Lee HH, Park J, Seo YS. (2021) T6SS Accessory Proteins, Including DUF2169 Domain-Containing Protein and Pentapeptide Repeats Protein, Contribute to Bacterial Virulence in T6SS Group_5 of Burkholderia glumae BGR1.. Plants (Basel). 11(1). [PudMed:35009038]
[3] Flaugnatti N, Isaac S, Lemos Rocha LF, Stutzmann S, Rendueles O, Stoudmann C, Vesel N, Garcia-Garcera M, Buffet A, Sana TG, Rocha EPC, Blokesch M. (2021) Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms.. Nat Commun. 12(1):5751. [PudMed:34599171]
[4] Loeven NA, Perault AI, Cotter PA, Hodges CA, Schwartzman JD, Hampton TH, Bliska JB. (2021) The Burkholderia cenocepacia Type VI Secretion System Effector TecA Is a Virulence Factor in Mouse Models of Lung Infection.. mBio. 12(5):e0209821. [PudMed:34579569]
[5] Li C, Zhu L, Wang D, Wei Z, Hao X, Wang Z, Li T, Zhang L, Lu Z, Long M, Wang Y, Wei G, Shen X. (2021) T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer.. ISME J. NA. [PudMed:34433898]
[6] Steele MI, Motta EVS, Gattu T, Martinez D, Moran NA. (2021) The Gut Microbiota Protects Bees from Invasion by a Bacterial Pathogen.. Microbiol Spectr. 9(2):e0039421. [PudMed:34523998]
[7] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[8] Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. (2021) Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction.. Front Plant Sci. 12:699590. [PudMed:34394152]
[9] Speare L, Woo M, Bultman KM, Mandel MJ, Wollenberg MS, Septer AN. (2021) Host-Like Conditions Are Required for T6SS-Mediated Competition among Vibrio fischeri Light Organ Symbionts.. mSphere. 6(4):e0128820. [PudMed:34287008]
[10] Liu L, Song L, Deng R, Lan R, Jin W, Tran Van Nhieu G, Cao H, Liu Q, Xiao Y, Li X, Meng G, Ren Z. (2021) Citrobacter freundii Activation of NLRP3 Inflammasome via the Type VI Secretion System.. J Infect Dis. 223(12):2174-2185. [PudMed:33151309]
[11] Wang N, Han N, Tian R, Chen J, Gao X, Wu Z, Liu Y, Huang L. (2021) Role of the Type VI Secretion System in the Pathogenicity of Pseudomonas syringae pv. actinidiae, the Causative Agent of Kiwifruit Bacterial Canker.. Front Microbiol. 12:627785. [PudMed:33679650]
[12] Montenegro Benavides NA, Alvarez B A, Arrieta-Ortiz ML, Rodriguez-R LM, Botero D, Tabima JF, Castiblanco L, Trujillo C, Restrepo S, Bernal A. (2021) The type VI secretion system of Xanthomonas phaseoli pv. manihotis is involved in virulence and in vitro motility.. BMC Microbiol. 21(1):14. [PudMed:33407123]
[13] Dur��n D, Bernal P, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Mart��n M. (2021) Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the rhizosphere microbiome.. Sci Rep. 11(1):5772. [PudMed:33707614]
[14] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[15] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[16] Kim N, Kim JJ, Kim I, Mannaa M, Park J, Kim J, Lee HH, Lee SB, Park DS, Sul WJ, Seo YS. (2020) Type VI secretion systems of plant-pathogenic Burkholderia glumae BGR1 play a functionally distinct role in interspecies interactions and virulence.. Mol Plant Pathol. 21(8):1055-1069. [PudMed:32643866]
[17] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[18] Stietz MS, Liang X, Li H, Zhang X, Dong TG. (2020) TssA-TssM-TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae.. Nat Commun. 11(1):5065. [PudMed:33033237]
[19] Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC, Cotter PA. (2020) Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex.. Cell Host Microbe. 28(4):534-547. [PudMed:32755549]
[20] Song H, Kang Y, Qian A, Shan X, Li Y, Zhang L, Zhang H, Sun W. (2020) Inactivation of the T6SS inner membrane protein DotU results in severe attenuation and decreased pathogenicity of Aeromonas veronii TH0426.. BMC Microbiol. 20(1):76. [PudMed:32245412]
[21] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[22] Zhu PC, Li YM, Yang X, Zou HF, Zhu XL, Niu XN, Xu LH, Jiang W, Huang S, Tang JL, He YQ. (2020) Type VI secretion system is not required for virulence on rice but for inter-bacterial competition in Xanthomonas oryzae pv. oryzicola.. Res Microbiol. 171(2):64-73. [PudMed:31676435]
[23] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[24] Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK. (2020) Molecular characterization of megaplasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards.. Sci Rep. 10(1):12514. [PudMed:32719325]
[25] Kochanowsky RM, Bradshaw C, Forlastro I, Stock SP. (2020) Xenorhabdus bovienii strain jolietti uses a type 6 secretion system to kill closely related Xenorhabdus strains.. FEMS Microbiol Ecol. 96(8). [PudMed:32558899]
[26] Soria-Bustos J, Ares MA, G��mez-Aldapa CA, Gonz��lez-Y-Merchand JA, Gir��n JA, De la Cruz MA. (2020) Two Type VI Secretion Systems of Enterobacter cloacae Are Required for Bacterial Competition, Cell Adherence, and Intestinal Colonization.. Front Microbiol. 11:560488. [PudMed:33072020]
[27] Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. (2020) tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system.. Mol Plant Pathol. 21(8):1042-1054. [PudMed:32608174]
[28] Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. (2020) In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes.. Mol Plant Microbe Interact. 33(2):349-363. [PudMed:31609645]
[29] Guillemette R, Ushijima B, Jalan M, Hse CC, Azam F. (2020) Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus.. PLoS One. 15(1):e0227864. [PudMed:31990915]
[30] Hu L, Wang C, Lu W, Lu H, Chen H, Tan C. (2020) BaeSR activates type VI secretion system expression in porcine extra-intestinal pathogenic Escherichia coli to enhance bacterial resistance to zinc stress.. Microb Pathog. 147:104357. [PudMed:32603765]
[31] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[32] Choi Y, Kim N, Mannaa M, Kim H, Park J, Jung H, Han G, Lee HH, Seo YS. (2020) Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice.. Plant Pathol J. 36(3):289-296. [PudMed:32547344]
[33] Guckes KR, Cecere AG, Wasilko NP, Williams AL, Bultman KM, Mandel MJ, Miyashiro T. (2019) Incompatibility of Vibrio fischeri Strains during Symbiosis Establishment Depends on Two Functionally Redundant hcp Genes.. J Bacteriol. 201(19). [PudMed:31331977]
[34] Lennings J, Makhlouf M, Olejnik P, Mayer C, Brötz-Oesterhelt H, Schwarz S. (2019) Environmental and cellular factors affecting the localization of T6SS proteins in Burkholderia thailandensis.. Int J Med Microbiol. 309(6):151335. [PudMed:31378704]
[35] Vacheron J, P��chy-Tarr M, Brochet S, Heiman CM, Stojiljkovic M, Maurhofer M, Keel C. (2019) T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens.. ISME J. 13(5):1318-1329. [PudMed:30683920]
[36] Di Venanzio G, Moon KH, Weber BS, Lopez J, Ly PM, Potter RF, Dantas G, Feldman MF. (2019) Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination.. Proc Natl Acad Sci U S A. 116(4):1378-1383. [PudMed:30626645]
[37] Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. (2019) Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition.. Microbiologyopen. NA. [PudMed:30628184]
[38] Lennings J, Mayer C, Makhlouf M, Brötz-Oesterhelt H, Schwarz S. (2019) Polar localization of the ATPase ClpV-5 occurs independent of type VI secretion system apparatus proteins in Burkholderia thailandensis.. BMC Res Notes. 12(1):109. [PudMed:30819219]
[39] Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. (2019) Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp.. Appl Environ Microbiol. 85(2). [PudMed:30413477]
[40] Lennings J, West TE, Schwarz S. (2019) The Burkholderia Type VI Secretion System 5: Composition, Regulation and Role in Virulence.. Front Microbiol. 2.69375. [PudMed:30687298]
[41] Fernández-Bravo A, Kilgore PB, Andersson JA, Blears E, Figueras MJ, Hasan NA, Colwell RR, Sha J, Chopra AK. (2019) T6SS and ExoA of flesh-eating Aeromonas hydrophila in peritonitis and necrotizing fasciitis during mono- and polymicrobial infections.. Proc Natl Acad Sci U S A. 116(48):24084-24092. [PudMed:31712444]
[42] Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y, Zheng Y, Hu L, Li P, Chen H, Tan C. (2019) Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli.. Virulence. 10(1):118-132. [PudMed:30676217]
[43] Salinero-Lanzarote A, Pacheco-Moreno A, Domingo-Serrano L, Dur��n D, Ormeo-Orrillo E, Mart��nez-Romero E, Albareda M, Palacios JM, Rey L. (2019) The Type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis.. FEMS Microbiol Ecol. 95(5). [PudMed:30977796]
[44] Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. (2019) A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae.. Mol Microbiol. 111(6):1493-1509. [PudMed:30825339]
[45] Tekedar HC, Abdelhamed H, Kumru S, Blom J, Karsi A, Lawrence ML. (2019) Comparative Genomics of Aeromonas hydrophila Secretion Systems and Mutational Analysis of hcp1 and vgrG1 Genes From T6SS.. Front Microbiol. 2.608333333. [PudMed:30687246]
[46] Biswanath Jana, Chaya M Fridman, Eran Bosis, Dor Salomon (2019) A Modular Effector With a DNase Domain and a Marker for T6SS Substrates. Nat Commun. 10(1):3595. [PudMed:31399579]
[47] Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. (2019) The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization.. Front Microbiol. 2.405555556. [PudMed:31921044]
[48] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[49] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[50] Szwedziak P, Pilhofer M. (2019) Bidirectional contraction of a type six secretion system.. Nat Commun. 10(1):1565. [PudMed:30952865]
[51] Maroniche GA, Diaz PR, Borrajo MP, Valverde CF, Creus CM. (2018) Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization.. FEMS Microbiol Ecol. 94(12). [PudMed:30299474]
[52] Li P, Xu D, Ma T, Wang D, Li W, He J, Ran T, Wang W. (2018) Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism.. Biochem J. 475(13):2209-2224. [PudMed:29858276]
[53] Wang M, Cao H, Wang Q, Xu T, Guo X, Liu B. (2018) The Roles of Two Type VI Secretion Systems in Cronobacter sakazakii ATCC 12868.. Front Microbiol. 2.110416667. [PudMed:30405562]
[54] Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS, Mandel MJ, Miyashiro T, Septer AN. (2018) Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host.. Proc Natl Acad Sci U S A. 115(36):E8528-E8537. [PudMed:30127013]
[55] Nannan Wang, Jin Liu, Maoda Pang, Yafeng Wu, Furqan Awan, Mark R Liles, Chengping Lu, Yongjie Liu (2018) Diverse Roles of Hcp Family Proteins in the Environmental Fitness and Pathogenicity of Aeromonas Hydrophila Chinese Epidemic Strain NJ-35. Appl Microbiol Biotechnol. 102(16):7083-7095. [PudMed:29862449]
[56] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[57] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[58] Ledvina HE, Kelly KA, Eshraghi A, Plemel RL, Peterson SB, Lee B, Steele S, Adler M, Kawula TH, Merz AJ, Skerrett SJ, Celli J, Mougous JD (2018) A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe. 24(2):285-295.e8. [PudMed:30057173]
[59] Brms JE, Meyer L, Sjstedt A. (2017) A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control Type VI system-mediated secretion.. Virulence. 8(6):821-847. [PudMed:27830989]
[60] Anderson MC, Vonaesch P, Saffarian A, Marteyn BS, Sansonetti PJ. (2017) Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy.. Cell Host Microbe. 21(6):769-776. [PudMed:28618272]
[61] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[62] Huang Y, Du P, Zhao M, Liu W, Du Y, Diao B, Li J, Kan B, Liang W. (2017) Functional Characterization and Conditional Regulation of the Type VI Secretion System in Vibrio fluvialis.. Front Microbiol. 0.7. [PudMed:28424671]
[63] Li P, Kinch LN, Ray A, Dalia AB, Cong Q, Nunan LM, Camilli A, Grishin NV, Salomon D, Orth K. (2017) Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires.. Appl Environ Microbiol. 83(13). [PudMed:28432099]
[64] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[65] Tian Y, Zhao Y, Shi L, Cui Z, Hu B, Zhao Y. (2017) Type VI Secretion Systems of Erwinia amylovora Contribute to Bacterial Competition, Virulence, and Exopolysaccharide Production.. Phytopathology. 107(6):654-661. [PudMed:28421913]
[66] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[67] Jiale Ma, Zihao Pan, Jinhu Huang, Min Sun, Chengping Lu, Huochun Yao (2017) The Hcp Proteins Fused With Diverse Extended-Toxin Domains Represent a Novel Pattern of Antibacterial Effectors in Type VI Secretion Systems. Virulence. 8(7):1189-1202. [PudMed:28060574]
[68] Lazzaro M, Feldman MF, Garc��a V��scovi E. (2017) A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.. mBio. 8(4). [PudMed:28830939]
[69] Ann Ray, Nika Schwartz, Marcela de Souza Santos, Junmei Zhang, Kim Orth, Dor Salomon (2017) Type VI Secretion System MIX-effectors Carry Both Antibacterial and Anti-Eukaryotic Activities. EMBO Rep.. 18(11):1978-1990. [PudMed:28912123]
[70] de Campos SB, Lardi M, Gandolfi A, Eberl L, Pessi G. (2017) Mutations in Two Paraburkholderia phymatum Type VI Secretion Systems Cause Reduced Fitness in Interbacterial Competition.. Front Microbiol. 2.050694444. [PudMed:29312183]
[71] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[72] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[73] Church SR, Lux T, Baker-Austin C, Buddington SP, Michell SL. (2016) Vibrio vulnificus Type 6 Secretion System 1 Contains Anti-Bacterial Properties.. PLoS One. 11(10):e0165500. [PudMed:27798649]
[74] Tang L, Yue S, Li GY, Li J, Wang XR, Li SF, Mo ZL. (2016) Expression, secretion and bactericidal activity of type VI secretion system in Vibrio anguillarum.. Arch Microbiol. 198(8):751-60. [PudMed:27172981]
[75] Peng Y, Wang X, Shou J, Zong B, Zhang Y, Tan J, Chen J, Hu L, Zhu Y, Chen H, Tan C. (2016) Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system.. Sci Rep. 6:26816. [PudMed:27229766]
[76] Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD (2016) Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe. 20(5):573-583. [PudMed:27832588]
[77] Li J et al (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. doi: 10.1111/1462-2920.12794. [PudMed:25640659]
[78] Lim YT et al (2015) Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei. Sci Rep. 5.927083333. [PudMed:25648885]
[79] Clemens DL et al (2015) Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell. 160(5):940-51. [PudMed:25723168]
[80] Ge P et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. doi: 10.1038/nsmb.2995. [PudMed:25822993]
[81] Li J et al (2015) Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 43(1):175-80. [PudMed:25541077]
[82] Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-015-2323-z. [PudMed:25630538]
[83] Wang RY et al (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods. 12(4):335-338. [PudMed:25707029]
[84] Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci. 5-Oct. [PudMed:26370934]
[85] Kudryashev M et al (2015) Structure of the Type VI Secretion System Contractile Sheath. Cell. 160(5):952-62. [PudMed:25723169]
[86] Yu Y et al (2015) VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages. Front Microbiol. 0.366666667. [PudMed:25784905]
[87] Nguyen VS et al (2015) Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody. PLoS One. 10(3):e0122187. [PudMed:25811612]
[88] Durand E et al (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature. 523(7562):555-60. [PudMed:26200339]
[89] Nguyen VS et al (2015) Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody. Acta Crystallogr F Struct Biol Commun. 71(Pt 3):266-71. [PudMed:25760699]
[90] Borgeaud S et al (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63-7. [PudMed:25554784]
[91] Pezoa D et al (2014) Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res. 45(1):2. [PudMed:24405577]
[92] Uda A et al (2014) Role of Pathogenicity Determinant Protein C (PdpC) in Determining the Virulence of the Francisella tularensis Subspecies tularensis SCHU. PLoS One. 9(2):e89075. [PudMed:24558472]
[93] Singha H et al (2014) Optimization and validation of indirect ELISA using truncated TssB protein for the serodiagnosis of glanders amongst equines. ScientificWorldJournal. 2014:469407. [PudMed:24672321]
[94] Wright MS et al (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):e00963-13. [PudMed:24449752]
[95] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[96] Sarris PF et al (2014) A Phage Tail-Derived Element with Wide Distribution among Both Prokaryotic Domains: A Comparative Genomic and Phylogenetic Study. Genome Biol Evol. 6(7):1739-1747. [PudMed:25015235]
[97] Gueguen E et al (2014) Transcriptional Frameshifting Rescues Citrobacter rodentium Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted tssM Gene. PLoS Genet. 10(12):e1004869. [PudMed:25474156]
[98] Wang S et al (2014) DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli. Front Microbiol. 0.616666667. [PudMed:25426107]
[99] Shao Y et al (2014) Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol. 92(5):921-30. [PudMed:24698180]
[100] Shyntum D et al (2014) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact. doi:http://dx.doi.org/10.1094/MPMI-07-14-0219-R. [PudMed:25411959]
[101] Law HT et al (2014) IglC and PdpA Are Important for Promoting Francisella Invasion and Intracellular Growth in Epithelial Cells. PLoS One. 9(8):e104881. [PudMed:25115488]
[102] Hachani A et al (2014) The VgrG proteins are "A la carte" delivery systems for bacterial type VI effectors. J Biol Chem. 289(25):17872-17884. [PudMed:24794869]
[103] Song C et al (2014) The Rsm regulon of plant growth-promoting Pseudomonas fluorescens SS101: role of small RNAs in regulation of lipopeptide biosynthesis. Microb Biotechnol. 8(2):296-310. [PudMed:25488342]
[104] Rudder S et al (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics. 15(1):268. [PudMed:24708309]
[105] Zhu Ge X et al (2014) Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains. PLoS One. 9(11):e112048. [PudMed:25397580]
[106] Hopf V et al (2014) BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun. 82(5):2006-15. [PudMed:24595140]
[107] Darby A et al (2014) Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals. PLoS One. 9(7):e100542. [PudMed:25057966]
[108] Kumari H et al (2014) LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics. 96:328-42. [PudMed:24291602]
[109] Yap KP et al (2014) Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics. 15(1):1007. [PudMed:25412680]
[110] Zoued A et al (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta. 1843(8):1664-73. [PudMed:24681160]
[111] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[112] Shao S et al (2014) Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: Propose a novel species as Edwardsiella anguillarum sp. nov . Syst Appl Microbiol. 38(1):36-47. [PudMed:25466920]
[113] Nguyen J et al (2014) Lipidation of the FPI Protein IglE contributes to Francisella tularensis subsp. novicida Intramacrophage Replication and Virulence. Pathog Dis. 72(1):10-8. [PudMed:24616435]
[114] Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion exported protein required for multinucleated giant cell formation and virulence. Infect Immun. 82(4):1445-52. [PudMed:24452686]
[115] Klaponski N et al (2014) The requirement for the LysR-type regulator PtrA for Pseudomonas chlororaphis PA23 biocontrol revealed through proteomic and phenotypic analysis. BMC Microbiol. 0.648611111. [PudMed:24739259]
[116] Russell AB et al (2014) A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host Microbe. 16(2):227-36. [PudMed:25070807]
[117] Ye L et al (2014) Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens. PLoS One. 9(11):e110038. [PudMed:25369289]
[118] Ugarte-Ruiz M et al (2014) Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates. Zoonoses Public Health. doi: 10.1111/zph.12176. [PudMed:25496466]
[119] Kube S et al (2014) Structure of the VipA/B Type VI Secretion Complex Suggests a Contraction-State-Specific Recycling Mechanism. Cell Rep. 16(1):94-104. [PudMed:24953649]
[120] Zhang L et al (2014) TssB is essential for virulence and required for Type VI secretion system in Ralstonia solanacearum. Microb Pathog. 74C:1-7. [PudMed:24972114]
[121] Eijkelkamp BA et al (2014) Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 15(1):1020. [PudMed:25422040]
[122] Sun K et al (2014) Screening for inhibition of the Vibrio cholerae VipA-VipB interaction identifies small molecule compounds active against type VI secretion. Antimicrob Agents Chemother. 58(7):4123-4130. [PudMed:24798289]
[123] English G et al (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG sub-complex. Biochem J. 461(2):291-304. [PudMed:24779861]
[124] Chang JH et al (2014) Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol. 53(1):32-7. [PudMed:25471186]
[125] Shyntum DY et al (2014) Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics. 15(1):163. [PudMed:24571088]
[126] Schumacher J et al (2014) Differential secretome analysis of Pseudomonas syringae pv tomato using gel-free MS proteomics. Front Plant Sci. 0.376388889. [PudMed:25071788]
[127] Bielecki P et al (2014) In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles. MBio. 5(4). [PudMed:25096872]
[128] Steele S et al (2014) A method for functional trans-complementation of intracellular Francisella tularensis. PLoS One. 9(2):e88194. [PudMed:24505427]
[129] Forster A et al (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem. 289(47):33032-43. [PudMed:25305017]
[130] Lindgren M et al (2014) Identification of Mechanisms for Attenuation of the FSC043 Mutant of Francisella tularensis SCHU S4. Infect Immun. 82(9):3622-35. [PudMed:24935978]
[131] Peano C et al (2014) Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis. PLoS One. 9(3):e93009. [PudMed:24671187]
[132] Jeong JH et al (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 9):1260-3. [PudMed:25195905]
[133] Jones CJ et al (2014) ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa. PLoS Pathog. 10(3):e1003984. [PudMed:24603766]
[134] Sarkar A et al (2014) Transcriptional Profiling of Nitrogen Fixation and the Role of NifA in the Diazotrophic Endophyte Azoarcus sp. Strain BH72. PLoS One. 9(2):e86527. [PudMed:24516534]
[135] Lin JS et al (2014) Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLoS Pathog. 10(3):e1003991. [PudMed:24626341]
[136] Kakar KU et al (2014) Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol. 30(2):469-78. [PudMed:23990042]
[137] Toesca IJ et al (2014) The Type VI Secretion System Spike Protein VgrG5 Mediates Membrane Fusion during Intercellular Spread by Pseudomallei Group Burkholderia Species. Infect Immun. 82(4):1436-44. [PudMed:24421040]
[138] van Delden C et al (2013) Involvement of Fe uptake systems and AmpC beta-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 57(5):2095-102. [PudMed:23422914]
[139] Grim CJ et al (2013) Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 0.8375. [PudMed:23724777]
[140] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[141] Filiatrault MJ et al (2013) Pseudomonas aeruginosa PA1006, Which Plays a Role in Molybdenum Homeostasis, Is Required for Nitrate Utilization, Biofilm Formation, and Virulence. PLoS One. 8(2):e55594. [PudMed:23409004]
[142] Blondel CJ et al (2013) The Type VI Secretion System encoded in SPI-19 is required for Salmonella Gallinarum survival within infected macrophages. Infect Immun. 81(4):1207-20. [PudMed:23357385]
[143] Campbell AG et al (2013) Multiple single-cell genomes provide insight into functions of uncultured Deltaproteobacteria in the human oral cavity. PLoS One. 8(3):e59361. [PudMed:23555659]
[144] Zhang L et al (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One. 8(4):e61625. [PudMed:23637868]
[145] Mann RA et al (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS One. 8(2):e55644. [PudMed:23409014]
[146] Gueguen E et al (2013) Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator. PLoS One. 8(6):e66615. [PudMed:23840509]
[147] Redondo-Nieto M et al (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics. 14:54. [PudMed:23350846]
[148] Bondarev V et al (2013) The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol. 15(7):2095-113. [PudMed:23601235]
[149] Duan J et al (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One. 8(3):e58640. [PudMed:23516524]
[150] Robertson GT et al (2013) IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of Type A Francisella tularensis. Infect Immun. 81(11):4026-40. [PudMed:23959721]
[151] Sha J et al (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology. 159(Pt 6):1120-35. [PudMed:23519162]
[152] Grad YH et al (2013) Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. MBio. 4(1):e00452-12. [PudMed:23341549]
[153] Coulthurst SJ (2013) The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 164(6):640-54. [PudMed:23542428]
[154] Robb CS et al (2013) Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 6):607-10. [PudMed:23722835]
[155] Lindgren M et al (2013) The Francisella tularensis LVS DeltapdpC mutant exhibits a unique phenotype during intracellular infection. BMC Microbiol. 13(1):20. [PudMed:23356941]
[156] Arvizu-Gomez JL et al (2013) Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: physiology of phytopathogenic bacteria. BMC Microbiol. 0.597916667. [PudMed:23587016]
[157] Shneider MM et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350-3. [PudMed:23925114]
[158] Horton RE et al (2013) Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One. 8(5):e63394. [PudMed:23704903]
[159] Casabona MG et al (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics. 13(16):2419-23. [PudMed:23744604]
[160] Kapitein N et al (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol. 87(5):1013-28. [PudMed:23289512]
[161] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[162] Bartonickova L et al (2013) Hcp and VgrG1 are secreted components of the Helicobacter hepaticus type VI secretion system and VgrG1 increases the bacterial colitogenic potential. Cell Microbiol. 15(6):992-1011. [PudMed:23278999]
[163] Long ME et al (2013) Disruption of Francisella tularensis Schu S4 iglI, iglJ, and pdpC genes results in attenuation for growth in human macrophages and in vivo virulence in mice, and reveals a unique phenotype for pdpC. Infect Immun. 81(3):850-61. [PudMed:23275090]
[164] Smits TH et al (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol. 36(7):449-56. [PudMed:23726521]
[165] Broms JE et al (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol. 13(1):96. [PudMed:23642157]
[166] Lin JS et al (2013) Systematic Dissection of the Agrobacterium Type VI Secretion System Reveals Machinery and Secreted Components for Subcomplex Formation. PLoS One. 8(7):e67647. [PudMed:23861778]
[167] Miyata ST et al (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol. 62(Pt 5):663-76. [PudMed:23429693]
[168] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[169] Wang Y et al (2013) Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogen Edwardsiella tarda. FEMS Microbiol Lett. 343(2):145-55. [PudMed:23551118]
[170] Ho BT et al (2013) A View to a Kill: The Bacterial Type VI Secretion System. Cell Host Microbe. 15(1):9-21. [PudMed:24332978]
[171] Ma J et al (2013) Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. Infect Genet Evol. 20:454-64. [PudMed:24120694]
[172] Sugawara M et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 14(2):R17. [PudMed:23425606]
[173] Wenren LM et al (2013) Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export. MBio. 4(4). [PudMed:23882014]
[174] Lossi NS et al (2013) The HsiB1C1 (TssB/TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath-like structure. J Biol Chem. 288(11):7536-48. [PudMed:23341461]
[175] Desai PT et al (2013) Evolutionary Genomics of Salmonella enterica Subspecies. MBio. 4(2):e00198-13. [PudMed:23462113]
[176] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[177] Liu WY et al (2013) Comparative Genome Analysis of Enterobacter cloacae. PLoS One. 8(9):e74487. [PudMed:24069314]
[178] Freeman BC et al (2013) Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in their epiphytic fitness and osmotolerance. J Bacteriol. 195(20):4742-52. [PudMed:23955010]
[179] Lindgren M et al (2013) Importance of PdpC, IglC, IglI, and IglG for modulation of a host cell death pathway induced by Francisella tularensis LVS. Infect Immun. 81(6):2076-84. [PudMed:23529623]
[180] Zoued A et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the Type VI secretion system. J Biol Chem. 288(38):27031-41. [PudMed:23921384]
[181] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[182] Khan A et al (2013) Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards. World J Microbiol Biotechnol. 29(11):2033-44. [PudMed:23653265]
[183] Barret M et al (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep. 5(1):117-26. [PudMed:23757140]
[184] Fory PA et al (2013) Comparative analysis of two emerging rice seed bacterial pathogens. Phytopathology. 104(5):436-44. [PudMed:24261408]
[185] Bleumink-Pluym NM et al (2013) Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity. PLoS Pathog. 9(5):e1003393. [PudMed:23737749]
[186] Rosenzweig JA et al (2013) Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems. Front Cell Infect Microbiol. 0.173611111. [PudMed:24199174]
[187] Franca FL et al (2013) Genotypic and phenotypic characterisation of enteroaggregative Escherichia coli from children in Rio de Janeiro, Brazil. PLoS One. 8(7):e69971. [PudMed:23936127]
[188] Jones C et al (2013) Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System. PLoS One. 8(11):e81132. [PudMed:24260549]
[189] Jones C et al (2013) An rhs-encoding gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol. 196(4):800-10. [PudMed:24317402]
[190] Zhang XY et al (2013) Dissection of the TssB-TssC Interface during Type VI Secretion Sheath Complex Formation. PLoS One. 8(11):e81074. [PudMed:24282569]
[191] Hao B et al (2013) Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol. 97(6):2575-85. [PudMed:22940804]
[192] Hayward MR et al (2013) Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 0.836805556. [PudMed:23725633]
[193] Carruthers MD et al (2013) Draft Genome Sequence of the Clinical Isolate Acinetobacter nosocomialis Strain M2. Genome Announc. 1(6). [PudMed:24201195]
[194] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[195] Durand E et al (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae Type VI secretion system. J Biol Chem. 287(45):38190-9. [PudMed:22898822]
[196] Ma LS et al (2012) IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem. 287(19):15610-21. [PudMed:22393043]
[197] Basler M et al (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 483(7388):182-6. [PudMed:22367545]
[198] Lossi NS et al (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol. 86(2):437-56. [PudMed:22906320]
[199] Zhou Y et al (2012) Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun. 80(3):1243-51. [PudMed:22184413]
[200] Basler M et al (2012) Type 6 secretion dynamics within and between bacterial cells. Science. 337(6096):815. [PudMed:22767897]
[201] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[202] Kefala K et al (2012) Purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal fragment of the MvfR protein from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 68(Pt 6):695-7. [PudMed:22684073]
[203] Liu H et al (2012) Investigation of the roles of T6SS genes in motility, biofilm formation, and extracellular protease Asp production in Vibrio alginolyticus with modified Gateway-compatible plasmids. Lett Appl Microbiol. 55(1):73-81. [PudMed:22563695]
[204] Robb CS et al (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol. 419(5):277-83. [PudMed:22504227]
[205] Durand E et al (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem. 287(17):14157-68. [PudMed:22371492]
[206] Broms JE et al (2012) Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection. PLoS One. 7(11):e50473. [PudMed:23185631]
[207] Nykyri J et al (2012) Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11):e1003013. [PudMed:23133391]
[208] Ma L et al (2012) Expression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in Vibrio parahaemolyticus. Scientific World Journal. 2012:982140. [PudMed:22924031]
[209] Ibrahim M et al (2012) Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PLoS One. 7(11):e49657. [PudMed:23166741]
[210] Broms JE et al (2012) DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity. PLoS One. 7(4):e34639. [PudMed:22514651]
[211] Hebert L et al (2012) Genomic characterization of the Taylorella genus. PLoS One. 7(1):e29953. [PudMed:22235352]
[212] Stauff DL, Bassler BL. (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.. J Bacteriol. 193(15):3871-8. [PudMed:21622734]
[213] Rao VA et al (2011) The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system. Acta Crystallogr D Biol Crystallogr. 67(Pt 12):1065-72. [PudMed:22120744]
[214] Felisberto-Rodrigues C et al (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7(11):e1002386. [PudMed:22102820]
[215] Podladchikova O et al (2011) Yersinia pestis autoagglutination factor is a component of the type six secretion system. Int J Med Microbiol. 301(7):562-9. [PudMed:21784704]
[216] Franco AA et al (2011) Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 77(10):3255-67. [PudMed:21421789]
[217] Lossi NS et al (2011) Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology. 157(Pt 12):3292-305. [PudMed:21873404]
[218] Zhang L et al (2011) Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol. 193(19):5510-3. [PudMed:21784934]
[219] de Pace F et al (2011) Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology. 157(Pt 10):2954-62. [PudMed:21778203]
[220] Broms JE et al (2011) IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun. 79(9):3683-96. [PudMed:21690239]
[221] Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact. 24(7):751-7. [PudMed:21361789]
[222] Pietrosiuk A et al (2011) Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem. 286(34):30010-21. [PudMed:21733841]
[223] de Bruin OM et al (2011) The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiology. 157(Pt 12):3483-91. [PudMed:21980115]
[224] Wu X et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. 35(2):299-323. [PudMed:20796030]
[225] Hassan KA et al (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 12(4):899-915. [PudMed:20089046]
[226] Roy PH et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 5(1):e8842. [PudMed:20107499]
[227] Aschtgen MS et al (2010) Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else. Virulence. 1(6):535-40. [PudMed:21178498]
[228] Aschtgen MS et al (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol. 75(4):886-99. [PudMed:20487285]
[229] Aubert D et al (2010) BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB. J Biol Chem. 285(46):35988-98. [PudMed:20729192]
[230] Konovalova A et al (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev. 34(2):89-106. [PudMed:19895646]
[231] Robb CS et al (2010) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of intracellular growth locus E (IglE) protein from Francisella tularensis subsp. novicida. Acta Crystallogr Sect F Struct Biol Cryst Commun. 66(Pt 12):1596-8. [PudMed:21139203]
[232] Kucerova E1, Clifton SW, Xia XQ, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 5(3):e9556. [PudMed:20221447]
[233] Chaudhuri RR et al (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One. 5(1):e8801. [PudMed:20098708]
[234] Filloux A (2009) The type VI secretion system: a tubular story. EMBO J. 28(4):309-10. [PudMed:19225443]
[235] Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A. 106(11):4154-9. [PudMed:19251641]
[236] Yang JC et al (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One. 4(7):e6085. [PudMed:19568419]
[237] Wehrly TD et al (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol. 11(7):1128-50. [PudMed:19388904]
[238] Broms JE et al (2009) A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis. J Bacteriol. 191(8):2431-46. [PudMed:19201795]
[239] Wang Q et al (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4(10):e7646. [PudMed:19865481]
[240] Carranza P et al (2009) Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen. Proteomics. 9(13):3564-79. [PudMed:19609963]
[241] Pell LG et al (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A. 106(11):4160-5. [PudMed:19251647]
[242] Bonemann G et al (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28(4):315-25. [PudMed:19131969]
[243] Schmerk CL et al (2009) A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology. 155(Pt 5):1498-504. [PudMed:19372155]
[244] Schmerk CL et al (2009) Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology. 155(Pt 5):1489-97. [PudMed:19372153]
[245] Ma LS et al (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol. 191(13):4316-29. [PudMed:19395482]
[246] Tseng TT et al (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 Suppl 1:S2. [PudMed:19278550]
[247] Aschtgen MS et al (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol. 190(22):7523-31. [PudMed:18805985]
[248] Yen YT et al (2008) Genome-wide in silico mapping of the secretome in pathogenic Yersinia pestis KIM. FEMS Microbiol Lett . 279(1):56-63. [PudMed:18070074]
[249] Pieper R et al (2008) Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics. 8(7):1442-58. [PudMed:18383009]
[250] de Berardinis V et al (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol. 0.2875. [PudMed:18319726]
[251] Nemoto M et al (2008) ORF334 in Vibrio phage KVP40 plays the role of gp27 in T4 phage to form a heterohexameric complex. J Bacteriol. 190(10):3606-12. [PudMed:18326574]
[252] Forouhar F et al (2007) Functional insights from structural genomics. J Struct Funct Genomics. 8(2-3):37-44. [PudMed:17588214]
[253] Gerlach RG et al (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 297(6):401-15. [PudMed:17482513]
[254] de Bruin OM et al (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 7:01. [PudMed:17233889]
[255] Santic M et al (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol. 9(10):2391-403. [PudMed:17517064]
[256] Economou A et al (2006) Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol. 62(2):308-19. [PudMed:17020575]
[257] Pilatz S et al (2006) Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 74(6):3576-86. [PudMed:16714590]
[258] Hanson PI et al (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol. 6(7):519-29. [PudMed:16072036]
[259] Santic M et al (2005) The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 7(7):969-79. [PudMed:15953029]
[260] Schlieker C et al (2005) ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem. 386(11):1115-27. [PudMed:16307477]
[261] Parsons DA et al (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun. 73(7):4338-45. [PudMed:15972528]
[262] Das S et al (2003) Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol. 3(3):287-300. [PudMed:12954091]
[263] Das S et al (2002) Involvement of in vivo induced icmF gene of Vibrio cholerae in motility, adherence to epithelial cells, and conjugation frequency. Biochem Biophys Res Commun. 295(4):922-8. [PudMed:12127983]
[1] Smith S, Salvato F, Garikipati A, Kleiner M, Septer AN. (2021) Activation of the Type VI Secretion System in the Squid Symbiont Vibrio fischeri Requires the Transcriptional Regulator TasR and the Structural Proteins TssM and TssA.. J Bacteriol. 203(21):e0039921. [PudMed:34370559]
[2] Gomes SC, Ferreira MR, Tavares AF, Silva IN, Becker JD, Moreira LM. (2021) A Histone-Like Nucleoid Structuring Protein Regulates Several Virulence Traits in Burkholderia multivorans.. Appl Environ Microbiol. 87(14):e0036921. [PudMed:33931418]
[3] Zhang A, Han Y, Huang Y, Hu X, Liu P, Liu X, Kan B, Liang W. (2021) vgrG is separately transcribed from hcp in T6SS orphan clusters and is under the regulation of IHF and HapR.. Biochem Biophys Res Commun. 559:15-20. [PudMed:33932896]
[4] Stolle AS, Meader BT, Toska J, Mekalanos JJ. (2021) Endogenous membrane stress induces T6SS activity in Pseudomonas aeruginosa.. Proc Natl Acad Sci U S A. 118(1). [PudMed:33443205]
[5] Le NH, Pinedo V, Lopez J, Cava F, Feldman MF. (2021) Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector.. Proc Natl Acad Sci U S A. 118(40). [PudMed:34588306]
[6] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[7] Kretsch AM, Morgan GL, Acken KA, Barr SA, Li B. (2021) Pseudomonas Virulence Factor Pathway Synthesizes Autoinducers That Regulate the Secretome of a Pathogen.. ACS Chem Biol. 16(3):501-509. [PudMed:33595276]
[8] Wang Z, Huang X, Jan M, Kong D, Pan J, Zhang X. (2021) The global regulator Hfq exhibits far more extensive and intensive regulation than Crc in Pseudomonas protegens H78.. Mol Plant Pathol. NA. [PudMed:33963656]
[9] Cai R, Gao F, Pan J, Hao X, Yu Z, Qu Y, Li J, Wang D, Wang Y, Shen X, Liu X, Yang Y. (2021) The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis.. Microbiol Res. 249:126787. [PudMed:33991717]
[10] Li C, Zhu L, Wang D, Wei Z, Hao X, Wang Z, Li T, Zhang L, Lu Z, Long M, Wang Y, Wei G, Shen X. (2021) T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer.. ISME J. NA. [PudMed:34433898]
[11] Manera K, Caro F, Li H, Pei TT, Hersch SJ, Mekalanos JJ, Dong TG. (2021) Sensing of intracellular Hcp levels controls T6SS expression in Vibrio cholerae.. Proc Natl Acad Sci U S A. 118(25). [PudMed:34161288]
[12] Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. (2021) Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida.. Front Microbiol. 12:643498. [PudMed:33776977]
[13] Jiao H, Li F, Wang T, Yam JKH, Yang L, Liang H. (2021) The Pyocin Regulator PrtR Regulates Virulence Expression of Pseudomonas aeruginosa by Modulation of Gac/Rsm System and c-di-GMP Signaling Pathway.. Infect Immun. 89(2). [PudMed:33168590]
[14] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[15] Antar A, Lee MA, Yoo Y, Cho MH, Lee SW. (2020) PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae.. Pathogens. 9(11). [PudMed:33212951]
[16] Bellieny-Rabelo D, Nkomo NP, Shyntum DY, Moleleki LN. (2020) Horizontally Acquired Quorum-Sensing Regulators Recruited by the PhoP Regulatory Network Expand the Host Adaptation Repertoire in the Phytopathogen Pectobacterium brasiliense.. mSystems. 5(1). [PudMed:31992632]
[17] Joshi A, Mahmoud SA, Kim SK, Ogdahl JL, Lee VT, Chien P, Yildiz FH. (2020) c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae.. PLoS Genet. 16(6):e1008897. [PudMed:32589664]
[18] Hersch SJ, Manera K, Dong TG. (2020) Defending against the Type Six Secretion System: beyond Immunity Genes.. Cell Rep. 33(2):108259. [PudMed:33053336]
[19] Hersch SJ, Watanabe N, Stietz MS, Manera K, Kamal F, Burkinshaw B, Lam L, Pun A, Li M, Savchenko A, Dong TG. (2020) Envelope stress responses defend against type six secretion system attacks independently of immunity proteins.. Nat Microbiol. 5(5):706-714. [PudMed:32094588]
[20] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[21] Knittel V, Sadana P, Seekircher S, Stolle AS, Krner B, Volk M, Jeffries CM, Svergun DI, Heroven AK, Scrima A, Dersch P. (2020) RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression.. PLoS Pathog. 16(9):e1008552. [PudMed:32966346]
[22] Ahmad S, Tsang KK, Sachar K, Quentin D, Tashin TM, Bullen NP, Raunser S, McArthur AG, Prehna G, Whitney JC. (2020) Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones.. Elife. 9. [PudMed:33320089]
[23] Brewer LK, Huang W, Hackert BJ, Kane MA, Oglesby AG. (2020) Static Growth Promotes PrrF and 2-Alkyl-4(1H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa.. J Bacteriol. 202(24). [PudMed:33020221]
[24] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[25] Guckes KR, Cecere AG, Williams AL, McNeil AE, Miyashiro T. (2020) The Bacterial Enhancer Binding Protein VasH Promotes Expression of a Type VI Secretion System in Vibrio fischeri during Symbiosis.. J Bacteriol. 202(7). [PudMed:31964698]
[26] Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. (2020) Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae.. BMC Genomics. 21(1):296. [PudMed:32272893]
[27] Qiu Y, Hu L, Yang W, Yin Z, Zhou D, Yang H, Zhang Y. (2020) The type VI secretion system 2 of Vibrio parahaemolyticus is regulated by QsvR.. Microb Pathog. 149:104579. [PudMed:33091577]
[28] Zhang W, Xie R, Zhang XD, Lee LTO, Zhang H, Yang M, Peng B, Zheng J. (2020) Organism dual RNA-seq reveals the importance of BarA/UvrY in Vibrio parahaemolyticus virulence.. FASEB J. 34(6):7561-7577. [PudMed:32281204]
[29] Chien CF, Liu CY, Lu YY, Sung YH, Chen KY, Lin NC. (2020) HSI-II Gene Cluster of Pseudomonas syringae pv. tomato DC3000 Encodes a Functional Type VI Secretion System Required for Interbacterial Competition.. Front Microbiol. 1.234722222. [PudMed:32582082]
[30] Wang Z, Wang T, Cui R, Zhang Z, Chen K, Li M, Hua Y, Gu H, Xu L, Wang Y, Yang Y, Shen X. (2020) HpaR, the Repressor of Aromatic Compound Metabolism, Positively Regulates the Expression of T6SS4 to Resist Oxidative Stress in Yersinia pseudotuberculosis.. Front Microbiol. 0.947916667. [PudMed:32362886]
[31] Seibt H, Aung KM, Ishikawa T, Sjstrm A, Gullberg M, Atkinson GC, Wai SN, Shingler V. (2020) Elevated levels of VCA0117 (VasH) in response to external signals activate the type VI secretion system of Vibrio cholerae O1 El Tor A1552.. Environ Microbiol. 22(10):4409-4423. [PudMed:32592280]
[32] Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. (2020) tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system.. Mol Plant Pathol. 21(8):1042-1054. [PudMed:32608174]
[33] Yin K, Zhang J, Ma J, Jin P, Ma Y, Zhang Y, Liu X, Wang Q. (2020) MviN mediates the regulation of environmental osmotic pressure on esrB to control the virulence in the marine fish pathogen Edwardsiella piscicida.. Microbiol Res. 239:126528. [PudMed:32622286]
[34] Brunet YR, Bernard CS, Cascales E. (2020) Fur-Dam Regulatory Interplay at an Internal Promoter of the Enteroaggregative Escherichia coli Type VI Secretion sci1 Gene Cluster.. J Bacteriol. 202(10). [PudMed:32152218]
[35] Guillemette R, Ushijima B, Jalan M, Hse CC, Azam F. (2020) Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus.. PLoS One. 15(1):e0227864. [PudMed:31990915]
[36] Kaiyu Yin, Yue Peng, Moamer A H Ahmed, Jiabao Ma 1, Rongjing Xu 2, Yuanxing Zhang 3, Yue Ma 4, Qiyao Wang (2020) PepA Binds to and Negatively Regulates esrB to Control Virulence in the Fish Pathogen Edwardsiella Piscicida. Microbiol Res. 232:126349. [PudMed:31816594]
[37] Hu L, Wang C, Lu W, Lu H, Chen H, Tan C. (2020) BaeSR activates type VI secretion system expression in porcine extra-intestinal pathogenic Escherichia coli to enhance bacterial resistance to zinc stress.. Microb Pathog. 147:104357. [PudMed:32603765]
[38] Caro F, Caro JA, Place NM, Mekalanos JJ. (2020) Transcriptional Silencing by TsrA in the Evolution of Pathogenic Vibrio cholerae Biotypes.. mBio. 11(6). [PudMed:33234688]
[39] T G Sana , R Lomas, M R Gimenez, A Laubier, C Soscia, C Chauvet, A Conesa, R Voulhoux, B Ize, S Bleves (2019) Differential Modulation of Quorum Sensing Signaling Through QslA in Pseudomonas Aeruginosa Strains PAO1 and PA14. J Bacteriol. 201(21):e00362-19. [PudMed:31405911]
[40] Rotem Ben-Yaakov, Dor Salomon (2019) The Regulatory Network of Vibrio Parahaemolyticus Type VI Secretion System 1. Environ Microbiol. 21(7):2248-2260. [PudMed:30882997]
[41] Josh S Sharp , Arne Rietsch, Simon L Dove (2019) RNase E Promotes Expression of Type III Secretion System Genes in Pseudomonas Aeruginosa. J Bacteriol. 201(22):e00336-19. [PudMed:31481542]
[42] Shaohui Wang, Denghui Yang, Xiaojun Wu, Zhengfei Yi, Yang Wang, Suhua Xin, Dong Wang, Mingxing Tian, Tao Li, Jingjing Qi, Chan Ding, Shengqing Yu (2019) The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the clpV Promoter in Salmonella enterica Serovar Typhimurium. Infect Immun. 87(10):e00562-19. [PudMed:31383745]
[43] Ronan R McCarthy, Manda Yu, Kira Eilers, Yi-Chieh Wang, Erh-Min Lai, Alain Filloux (2019) Cyclic di-GMP Inactivates T6SS and T4SS Activity in Agrobacterium Tumefaciens. Mol Microbiol. 112(2):632-648. [PudMed:31102484]
[44] Lisa C Metzger, Noémie Matthey, Candice Stoudmann, Esther J Collas, Melanie Blokesch (2019) Ecological Implications of Gene Regulation by TfoX and TfoY Among Diverse Vibrio Species. Environ Microbiol. 21(7):2231-2247. [PudMed:30761714]
[45] Xiaobing Yang, Yunhong Song, Qingyun Dai, Hongyun Zhang, Li Song, Zhuo Wang, Junfeng Pan, Yao Wang (2019) The Stringent Response Factor, RelA, Positively Regulates T6SS4 Expression Through the RovM/RovA Pathway in Yersinia Pseudotuberculosis. Microbiol Res. 220:32-41. [PudMed:30744817]
[46] Yuying Han, Tietao Wang, Gukui Chen, Qinqin Pu, Qiong Liu, Yani Zhang, Linghui Xu, Min Wu, Haihua Liang (2019) A Pseudomonas Aeruginosa Type VI Secretion System Regulated by CueR Facilitates Copper Acquisition. PLoS Pathog. 15(12):e1008198. [PudMed:31790504]
[47] Nicole M Bzdyl, Nichollas E Scott, Isobel H Norville, Andrew E Scott, Timothy Atkins, Stanley Pang, Derek S Sarovich, Geoffrey Coombs, Timothy J J Inglis, Charlene M Kahler, Mitali Sarkar-Tyson (2019) Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia Pseudomallei. Infect Immun. 87(10):e00528-19. [PudMed:31331957]
[48] Pei-Fang Hsieh, Yi-Rou Lu, Tzu-Lung Lin, Li-Yin Lai, Jin-Town Wang (2019) Klebsiella Pneumoniae Type VI Secretion System Contributes to Bacterial Competition, Cell Invasion, Type-1 Fimbriae Expression, and In Vivo Colonization. J Infect Dis. 219(4):637-647. [PudMed:30202982]
[49] Zhengfei Yi, Dong Wang, Suhua Xin, Dongliang Zhou, Tao Li, Mingxing Tian, Jingjing Qi, Chan Ding, Shaohui Wang, Shengqing Yu (2019) The CpxR Regulates Type VI Secretion System 2 Expression and Facilitates the Interbacterial Competition Activity and Virulence of Avian Pathogenic Escherichia Coli. Vet Res. 50(1):40. [PudMed:31126325]
[50] Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. (2019) A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae.. Mol Microbiol. 111(6):1493-1509. [PudMed:30825339]
[51] Lifan Wei, Haoxian Qiao, Bing Liu, Kaiyu Yin, Qin Liu, Yuanxing Zhang, Yue Ma, Qiyao Wang (2019) MarTrack: A Versatile Toolbox of Mariner Transposon Derivatives Used for Functional Genetic Analysis of Bacterial Genomes. Microbiol Res. 228:126306. [PudMed:31422233]
[52] Jask��lska M, Stutzmann S, Stoudmann C, Blokesch M. (2018) QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae.. Nucleic Acids Res. 46(20):10619-10634. [PudMed:30102403]
[53] Romero M, Silistre H, Lovelock L, Wright VJ, Chan KG, Hong KW, Williams P, Cámara M, Heeb S. (2018) Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN. Nucleic Acids Res. 46(13):6823-6840. [PudMed:29718466]
[54] Chourashi R, Das S, Dhar D, Okamoto K, Mukhopadhyay AK, Chatterjee NS. (2018) Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.. Microbiology (Reading). 164(5):751-763. [PudMed:29633936]
[55] Ethel Bayer-Santos, Lídia Dos Passos Lima, Lucas de Moraes Ceseti, Camila Yuri Ratagami, Eliane Silva de Santana, Aline Maria da Silva, Chuck Shaker Farah, Cristina Elisa Alvarez-Martinez (2018) Xanthomonas Citri T6SS Mediates Resistance to Dictyostelium Predation and Is Regulated by an ECF σ Factor and Cognate Ser/Thr Kinase. Environ Microbiol. 20(4):1562-1575. [PudMed:29488354]
[56] Jer-Sheng Lin, Panayiota Pissaridou, Hsin-Hui Wu, Ming-Daw Tsai, Alain Filloux, Erh-Min Lai (2018) TagF-mediated Repression of Bacterial Type VI Secretion Systems Involves a Direct Interaction With the Cytoplasmic Protein Fha. J Biol Chem. 293(23):8829-8842. [PudMed:29599293]
[57] Yuzhou Wang, Ye Li, Jianli Wang, Xiaoyuan Wang (2018) FleQ Regulates Both the Type VI Secretion System and Flagella in Pseudomonas Putida. Biotechnol Appl Biochem. 65(3):419-427. [PudMed:28968917]
[58] Corbitt J, Yeo JS, Davis CI, LeRoux M, Wiggins PA. (2018) Type VI Secretion System Dynamics Reveals a Novel Secretion Mechanism in Pseudomonas aeruginosa.. J Bacteriol. 200(11). [PudMed:29555704]
[59] Li P, Xu D, Ma T, Wang D, Li W, He J, Ran T, Wang W. (2018) Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism.. Biochem J. 475(13):2209-2224. [PudMed:29858276]
[60] Liliana Losada, April A Shea, David DeShazer (2018) A MarR Family Transcriptional Regulator and Subinhibitory Antibiotics Regulate Type VI Secretion Gene Clusters in Burkholderia Pseudomallei. Microbiology. 164(9):1196-1211. [PudMed:30052173]
[61] Pan J, Zhao M, Huang Y, Li J, Liu X, Ren Z, Kan B, Liang W. (2018) Integration Host Factor Modulates the Expression and Function of T6SS2 in Vibrio fluvialis.. Front Microbiol. 1.043055556. [PudMed:29867866]
[62] Irina Debnath, Anne M Stringer, Sara N Smith, Emily Bae, Harry L T Mobley, Joseph T Wade, Melanie M Pearson (2018) MrpJ Directly Regulates Proteus Mirabilis Virulence Factors, Including Fimbriae and Type VI Secretion, During Urinary Tract Infection. Infect Immun. 86(10):e00388-18. [PudMed:30082479]
[63] Kaiyu Yin, Yunpeng Guan, Ruiqing Ma, Lifan Wei, Bing Liu, Xiaohong Liu, Xiangshan Zhou, Yue Ma, Yuanxing Zhang, Matthew K Waldor, Qiyao Wang (2018) Critical Role for a Promoter Discriminator in RpoS Control of Virulence in Edwardsiella Piscicida. PLoS Pathog. 14(8):e1007272. [PudMed:30169545]
[64] Zhen Yang, Xiaohui Zhou , Yue Ma, Mian Zhou, Matthew K Waldor, Yuanxing Zhang, Qiyao Wang (2018) Serine/threonine Kinase PpkA Coordinates the Interplay Between T6SS2 Activation and Quorum Sensing in the Marine Pathogen Vibrio Alginolyticus. Environ Microbiol. 20(2):903-919. [PudMed:29314504]
[65] Zhen Yang, Xuetong Wang, Wensheng Xu, Mian Zhou, Yuanxing Zhang, Yue Ma, Qiyao Wang (2018) Phosphorylation of PppA at Threonine 253 Controls T6SS2 Expression and Bacterial Killing Capacity in the Marine Pathogen Vibrio Alginolyticus. Microbiol Res. 209:70-78. [PudMed:29580623]
[66] Xiating Gao, Xuetong Wang, Qiaoqiao Mao, Rongjing Xu, Xiaohui Zhou, Yue Ma, Qin Liu, Yuanxing Zhang, Qiyao Wang (2018) VqsA, a Novel LysR-Type Transcriptional Regulator, Coordinates Quorum Sensing (QS) and Is Controlled by QS To Regulate Virulence in the Pathogen Vibrio Alginolyticus. Appl Environ Microbiol. 84(12):e00444-18. [PudMed:29625990]
[67] Shao X, Zhang X, Zhang Y, Zhu M, Yang P, Yuan J, Xie Y, Zhou T, Wang W, Chen S, Liang H, Deng X. (2018) RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1.. J Bacteriol. 200(16). [PudMed:29760208]
[68] Adam Ostrowski, Francesca R Cianfanelli, Michael Porter, Giuseppina Mariano, Julien Peltier, Jun Jie Wong, Jason R Swedlow, Matthias Trost, Sarah J Coulthurst (2018) Killing With Proficiency: Integrated Post-Translational Regulation of an Offensive Type VI Secretion System. PLoS Pathog. 14(7):e1007230. [PudMed:30052683]
[69] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[70] Wang C, Pu T, Lou W, Wang Y, Gao Z, Hu B, Fan J. (2018) Hfq, a RNA Chaperone, Contributes to Virulence by Regulating Plant Cell Wall-Degrading Enzyme Production, Type VI Secretion System Expression, Bacterial Competition, and Suppressing Host Defense Response in Pectobacterium carotovorum.. Mol Plant Microbe Interact. 31(11):1166-1178. [PudMed:30198820]
[71] Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM, Wettstadt S, Filloux A (2017) RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 114(29):7707-7712. [PudMed:28673999]
[72] Clayton W Hall, Li Zhang, Thien-Fah Mah (2017) PA3225 Is a Transcriptional Repressor of Antibiotic Resistance Mechanisms in Pseudomonas Aeruginosa. Antimicrob Agents Chemother. 61(8):e02114-16. [PudMed:28584154]
[73] Lingyu Zhang, George Osei-Adjei, Ying Zhang, He Gao, Wenhui Yang, Dongsheng Zhou, Xinxiang Huang, Huiying Yang, Yiquan Zhang (2017) CalR Is Required for the Expression of T6SS2 and the Adhesion of Vibrio Parahaemolyticus to HeLa Cells. Arch Microbiol. 199(6):931-938. [PudMed:28378143]
[74] Yiquan Zhang, He Gao, George Osei-Adjei, Ying Zhang, Wenhui Yang, Huiying Yang, Zhe Yin, Xinxiang Huang, Dongsheng Zhou (2017) Transcriptional Regulation of the Type VI Secretion System 1 Genes by Quorum Sensing and ToxR in Vibrio parahaemolyticus. Front Microbiol. 1.725694444. [PudMed:29085350]
[75] Meiru Si, Yao Wang, Bing Zhang, Chao Zhao, Yiwen Kang, Haonan Bai, Dawei Wei, Lingfang Zhu, Lei Zhang, Tao G Dong, Xihui Shen (2017) The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep. 20(4):949-959. [PudMed:28746878]
[76] Meiru Si, Chao Zhao, Brianne Burkinshaw, Bing Zhang, Dawei Wei, Yao Wang, Tao G Dong, Xihui Shen (2017) Manganese Scavenging and Oxidative Stress Response Mediated by Type VI Secretion System in Burkholderia thailandensis. Proc Natl Acad Sci U S A. 114(11):E2233-E2242. [PudMed:28242693]
[77] Wan B, Zhang Q, Ni J, Li S, Wen D, Li J, Xiao H, He P, Ou HY, Tao J, Teng Q, Lu J, Wu W, Yao YF (2017) Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog. 13(3):e1006246. [PudMed:28288207]
[78] Nicolle L Barbieri, Jessica A Vande Vorde, Alison R Baker, Fabiana Horn, Ganwu Li, Catherine M Logue, Lisa K Nolan (2017) FNR Regulates the Expression of Important Virulence Factors Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Front Cell Infect Microbiol. 0.475694444. [PudMed:28690981]
[79] Lazzaro M, Feldman MF, Garc��a V��scovi E. (2017) A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.. mBio. 8(4). [PudMed:28830939]
[80] Wang T, Chen K, Gao F, Kang Y, Chaudhry MT, Wang Z, Wang Y, Shen X. (2017) ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis.. J Microbiol. 55(6):448-456. [PudMed:28281200]
[81] Stutzmann S, Blokesch M. (2016) Circulation of a Quorum-Sensing-Impaired Variant of Vibrio cholerae Strain C6706 Masks Important Phenotypes.. mSphere. 1(3). [PudMed:27303743]
[82] Charlotte Majerczyk, Emily Schneider, E Peter Greenberg (2016) Quorum Sensing Control of Type VI Secretion Factors Restricts the Proliferation of Quorum-Sensing Mutants. Elife. 5:e14712. [PudMed:27183270]
[83] Jennifer Chua, Jeffrey L Senft, Stephen J Lockett, Paul J Brett, Mary N Burtnick, David DeShazer, Arthur M Friedlander (2016) pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infect Immun. 85(1):e00586-16. [PudMed:27799332]
[84] Rogers A, Townsley L, Gallego-Hernandez AL, Beyhan S, Kwuan L, Yildiz FH. (2016) The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio cholerae.. J Bacteriol. 198(6):973-85. [PudMed:26755629]
[85] Lisa C Metzger, Sandrine Stutzmann, Tiziana Scrignari, Charles Van der Henst, Noémie Matthey, Melanie Blokesch (2016) Independent Regulation of Type VI Secretion in Vibrio Cholerae by TfoX and TfoY. Cell Rep. 15(5):951-958. [PudMed:27117415]
[86] Cui S, Xiao J, Wang Q, Zhang Y. (2016) H-NS binding to evpB and evpC and repressing T6SS expression in fish pathogen Edwardsiella piscicida.. Arch Microbiol. 198(7):653-61. [PudMed:27125651]
[87] Townsley L, Sison Mangus MP, Mehic S, Yildiz FH. (2016) Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton.. Appl Environ Microbiol. 82(14):4441-52. [PudMed:27208110]
[88] Chen R, Weng Y, Zhu F, Jin Y, Liu C, Pan X, Xia B, Cheng Z, Jin S, Wu W. (2016) Polynucleotide Phosphorylase Regulates Multiple Virulence Factors and the Stabilities of Small RNAs RsmY/Z in Pseudomonas aeruginosa.. Front Microbiol. 0.463194444. [PudMed:26973625]
[89] Guan J et al (2015) Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol. 53(9):633-42. [PudMed:26310305]
[90] Weber BS et al (2015) A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci U S A. 112(30):9442-7. [PudMed:26170289]
[91] Cheng AT et al (2015) Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System. PLoS Pathog. 11(5):e1004933. [PudMed:26000450]
[92] Salomon D et al (2015) Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog. 11(8):e1005128. [PudMed:26305100]
[93] Sabag-Daigle A et al (2015) Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Front Cell Infect Microbiol. 5:47. [PudMed:26075189]
[94] Wong J et al (2015) Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. Cell Host Microbe. 18(1):38-48. [PudMed:26094804]
[95] Brunet YR et al (2015) H-NS silencing of the SPI-6-encoded Type VI secretion system limits Salmonella enterica serovar Typhimurium interbacterial killing. Infect Immun. pii: IAI.00198-15. [PudMed:25916986]
[96] Wang T et al (2015) Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog. 11(7):e1005020. [PudMed:26134274]
[97] Yunhong Song, Xiao Xiao, Changfu Li, Tietao Wang, Ruoxi Zhao, Weipeng Zhang, Lei Zhang, Yao Wang, Xihui Shen (2015) The Dual Transcriptional Regulator RovM Regulates the Expression of AR3- And T6SS4-dependent Acid Survival Systems in Response to Nutritional Status in Yersinia Pseudotuberculosis. Environ Microbiol. 17(11):4631-45. [PudMed:26234561]
[98] Watve SS et al (2015) CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae. PLoS One. 10(9):e0138834. [PudMed:26401962]
[99] Bode NJ et al (2015) Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun. pii: IAI.02978-14. [PudMed:25847961]
[100] Aragon IM et al (2015) Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. Environ Microbiol. doi: 10.1111/1462-2920.12856. [PudMed:25809128]
[101] Aragon IM et al (2014) New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi. FEMS Microbiol Lett. 356(2):184-92. [PudMed:24606017]
[102] Shao Y et al (2014) Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol. 92(5):921-30. [PudMed:24698180]
[103] Hopf V et al (2014) BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun. 82(5):2006-15. [PudMed:24595140]
[104] Kumari H et al (2014) LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics. 96:328-42. [PudMed:24291602]
[105] Sall KM et al (2014) A gacS Deletion in Pseudomonas aeruginosa Cystic Fibrosis Isolate CHA Shapes Its Virulence. PLoS One. 9(4):e95936. [PudMed:24780952]
[106] B��cker R, Heroven AK, Becker J, Dersch P, Wittmann C. (2014) The pyruvate-tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis.. J Biol Chem. 289(43):30114-32. [PudMed:25164818]
[107] Chen Y et al (2014) Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon. BMC Microbiol. 14(1):206. [PudMed:25085508]
[108] Lin JS et al (2014) Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLoS Pathog. 10(3):e1003991. [PudMed:24626341]
[109] Morin N et al (2013) Characterization of the AggR regulon in enteroaggregative Escherichia coli. Infect Immun. 81(1):122-32. [PudMed:23090962]
[110] Filiatrault MJ et al (2013) Pseudomonas aeruginosa PA1006, Which Plays a Role in Molybdenum Homeostasis, Is Required for Nitrate Utilization, Biofilm Formation, and Virulence. PLoS One. 8(2):e55594. [PudMed:23409004]
[111] Gueguen E et al (2013) Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator. PLoS One. 8(6):e66615. [PudMed:23840509]
[112] Marden JN et al (2013) An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 110(37):15055-60. [PudMed:23980177]
[113] Aubert DF et al (2013) The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol. 15(2):372-85. [PudMed:22830644]
[114] Ho BT et al (2013) Type 6 Secretion System-Mediated Immunity to Type 4 Secretion System-Mediated Gene Transfer. Science. 342(6155):250-253. [PudMed:24115441]
[115] Fritsch MJ et al (2013) Proteomic identification of novel secreted anti-bacterial toxins of the Serratia marcescens Type VI secretion system. Mol Cell Proteomics. 12(10):2735-2749. [PudMed:23842002]
[116] Wei X et al (2013) Global control of GacA on secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol. 195(15):3387-400. [PudMed:23708134]
[117] Wang L et al (2013) Cell Density- and Quorum Sensing-Dependent Expression of Type VI Secretion System 2 in Vibrio parahaemolyticus. PLoS One. 8(8):e73363. [PudMed:23977385]
[118] Li K et al (2013) SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa. MBio. 4(6):e00419-13. [PudMed:24169572]
[119] Salomon D et al (2013) Vibrio parahaemolyticus Type VI Secretion System 1 Is Activated in Marine Conditions to Target Bacteria, and Is Differentially Regulated from System 2. PLoS One. 8(4):e61086. [PudMed:23613791]
[120] Burtnick MN et al (2013) Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc. PLoS One. 8(10):e76767. [PudMed:24146925]
[121] Sana TG et al (2013) Divergent Control of Two Type VI Secretion Systems by RpoN in Pseudomonas aeruginosa. PLoS One. 8(10):e76030. [PudMed:24204589]
[122] Wang D et al (2013) Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. Microbiologyopen. 2(3):505-24. [PudMed:23606419]
[123] Casabona MG et al (2012) An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa. Environ Microbiol. 15(2):471-86. [PudMed:22765374]
[124] Lalaouna D et al (2012) Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA-dependent Rsm small RNAs. Appl Environ Microbiol. 78(6):1658-65. [PudMed:22247157]
[125] Lv Y et al (2012) Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda. Vet Microbiol. 157(1-2):190-9. [PudMed:22227416]
[126] Sheng L et al (2012) Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus. Arch Microbiol. 194(5):379-90. [PudMed:22173829]
[127] Dong TG et al (2012) Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Res. 40(16):7766-75. [PudMed:22723378]
[128] Ma L et al (2012) Expression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in Vibrio parahaemolyticus. Scientific World Journal. 2012:982140. [PudMed:22924031]
[129] Zhang W et al (2012) A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol. 15(2):557-69. [PudMed:23094603]
[130] Sana TG et al (2012) The Second Type VI Secretion System of Pseudomonas aeruginosa Strain PAO1 Is Regulated by Quorum Sensing and Fur and Modulates Internalization in Epithelial Cells. J Biol Chem. 287(32):27095-105. [PudMed:22665491]
[131] Wu CF et al (2012) Acid-Induced Type VI Secretion System Is Regulated by ExoR-ChvG/ChvI Signaling Cascade in Agrobacterium tumefaciens. PLoS Pathog. 8(9):e1002938. [PudMed:23028331]
[132] Sheng L et al (2012) Connecting type VI secretion, quorum sensing, and c-di-GMP production in fish pathogen Vibrio alginolyticus through phosphatase PppA. Vet Microbiol. 162(2-4):652-62. [PudMed:23021863]
[133] Olivares J et al (2012) Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol. 14(8):1968-81. [PudMed:22417660]
[134] Stauff DL, Bassler BL. (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.. J Bacteriol. 193(15):3871-8. [PudMed:21622734]
[135] Brunet YR, Bernard CS, Gavioli M, Lloub��s R, Cascales E. (2011) An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster.. PLoS Genet. 7(7):e1002205. [PudMed:21829382]
[136] Silverman JM et al (2011) Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol Microbiol. 82(5):1277-90. [PudMed:22017253]
[137] Moscoso JA et al (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol. 13(12):3128-38. [PudMed:21955777]
[138] Kitaoka M et al (2011) VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J Bacteriol. 193(23):6471-82. [PudMed:21949076]
[139] Zheng J et al (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One. 6(8):e23876. [PudMed:21909372]
[140] Chen Y et al (2011) Regulation of type VI secretion system during Burkholderia pseudomallei infection. Infect Immun. 79(8):3064-73. [PudMed:21670170]
[141] Rogge ML et al (2011) Regulation of the Edwardsiella ictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl Environ Microbiol. 77(13):4293-302. [PudMed:21551284]
[142] Bernard CS et al (2011) Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins. J Bacteriol. 193(9):2158-67. [PudMed:21378190]
[143] Burtnick MN et al (2011) The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 79(4):1512-25. [PudMed:21300775]
[144] Zhang W et al (2011) Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol. 193(5):351-63. [PudMed:21298257]
[145] Hassan KA et al (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 12(4):899-915. [PudMed:20089046]
[146] Morin N et al (2010) Autoactivation of the AggR regulator of enteroaggregative Escherichia coli in vitro and in vivo. FEMS Immunol Med Microbiol. 58(3):344-55. [PudMed:20132305]
[147] Sun GW et al (2010) Identification of a regulatory cascade controlling Type III Secretion System 3 gene expression in Burkholderia pseudomallei. Mol Microbiol. 76(3):677-89. [PudMed:20345664]
[148] Records AR et al (2010) Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol. 192(14):3584-96. [PudMed:20472799]
[149] Zheng J et al (2010) Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci U S A. 107(49):21128-33. [PudMed:21084635]
[150] Bell BL et al (2010) Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect Immun. 78(5):2189-98. [PudMed:20231408]
[151] Shanks J et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun. 77(4):1636-48. [PudMed:19168747]
[152] Lesic B et al (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology. 155(Pt 9):2845-55. [PudMed:19497948]
[153] Brencic A et al (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol. 72(3):612-32. [PudMed:19426209]
[154] Hsu F et al (2009) TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol. 72(5):1111-25. [PudMed:19400797]
[155] Wang X et al (2009) Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol. 27(3):469-77. [PudMed:19563898]
[156] Ishikawa T et al (2009) Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One. 4(8):e6734. [PudMed:19701456]
[157] O'Grady EP et al (2009) Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics. 0.722916667. [PudMed:19761612]
[158] Khajanchi BK et al (2009) N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology. 155(Pt 11):3518-31. [PudMed:19729404]
[159] Aubert DF et al (2008) A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia. Infect Immun. 76(5):1979-91. [PudMed:18316384]
[160] Brotcke A et al (2008) Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect Immun. 76(8):3473-80. [PudMed:18559431]
[161] Liu H et al (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 4(6):e1000093. [PudMed:18566662]
[162] Suarez G et al (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog. 44(4):344-61. [PudMed:18037263]
[163] Schell MA et al (2007) Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 64(6):1466-85. [PudMed:17555434]
[164] Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol. 9(7):797-803. [PudMed:17558395]
[165] de Bruin OM et al (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 7:01. [PudMed:17233889]
[166] Guina T et al (2007) MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J Bacteriol. 189(18):6580-6. [PudMed:17644593]
[167] Mohapatra NP et al (2007) Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun. 75(7):3305-14. [PudMed:17452468]
[168] Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 312(5779):1526-30. [PudMed:16763151]
[169] Dudley EG et al (2006) Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol. 61(5):1267-82. [PudMed:16925558]
[170] Pukatzki S et al (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A. 103(5):1528-33. [PudMed:16432199]
[171] Zheng J et al (2005) Regulation of a type III and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect Immun. 73(7):4127-37. [PudMed:15972502]
[172] Parsons DA et al (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun. 73(7):4338-45. [PudMed:15972528]
[173] Rao PS et al (2004) Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol. 53(2):573-86. [PudMed:15228535]
[174] Baron GS et al (1998) MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol. 29(1):247-59. [PudMed:9701818]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Wen H, Liu G, Geng Z, Zhang H, Li Y, She Z, Dong Y. (2021) Structure and SAXS studies unveiled a novel inhibition mechanism of the Pseudomonas aeruginosa T6SS TseT-TsiT complex.. Int J Biol Macromol. 188:450-459. [PudMed:34371041]
[3] Nolan LM, Cain AK, Clamens T, Furniss RCD, Manoli E, Sainz-Polo MA, Dougan G, Albesa-Jové D, Parkhill J, Mavridou DAI, Filloux A. (2021) Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells.. Nat Microbiol. 6(9):1199-1210. [PudMed:34413503]
[4] Lopez J, Le NH, Moon KH, Salomon D, Bosis E, Feldman MF. (2021) Formylglycine-Generating Enzyme-Like Proteins Constitute a Novel Family of Widespread Type VI Secretion System Immunity Proteins.. J Bacteriol. 203(21):e0028121. [PudMed:34398661]
[5] Lu W, Tan J, Lu H, Wang G, Dong W, Wang C, Li X, Tan C. (2021) Function of Rhs proteins in porcine extraintestinal pathogenic Escherichia coli PCN033.. J Microbiol. 59(9):854-860. [PudMed:34382147]
[6] Brodmann M, Schnider ST, Basler M. (2021) Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to Francisella Virulence in Galleria mellonella Larvae.. Infect Immun. 89(7):e0057920. [PudMed:33875476]
[7] Le NH, Pinedo V, Lopez J, Cava F, Feldman MF. (2021) Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector.. Proc Natl Acad Sci U S A. 118(40). [PudMed:34588306]
[8] Zhu L, Xu L, Wang C, Li C, Li M, Liu Q, Wang X, Yang W, Pan D, Hu L, Yang Y, Lu Z, Wang Y, Zhou D, Jiang Z, Shen X. (2021) T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese.. Proc Natl Acad Sci U S A. 118(42). [PudMed:34625471]
[9] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[10] Loeven NA, Perault AI, Cotter PA, Hodges CA, Schwartzman JD, Hampton TH, Bliska JB. (2021) The Burkholderia cenocepacia Type VI Secretion System Effector TecA Is a Virulence Factor in Mouse Models of Lung Infection.. mBio. 12(5):e0209821. [PudMed:34579569]
[11] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[12] Wang S, Geng Z, Zhang H, She Z, Dong Y. (2021) The Pseudomonasaeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector.. FEBS J. NA. [PudMed:33838074]
[13] Liang X, Pei TT, Wang ZH, Xiong W, Wu LL, Xu P, Lin S, Dong TG. (2021) Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU.. Appl Environ Microbiol. 87(12):e0043521. [PudMed:33837015]
[14] Li C, Zhu L, Wang D, Wei Z, Hao X, Wang Z, Li T, Zhang L, Lu Z, Long M, Wang Y, Wei G, Shen X. (2021) T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer.. ISME J. NA. [PudMed:34433898]
[15] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[16] Liu Y, Wang J, Zhang Z, Wang F, Gong Y, Sheng DH, Li YZ. (2021) Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus.. Appl Environ Microbiol. 87(9). [PudMed:33608292]
[17] Howard SA, Furniss RCD, Bonini D, Amin H, Paracuellos P, Zlotkin D, Costa TRD, Levy A, Mavridou DAI, Filloux A. (2021) The Breadth and Molecular Basis of Hcp-Driven Type VI Secretion System Effector Delivery.. mBio. NA. [PudMed:34061601]
[18] Liu L, Song L, Deng R, Lan R, Jin W, Tran Van Nhieu G, Cao H, Liu Q, Xiao Y, Li X, Meng G, Ren Z. (2021) Citrobacter freundii Activation of NLRP3 Inflammasome via the Type VI Secretion System.. J Infect Dis. 223(12):2174-2185. [PudMed:33151309]
[19] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[20] Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. (2021) Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida.. Front Microbiol. 12:643498. [PudMed:33776977]
[21] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[22] Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. (2020) Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.. Nat Commun. 11(1):1865. [PudMed:32313027]
[23] Kim N, Kim JJ, Kim I, Mannaa M, Park J, Kim J, Lee HH, Lee SB, Park DS, Sul WJ, Seo YS. (2020) Type VI secretion systems of plant-pathogenic Burkholderia glumae BGR1 play a functionally distinct role in interspecies interactions and virulence.. Mol Plant Pathol. 21(8):1055-1069. [PudMed:32643866]
[24] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[25] Stietz MS, Liang X, Li H, Zhang X, Dong TG. (2020) TssA-TssM-TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae.. Nat Commun. 11(1):5065. [PudMed:33033237]
[26] Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC, Cotter PA. (2020) Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex.. Cell Host Microbe. 28(4):534-547. [PudMed:32755549]
[27] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[28] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[29] Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, Matsuyama BY, Mesnage S, Patel A, de Souza RF, Guzzo CR, Bayer-Santos E. (2020) A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan.. Cell Rep. 31(12):107813. [PudMed:32579939]
[30] Donato SL, Beck CM, Garza-S��nchez F, Jensen SJ, Ruhe ZC, Cunningham DA, Singleton I, Low DA, Hayes CS. (2020) The ��-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion.. Proc Natl Acad Sci U S A. NA. [PudMed:33323487]
[31] Wang T, Hu Z, Du X, Shi Y, Dang J, Lee M, Hesek D, Mobashery S, Wu M, Liang H. (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors.. Mol Microbiol. 114(2):308-321. [PudMed:32279364]
[32] Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. (2020) In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes.. Mol Plant Microbe Interact. 33(2):349-363. [PudMed:31609645]
[33] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[34] Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. (2020) Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system.. Vet Res. 51(1):71. [PudMed:32448355]
[35] Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. (2019) Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition.. Microbiologyopen. NA. [PudMed:30628184]
[36] Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. (2019) Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp.. Appl Environ Microbiol. 85(2). [PudMed:30413477]
[37] Wood TE, Howard SA, Frster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. (2019) The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology.. Cell Rep. 29(1):187-201. [PudMed:31577948]
[38] Giuseppina Mariano, Katharina Trunk, David J Williams, Laura Monlezun, Henrik Strahl, Samantha J Pitt, Sarah J Coulthurst (2019) A Family of Type VI Secretion System Effector Proteins That Form Ion-Selective Pores. Nat Commun. 10(1):5484. [PudMed:31792213]
[39] Tan J, Yang D, Wang Z, Zheng X, Zhang Y, Liu Q (2019) EvpP inhibits neutrophils recruitment via Jnk-caspy inflammasome signaling in vivo. Fish Shellfish Immunol. 92:851-860. [PudMed:31129187]
[40] Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. (2019) Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters.. Genome Biol. 20(1):163. [PudMed:31405375]
[41] Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. (2019) The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization.. Front Microbiol. 2.405555556. [PudMed:31921044]
[42] Berni B, Soscia C, Djermoun S, Ize B, Bleves S (2019) A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol. 1.2625. [PudMed:31231326]
[43] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[44] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[45] Ahmad S, Wang B, Walker MD, Tran HR, Stogios PJ, Savchenko A, Grant RA, McArthur AG, Laub MT, Whitney JC (2019) An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 575(7784):674-678. [PudMed:31695193]
[46] Zepeda-Rivera MA, Saak CC, Gibbs KA (2018) A Proposed Chaperone of the Bacterial Type VI Secretion System Functions To Constrain a Self-Identity Protein. J Bacteriol. 200(14). pii: e00688-17. [PudMed:29555703]
[47] Zhang L, Jiang Z, Fang S, Huang Y, Yang D, Wang Q, Zhang Y, Liu Q (2018) Systematic Identification of Intracellular-Translocated Candidate Effectors in Edwardsiella piscicida. Front Cell Infect Microbiol. 8:37. [PudMed:29503811]
[48] Troselj V, Treuner-Lange A, Søgaard-Andersen L, Wall D (2018) Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium. mBio. 9(1). pii: e01645-17. [PudMed:29437919]
[49] Gong Y, Zhang Z, Liu Y, Zhou XW, Anwar MN, Li ZS, Hu W1, Li YZ (2018) A nuclease-toxin and immunity system for kin discrimination in Myxococcus xanthus. Environ Microbiol. 20(7):2552-2567. [PudMed:29806725]
[50] Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol. 3(5):632-640. [PudMed:29632369]
[51] Panayiota Pissaridou, Luke P Allsopp, Sarah Wettstadt, Sophie A Howard, Despoina A I Mavridou, Alain Filloux (2018) The Pseudomonas aeruginosa T6SS-VgrG1b Spike Is Topped by a PAAR Protein Eliciting DNA Damage to Bacterial Competitors. Proc Natl Acad Sci U S A. 115(49):12519-12524. [PudMed:30455305]
[52] Katharina Trunk, Julien Peltier, Yi-Chia Liu, Brian D Dill, Louise Walker, Neil A R Gow, Michael J R Stark, Janet Quinn, Henrik Strahl, Matthias Trost, Sarah J Coulthurst (2018) The Type VI Secretion System Deploys Antifungal Effectors Against Microbial Competitors. Nat Microbiol. 3(8):920-931. [PudMed:30038307]
[53] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[54] Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD (2018) Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell. 175(5):1380-1392.e14. [PudMed:30343895]
[55] Tang JY, Bullen NP, Ahmad S, Whitney JC (2018) Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem. 293(5):1504-1514. [PudMed:29237732]
[56] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[57] Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB, Powell D, Harper M#, Boyce JD (2018) Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. Infect Immun. 86(8). pii: e00297-18. [PudMed:29735524]
[58] Ledvina HE, Kelly KA, Eshraghi A, Plemel RL, Peterson SB, Lee B, Steele S, Adler M, Kawula TH, Merz AJ, Skerrett SJ, Celli J, Mougous JD (2018) A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe. 24(2):285-295.e8. [PudMed:30057173]
[59] Lingyu Zhang, George Osei-Adjei, Ying Zhang, He Gao, Wenhui Yang, Dongsheng Zhou, Xinxiang Huang, Huiying Yang, Yiquan Zhang (2017) CalR Is Required for the Expression of T6SS2 and the Adhesion of Vibrio Parahaemolyticus to HeLa Cells. Arch Microbiol. 199(6):931-938. [PudMed:28378143]
[60] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[61] Wan B, Zhang Q, Ni J, Li S, Wen D, Li J, Xiao H, He P, Ou HY, Tao J, Teng Q, Lu J, Wu W, Yao YF (2017) Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog. 13(3):e1006246. [PudMed:28288207]
[62] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[63] Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H (2017) PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. (1):345-360. [PudMed:27871130]
[64] Alteri CJ, Himpsl SD, Zhu K, Hershey HL, Musili N, Miller JE, Mobley HLT. (2017) Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.. PLoS Pathog. 13(11):e1006729. [PudMed:29155899]
[65] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[66] Lin J, Zhang W, Cheng J, Yang X, Zhu K, Wang Y, Wei G, Qian PY, Luo ZQ, Shen X (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun. 28;8:14888. [PudMed:28348410]
[67] Ho BT, Fu Y, Dong TG, Mekalanos JJ (2017) Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci U S A. 114(35):9427-9432. [PudMed:28808000]
[68] Chen H, Yang D, Han F, Tan J, Zhang L, Xiao J, Zhang Y, Liu Q (2017) The Bacterial T6SS Effector EvpP Prevents NLRP3 Inflammasome Activation by Inhibiting the Ca2+ -Dependent MAPK-Jnk Pathway. Cell Host Microbe. 21(1):47-58. [PudMed:28081443]
[69] Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM (2016) Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A. 113(34):E5044-51. [PudMed:27503894]
[70] Daniel F Aubert, Hao Xu, Jieling Yang, Xuyan Shi, Wenqing Gao, Lin Li, Fabiana Bisaro, She Chen, Miguel A Valvano, Feng Shao (2016) A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe. 19(5):664-74. [PudMed:27133449]
[71] Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L (2016) A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol. 99(6):1099-118. [PudMed:26714038]
[72] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[73] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[74] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[75] Jiang F, Wang X, Wang B, Chen L, Zhao Z, Waterfield NR, Yang G, Jin Q (2016) The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep. 16(6):1502-1509. [PudMed:27477276]
[76] Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE (2016) Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci U S A. 113(13):3627-32. [PudMed:26951680]
[77] Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD (2016) Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe. 20(5):573-583. [PudMed:27832588]
[78] Spencer C et al (2015) Biochemical Characterization of a Pseudomonas aeruginosa Phospholipase D. Biochemistry. 54(5):1208-18. [PudMed:25565226]
[79] Ruiz FM et al (2015) Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System. PLoS One. 10(6):e0129691. [PudMed:26079269]
[80] Li J et al (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. doi: 10.1111/1462-2920.12794. [PudMed:25640659]
[81] Salomon D et al (2015) Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog. 11(8):e1005128. [PudMed:26305100]
[82] Wang N et al (2015) Protective efficacy of recombinant hemolysin co-regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio). Fish Shellfish Immunol. 46(2):297-304. [PudMed:26093203]
[83] Liang X et al (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A. 112(29):9106-11. [PudMed:26150500]
[84] Lim YT et al (2015) Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei. Sci Rep. 5.927083333. [PudMed:25648885]
[85] Wang T et al (2015) Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog. 11(7):e1005020. [PudMed:26134274]
[86] Unterweger D et al (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J. 34(16):2198-210. [PudMed:26194724]
[87] Sana TG et al (2015) Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. MBio. 6(3):e00712. [PudMed:26037124]
[88] Ryu CM (2015) Against friend and foe: Type 6 effectors in plant-associated bacteria. J Microbiol. 53(3):201-8. [PudMed:25732741]
[89] Altindis E et al (2015) Secretome Analysis of Vibrio cholerae Type VI Secretion System Reveals a New Effector-Immunity Pair. MBio. pii: e00075-15. [PudMed:25759499]
[90] Chieng S et al (2015) Transcriptome analysis of Burkholderia pseudomallei T6SS identifies Hcp1 as a potential serodiagnostic marker. Microb Pathog. 79:47-56. [PudMed:25616255]
[91] Alcoforado Diniz J et al (2015) Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cell Microbiol. doi: 10.1111/cmi.12532. [PudMed:26432982]
[92] Diniz JA et al (2015) Intra-species Competition in Serratia marcescens is Mediated by Type VI Secretion Rhs Effectors and a Conserved Effector-Associated Accessory Protein. J Bacteriol. pii: JB.00199-15. [PudMed:25939831]
[93] Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD (2015) An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell. 163(3):607-19. [PudMed:26456113]
[94] Borgeaud S et al (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63-7. [PudMed:25554784]
[95] Decoin V et al (2014) A Type VI Secretion System Is Involved in Pseudomonas fluorescens Bacterial Competition. PLoS One. 9(2):e89411. [PudMed:24551247]
[96] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[97] Kapitein N et al (2014) Type VI Secretion System Helps Find a Niche. Cell Host Microbe. 16(1):5-6. [PudMed:25011102]
[98] Hu W et al (2014) A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding. PLoS One. 9(11):e110810. [PudMed:25401506]
[99] Russell AB et al (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 12(2):137-48. [PudMed:24384601]
[100] Brunet YR et al (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15(3):315-21. [PudMed:24488256]
[101] Zhang J et al (2014) Crystallization and preliminary X-ray study of TsiV3 from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 3):335-8. [PudMed:24598921]
[102] Zhang J et al (2014) A new target for the old regulator: H-NS suppress T6SS secretory protein EvpP, the major virulence factor in the fish pathogen Edwardsiella tarda. Lett Appl Microbiol. 59(5):557-564. [PudMed:25131176]
[103] Hachani A et al (2014) The VgrG proteins are "A la carte" delivery systems for bacterial type VI effectors. J Biol Chem. 289(25):17872-17884. [PudMed:24794869]
[104] Whitney JC et al (2014) Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol. 92(3):529-42. [PudMed:24589350]
[105] Jiang F et al (2014) A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host Microbe. 15(5):600-10. [PudMed:24832454]
[106] Hopf V et al (2014) BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun. 82(5):2006-15. [PudMed:24595140]
[107] Durand E et al (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol. 22(9):498-507. [PudMed:25042941]
[108] Lu D et al (2014) The structural basis of the Tle4-Tli4 complex reveals the self-protection mechanism of H2-T6SS in Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr. 70(Pt 12):3233-43. [PudMed:25478841]
[109] Egan F et al (2014) Tle Distribution and Diversity in Metagenomic Datasets Reveals Niche Specialisation. Environ Microbiol Rep. 7(2):194-203. [PudMed:25345349]
[110] Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion exported protein required for multinucleated giant cell formation and virulence. Infect Immun. 82(4):1445-52. [PudMed:24452686]
[111] Russell AB et al (2014) A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host Microbe. 16(2):227-36. [PudMed:25070807]
[112] Lu D et al (2014) Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol Microbiol. 92(5):1092-112. [PudMed:24724564]
[113] English G et al (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG sub-complex. Biochem J. 461(2):291-304. [PudMed:24779861]
[114] Yang X et al (2014) Molecular mechanism for self-protection against the type VI secretion system in Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 70(Pt 4):1094-103. [PudMed:24699653]
[115] Cava F et al (2014) Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr Opin Microbiol. 18C:46-53. [PudMed:24607990]
[116] Ma LS et al (2014) Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta. Cell Host Microbe. 16(1):94-104. [PudMed:24981331]
[117] Hu H et al (2014) Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallogr D Biol Crystallogr. 70(Pt 8):2175-2185. [PudMed:25084336]
[118] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[119] Zhang J et al (2014) Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett. 588(10):1891-8. [PudMed:24751834]
[120] Castro-Gomes T et al (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol. 52(4):350-3. [PudMed:24535738]
[121] Chou S et al (2014) Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature. 518(7537):98-101. [PudMed:25470067]
[122] Lin JS et al (2014) Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLoS Pathog. 10(3):e1003991. [PudMed:24626341]
[123] Toesca IJ et al (2014) The Type VI Secretion System Spike Protein VgrG5 Mediates Membrane Fusion during Intercellular Spread by Pseudomallei Group Burkholderia Species. Infect Immun. 82(4):1436-44. [PudMed:24421040]
[124] Bleves S et al (2014) The target cell genus does not matter. Trends Microbiol. 22(6):304-6. [PudMed:24836109]
[125] Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem. 288(8):5928-39. [PudMed:23288853]
[126] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[127] Lu D et al (2013) Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 5):524-7. [PudMed:23695568]
[128] Dong TG et al (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A . 110(7):2623-8. [PudMed:23362380]
[129] Blondel CJ et al (2013) The Type VI Secretion System encoded in SPI-19 is required for Salmonella Gallinarum survival within infected macrophages. Infect Immun. 81(4):1207-20. [PudMed:23357385]
[130] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[131] Benz J et al (2013) Structural Insights into the Effector - Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS One. 8(6):e67362. [PudMed:23826277]
[132] Hogan DA et al (2013) Bacterial type 6 secreted phospholipases play family feud. Cell Host Microbe. 13(5):507-8. [PudMed:23684302]
[133] Li L et al (2013) Structural Insights on the Bacteriolytic and Self-protection Mechanism of Muramidase Effector Tse3 in Pseudomonas aeruginosa. J Biol Chem. 288(42):30607-13. [PudMed:24025333]
[134] Sha J et al (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology. 159(Pt 6):1120-35. [PudMed:23519162]
[135] Fritsch MJ et al (2013) Proteomic identification of novel secreted anti-bacterial toxins of the Serratia marcescens Type VI secretion system. Mol Cell Proteomics. 12(10):2735-2749. [PudMed:23842002]
[136] Coulthurst SJ (2013) The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 164(6):640-54. [PudMed:23542428]
[137] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[138] Ciprandi A et al (2013) Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies. Curr Microbiol. 67(1):100-6. [PudMed:23455494]
[139] Dong C et al (2013) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J. 454(1):59-68. [PudMed:23730712]
[140] Braun V et al (2013) Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett. 345(1):13-21. [PudMed:23701660]
[141] Brunet YR et al (2013) Imaging Type VI Secretion-Mediated Bacterial Killing. Cell Rep. 3(1):36-41. [PudMed:23291094]
[142] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[143] Lin JS et al (2013) Systematic Dissection of the Agrobacterium Type VI Secretion System Reveals Machinery and Secreted Components for Subcomplex Formation. PLoS One. 8(7):e67647. [PudMed:23861778]
[144] Wang Y et al (2013) Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogen Edwardsiella tarda. FEMS Microbiol Lett. 343(2):145-55. [PudMed:23551118]
[145] Brooks TM et al (2013) Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 is Inhibited by the Antitoxin TsaB. J Biol Chem. 288(11):7618-25. [PudMed:23341465]
[146] Basler M et al (2013) Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions. Cell. 152(4):884-94. [PudMed:23415234]
[147] Suanyuk N et al (2013) Mortality and pathology of hybrid catfish, Clarias macrocephalus (Gunther) X Clarias gariepinus (Burchell), associated with Edwardsiella ictaluri infection in southern Thailand. J Fish Dis. 37(4):385-395. [PudMed:23763374]
[148] Wenren LM et al (2013) Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export. MBio. 4(4). [PudMed:23882014]
[149] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[150] Whitney JC et al (2013) Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem. 288(37):26616-24. [PudMed:23878199]
[151] Wang T et al (2013) Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein. Acta Crystallogr D Biol Crystallogr. 69(Pt 10):1889-1900. [PudMed:24100309]
[152] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[153] Russell AB et al (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature. 496(7446):508-12. [PudMed:23552891]
[154] Salomon D et al (2013) Vibrio parahaemolyticus Type VI Secretion System 1 Is Activated in Marine Conditions to Target Bacteria, and Is Differentially Regulated from System 2. PLoS One. 8(4):e61086. [PudMed:23613791]
[155] Bleumink-Pluym NM et al (2013) Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity. PLoS Pathog. 9(5):e1003393. [PudMed:23737749]
[156] Rosenzweig JA et al (2013) Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems. Front Cell Infect Microbiol. 0.173611111. [PudMed:24199174]
[157] Jones C et al (2013) Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System. PLoS One. 8(11):e81132. [PudMed:24260549]
[158] Jones C et al (2013) An rhs-encoding gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol. 196(4):800-10. [PudMed:24317402]
[159] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[160] Miyata ST et al (2013) Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathog. 9(12):e1003752. [PudMed:24348240]
[161] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[162] Fu Y et al (2013) Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host Microbe. 14(6):652-63. [PudMed:24331463]
[163] Durand E et al (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae Type VI secretion system. J Biol Chem. 287(45):38190-9. [PudMed:22898822]
[164] Zhou Y et al (2012) Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun. 80(3):1243-51. [PudMed:22184413]
[165] Russell AB et al (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe. 11(5):538-49. [PudMed:22607806]
[166] Yu Y et al (2012) VPA1045 and VPA1049 of Vibrio parahaemolyticus regulate translocation of Hcp2. Wei Sheng Wu Xue Bao. 52(8):954-61. [PudMed:23173431]
[167] Shidore T et al (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Environ Microbiol. 14(10):2775-87. [PudMed:22616609]
[168] He Y et al (2012) FliC, a flagellin protein, is essential for the growth and virulence of fish pathogen Edwardsiella tarda. PLoS One. 7(9):e45070. [PudMed:23024793]
[169] Broms JE et al (2012) Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection. PLoS One. 7(11):e50473. [PudMed:23185631]
[170] Ding J et al (2012) Structural Insights into the Pseudomonas aeruginosa Type VI Virulence Effector Tse1 Bacteriolysis and Self-protection Mechanisms. J Biol Chem. 287(32):26911-20. [PudMed:22700987]
[171] Benz J et al (2012) Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS One. 7(7):e40453. [PudMed:22792331]
[172] Silverman JM et al (2012) Structure and Regulation of the Type VI Secretion System. Annu Rev Microbiol. 66:453-72. [PudMed:22746332]
[173] English G et al (2012) New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol. 86(4):921-36. [PudMed:22957938]
[174] Chou S et al (2012) Structure of a Peptidoglycan Amidase Effector Targeted to Gram-Negative Bacteria by the Type VI Secretion System. Cell Rep. 1(6):656-64. [PudMed:22813741]
[175] Zhang H et al (2012) Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS Lett. 586(19):3193-9. [PudMed:22750141]
[176] Haapalainen M et al (2012) Hcp2, a Secreted Protein of the Phytopathogen Pseudomonas syringae pv. Tomato DC3000, Is Required for Fitness for Competition against Bacteria and Yeasts. J Bacteriol. 194(18):4810-22. [PudMed:22753062]
[177] Kung VL et al (2012) An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci U S A. 109(4):1275-80. [PudMed:22232685]
[178] De Maayer P et al (2011) Comparative genomics of the Type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics. 0.9. [PudMed:22115407]
[179] Murdoch SL et al (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol. 193(21):6057-69. [PudMed:21890705]
[180] Russell AB et al (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 475(7356):343-7. [PudMed:21776080]
[181] Broms JE et al (2011) IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun. 79(9):3683-96. [PudMed:21690239]
[182] Miyata ST et al (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun. 79(7):2941-9. [PudMed:21555399]
[183] Wang M et al (2011) Molecular characterization of a functional type VI secretion system in Salmonella enterica serovar Typhi. Curr Microbiol. 63(1):22-31. [PudMed:21487806]
[184] Kitaoka M et al (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol. 60(Pt 4):397-407. [PudMed:21252269]
[185] Barret M et al (2011) Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology. 157(Pt 6):1726-39. [PudMed:21474537]
[186] Osipiuk J et al (2011) Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa. J Struct Funct Genomics. 12(1):21-6. [PudMed:21476004]
[187] Zhang W et al (2011) Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol. 193(5):351-63. [PudMed:21298257]
[188] Kampenusa I et al (2010) Distinguishable codon usage and amino acid composition patterns among substrates of leaderless secretory pathways from proteobacteria. Appl Microbiol Biotechnol. 86(1):285-93. [PudMed:20107986]
[189] Hood RD et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 7(1):25-37. [PudMed:20114026]
[190] Suarez G et al (2010) Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. Microbiology. 156(Pt 12):3678-88. [PudMed:20798163]
[191] Ma AT et al (2010) In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A. 107(9):4365-70. [PudMed:20150509]
[192] Suarez G et al (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol. 192(1):155-68. [PudMed:19880608]
[193] Jobichen C et al (2010) Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda. PLoS One. 5(9):e12910. [PudMed:20886112]
[194] Holland IB (2010) The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol Biol. 619:1-20. [PudMed:20419401]
[195] Chow J et al (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe. 7(4):265-76. [PudMed:20413095]
[196] Aoki SK et al (2010) A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature. 468(7322):439-42. [PudMed:21085179]
[197] Shanks J et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun. 77(4):1636-48. [PudMed:19168747]
[198] Pukatzki S et al (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol. 12(1):11-7. [PudMed:19162533]
[199] Galan JE (2009) Common themes in the design and function of bacterial effectors. Cell Host Microbe. 5(6):571-9. [PudMed:19527884]
[200] Mattinen L et al (2008) Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiology. 154(Pt 8):2387-96. [PudMed:18667571]
[201] Wu HY et al (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol. 190(8):2841-50. [PudMed:18263727]
[202] Suarez G et al (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog. 44(4):344-61. [PudMed:18037263]
[203] Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol. 9(7):797-803. [PudMed:17558395]
[204] Gerlach RG et al (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 297(6):401-15. [PudMed:17482513]
[205] Shalom G et al (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 153(Pt 8):2689-99. [PudMed:17660433]
[206] Pukatzki S et al (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A. 104(39):15508-13. [PudMed:17873062]
[207] Zheng J et al (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol. 66(5):1192-206. [PudMed:17986187]
[208] Cambronne ED et al (2006) Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic. 7(8):929-39. [PudMed:16734660]
[209] Dudley EG et al (2006) Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol. 61(5):1267-82. [PudMed:16925558]
[210] Bladergroen MR et al (2003) Infection-Blocking Genes of a Symbiotic Rhizobium leguminosarum Strain That Are Involved in Temperature-Dependent Protein Secretion. Mol Plant Microbe Interact. 16(1):53-64. [PudMed:12580282]
[211] Potvin E et al (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol. 5(12):1294-308. [PudMed:14641575]
[212] Williams SG et al (1996) Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun. 64(1):283-9. [PudMed:8557353]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Wen H, Liu G, Geng Z, Zhang H, Li Y, She Z, Dong Y. (2021) Structure and SAXS studies unveiled a novel inhibition mechanism of the Pseudomonas aeruginosa T6SS TseT-TsiT complex.. Int J Biol Macromol. 188:450-459. [PudMed:34371041]
[3] Nolan LM, Cain AK, Clamens T, Furniss RCD, Manoli E, Sainz-Polo MA, Dougan G, Albesa-Jové D, Parkhill J, Mavridou DAI, Filloux A. (2021) Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells.. Nat Microbiol. 6(9):1199-1210. [PudMed:34413503]
[4] Lopez J, Le NH, Moon KH, Salomon D, Bosis E, Feldman MF. (2021) Formylglycine-Generating Enzyme-Like Proteins Constitute a Novel Family of Widespread Type VI Secretion System Immunity Proteins.. J Bacteriol. 203(21):e0028121. [PudMed:34398661]
[5] Lu W, Tan J, Lu H, Wang G, Dong W, Wang C, Li X, Tan C. (2021) Function of Rhs proteins in porcine extraintestinal pathogenic Escherichia coli PCN033.. J Microbiol. 59(9):854-860. [PudMed:34382147]
[6] Le NH, Pinedo V, Lopez J, Cava F, Feldman MF. (2021) Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector.. Proc Natl Acad Sci U S A. 118(40). [PudMed:34588306]
[7] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[8] Wang S, Geng Z, Zhang H, She Z, Dong Y. (2021) The Pseudomonasaeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector.. FEBS J. NA. [PudMed:33838074]
[9] Liang X, Pei TT, Wang ZH, Xiong W, Wu LL, Xu P, Lin S, Dong TG. (2021) Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU.. Appl Environ Microbiol. 87(12):e0043521. [PudMed:33837015]
[10] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[11] Liu Y, Wang J, Zhang Z, Wang F, Gong Y, Sheng DH, Li YZ. (2021) Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus.. Appl Environ Microbiol. 87(9). [PudMed:33608292]
[12] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[13] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[14] Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. (2020) Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.. Nat Commun. 11(1):1865. [PudMed:32313027]
[15] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[16] Speare L, Smith S, Salvato F, Kleiner M, Septer AN. (2020) Environmental Viscosity Modulates Interbacterial Killing during Habitat Transition.. mBio. 11(1). [PudMed:32019799]
[17] Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC, Cotter PA. (2020) Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex.. Cell Host Microbe. 28(4):534-547. [PudMed:32755549]
[18] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[19] Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, Matsuyama BY, Mesnage S, Patel A, de Souza RF, Guzzo CR, Bayer-Santos E. (2020) A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan.. Cell Rep. 31(12):107813. [PudMed:32579939]
[20] Donato SL, Beck CM, Garza-S��nchez F, Jensen SJ, Ruhe ZC, Cunningham DA, Singleton I, Low DA, Hayes CS. (2020) The ��-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion.. Proc Natl Acad Sci U S A. NA. [PudMed:33323487]
[21] Wang T, Hu Z, Du X, Shi Y, Dang J, Lee M, Hesek D, Mobashery S, Wu M, Liang H. (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors.. Mol Microbiol. 114(2):308-321. [PudMed:32279364]
[22] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[23] Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. (2020) Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system.. Vet Res. 51(1):71. [PudMed:32448355]
[24] Wood TE, Howard SA, Frster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. (2019) The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology.. Cell Rep. 29(1):187-201. [PudMed:31577948]
[25] Fernández-Bravo A, Kilgore PB, Andersson JA, Blears E, Figueras MJ, Hasan NA, Colwell RR, Sha J, Chopra AK. (2019) T6SS and ExoA of flesh-eating Aeromonas hydrophila in peritonitis and necrotizing fasciitis during mono- and polymicrobial infections.. Proc Natl Acad Sci U S A. 116(48):24084-24092. [PudMed:31712444]
[26] Giuseppina Mariano, Katharina Trunk, David J Williams, Laura Monlezun, Henrik Strahl, Samantha J Pitt, Sarah J Coulthurst (2019) A Family of Type VI Secretion System Effector Proteins That Form Ion-Selective Pores. Nat Commun. 10(1):5484. [PudMed:31792213]
[27] Biswanath Jana, Chaya M Fridman, Eran Bosis, Dor Salomon (2019) A Modular Effector With a DNase Domain and a Marker for T6SS Substrates. Nat Commun. 10(1):3595. [PudMed:31399579]
[28] Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. (2019) Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters.. Genome Biol. 20(1):163. [PudMed:31405375]
[29] Berni B, Soscia C, Djermoun S, Ize B, Bleves S (2019) A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol. 1.2625. [PudMed:31231326]
[30] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[31] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[32] Ahmad S, Wang B, Walker MD, Tran HR, Stogios PJ, Savchenko A, Grant RA, McArthur AG, Laub MT, Whitney JC (2019) An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 575(7784):674-678. [PudMed:31695193]
[33] Zhen Yang, Xiaohui Zhou , Yue Ma, Mian Zhou, Matthew K Waldor, Yuanxing Zhang, Qiyao Wang (2018) Serine/threonine Kinase PpkA Coordinates the Interplay Between T6SS2 Activation and Quorum Sensing in the Marine Pathogen Vibrio Alginolyticus. Environ Microbiol. 20(2):903-919. [PudMed:29314504]
[34] Troselj V, Treuner-Lange A, Søgaard-Andersen L, Wall D (2018) Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium. mBio. 9(1). pii: e01645-17. [PudMed:29437919]
[35] Gong Y, Zhang Z, Liu Y, Zhou XW, Anwar MN, Li ZS, Hu W1, Li YZ (2018) A nuclease-toxin and immunity system for kin discrimination in Myxococcus xanthus. Environ Microbiol. 20(7):2552-2567. [PudMed:29806725]
[36] Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol. 3(5):632-640. [PudMed:29632369]
[37] Panayiota Pissaridou, Luke P Allsopp, Sarah Wettstadt, Sophie A Howard, Despoina A I Mavridou, Alain Filloux (2018) The Pseudomonas aeruginosa T6SS-VgrG1b Spike Is Topped by a PAAR Protein Eliciting DNA Damage to Bacterial Competitors. Proc Natl Acad Sci U S A. 115(49):12519-12524. [PudMed:30455305]
[38] Jiale Ma, Min Sun, Zihao Pan, Chengping Lu, Huochun Yao (2018) Diverse Toxic Effectors Are Harbored by vgrG Islands for Interbacterial Antagonism in Type VI Secretion System. Biochim Biophys Acta Gen Subj. 1862(7):1635-1643. [PudMed:29674124]
[39] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[40] Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD (2018) Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell. 175(5):1380-1392.e14. [PudMed:30343895]
[41] Tang JY, Bullen NP, Ahmad S, Whitney JC (2018) Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem. 293(5):1504-1514. [PudMed:29237732]
[42] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[43] Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB, Powell D, Harper M#, Boyce JD (2018) Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. Infect Immun. 86(8). pii: e00297-18. [PudMed:29735524]
[44] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[45] Huang Y, Du P, Zhao M, Liu W, Du Y, Diao B, Li J, Kan B, Liang W. (2017) Functional Characterization and Conditional Regulation of the Type VI Secretion System in Vibrio fluvialis.. Front Microbiol. 0.7. [PudMed:28424671]
[46] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[47] Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H (2017) PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. (1):345-360. [PudMed:27871130]
[48] Alteri CJ, Himpsl SD, Zhu K, Hershey HL, Musili N, Miller JE, Mobley HLT. (2017) Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.. PLoS Pathog. 13(11):e1006729. [PudMed:29155899]
[49] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[50] Jiale Ma, Zihao Pan, Jinhu Huang, Min Sun, Chengping Lu, Huochun Yao (2017) The Hcp Proteins Fused With Diverse Extended-Toxin Domains Represent a Novel Pattern of Antibacterial Effectors in Type VI Secretion Systems. Virulence. 8(7):1189-1202. [PudMed:28060574]
[51] Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM (2016) Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A. 113(34):E5044-51. [PudMed:27503894]
[52] Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L (2016) A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol. 99(6):1099-118. [PudMed:26714038]
[53] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[54] Wexler AG, Bao Y, Whitney JC, Bobay LM, Xavier JB, Schofield WB, Barry NA, Russell AB, Tran BQ, Goo YA, Goodlett DR, Ochman H, Mougous JD, Goodman AL. (2016) Human symbionts inject and neutralize antibacterial toxins to persist in the gut.. Proc Natl Acad Sci U S A. 113(13):3639-44. [PudMed:26957597]
[55] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[56] Jiang F, Wang X, Wang B, Chen L, Zhao Z, Waterfield NR, Yang G, Jin Q (2016) The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep. 16(6):1502-1509. [PudMed:27477276]
[57] Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE (2016) Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci U S A. 113(13):3627-32. [PudMed:26951680]
[58] Salomon D et al (2015) Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog. 11(8):e1005128. [PudMed:26305100]
[59] Liang X et al (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A. 112(29):9106-11. [PudMed:26150500]
[60] Diniz JA et al (2015) Intra-species Competition in Serratia marcescens is Mediated by Type VI Secretion Rhs Effectors and a Conserved Effector-Associated Accessory Protein. J Bacteriol. pii: JB.00199-15. [PudMed:25939831]
[61] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[1] Nguyen VS, Spinelli S, Cascales É, Roussel A, Cambillau C, Leone P. (2021) Anchoring the T6SS to the cell wall: Crystal structure of the peptidoglycan binding domain of the TagL accessory protein.. PLoS One. 16(7):e0254232. [PudMed:34214145]
[2] Kim N, Han G, Jung H, Lee HH, Park J, Seo YS. (2021) T6SS Accessory Proteins, Including DUF2169 Domain-Containing Protein and Pentapeptide Repeats Protein, Contribute to Bacterial Virulence in T6SS Group_5 of Burkholderia glumae BGR1.. Plants (Basel). 11(1). [PudMed:35009038]
[3] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[4] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[5] Li C, Zhu L, Wang D, Wei Z, Hao X, Wang Z, Li T, Zhang L, Lu Z, Long M, Wang Y, Wei G, Shen X. (2021) T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer.. ISME J. NA. [PudMed:34433898]
[6] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[7] Bernal P, Furniss RCD, Fecht S, Leung RCY, Spiga L, Mavridou DAI, Filloux A. (2021) A novel stabilization mechanism for the type VI secretion system sheath.. Proc Natl Acad Sci U S A. 118(7). [PudMed:33558227]
[8] Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. (2020) Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.. Nat Commun. 11(1):1865. [PudMed:32313027]
[9] Stietz MS, Liang X, Li H, Zhang X, Dong TG. (2020) TssA-TssM-TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae.. Nat Commun. 11(1):5065. [PudMed:33033237]
[10] Ahmad S, Tsang KK, Sachar K, Quentin D, Tashin TM, Bullen NP, Raunser S, McArthur AG, Prehna G, Whitney JC. (2020) Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones.. Elife. 9. [PudMed:33320089]
[11] Alam A, Golovliov I, Javed E, Kumar R, d��n J, Sjstedt A. (2020) Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence.. PLoS Pathog. 16(4):e1008466. [PudMed:32275693]
[12] Santin YG, Camy CE, Zoued A, Doan T, Aschtgen MS, Cascales E. (2019) Role and Recruitment of the TagL Peptidoglycan-Binding Protein during Type VI Secretion System Biogenesis.. J Bacteriol. 201(12). [PudMed:30910811]
[13] Yuying Han, Tietao Wang, Gukui Chen, Qinqin Pu, Qiong Liu, Yani Zhang, Linghui Xu, Min Wu, Haihua Liang (2019) A Pseudomonas Aeruginosa Type VI Secretion System Regulated by CueR Facilitates Copper Acquisition. PLoS Pathog. 15(12):e1008198. [PudMed:31790504]
[14] Berni B, Soscia C, Djermoun S, Ize B, Bleves S (2019) A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol. 1.2625. [PudMed:31231326]
[15] Li L, Wang YN, Jia HB, Wang P, Dong JF, Deng J, Lu FM, Zou QH. (2019) The type VI secretion system protein AsaA in Acinetobacter baumannii is a periplasmic protein physically interacting with TssM and required for T6SS assembly.. Sci Rep. 9(1):9438. [PudMed:31263148]
[16] Szwedziak P, Pilhofer M. (2019) Bidirectional contraction of a type six secretion system.. Nat Commun. 10(1):1565. [PudMed:30952865]
[17] Zepeda-Rivera MA, Saak CC, Gibbs KA (2018) A Proposed Chaperone of the Bacterial Type VI Secretion System Functions To Constrain a Self-Identity Protein. J Bacteriol. 200(14). pii: e00688-17. [PudMed:29555703]
[18] Santin YG, Doan T, Lebrun R, Espinosa L, Journet L, Cascales E (2018) In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol. 3(11):1304-1313. [PudMed:30275513]
[19] Mariano G, Monlezun L, Coulthurst SJ. (2018) Dual Role for DsbA in Attacking and Targeted Bacterial Cells during Type VI Secretion System-Mediated Competition.. Cell Rep. 22(3):774-785. [PudMed:29346773]
[20] Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol. 3(5):632-640. [PudMed:29632369]
[21] Byun B, Mahasenan KV, Dik DA, Marous DR, Speri E, Kumarasiri M, Fisher JF, Hermoso JA, Mobashery S. (2018) Mechanism of the Escherichia coli MltE lytic transglycosylase, the cell-wall-penetrating enzyme for Type VI secretion system assembly.. Sci Rep. 8(1):4110. [PudMed:29515200]
[22] Meiru Si, Yao Wang, Bing Zhang, Chao Zhao, Yiwen Kang, Haonan Bai, Dawei Wei, Lingfang Zhu, Lei Zhang, Tao G Dong, Xihui Shen (2017) The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep. 20(4):949-959. [PudMed:28746878]
[23] Meiru Si, Chao Zhao, Brianne Burkinshaw, Bing Zhang, Dawei Wei, Yao Wang, Tao G Dong, Xihui Shen (2017) Manganese Scavenging and Oxidative Stress Response Mediated by Type VI Secretion System in Burkholderia thailandensis. Proc Natl Acad Sci U S A. 114(11):E2233-E2242. [PudMed:28242693]
[24] Santin YG, Cascales E. (2017) Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system.. EMBO Rep. 18(1):138-149. [PudMed:27920034]
[25] Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H (2017) PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. (1):345-360. [PudMed:27871130]
[26] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[27] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[28] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[29] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[30] Qin A, Zhang Y, Clark ME, Moore EA, Rabideau MM, Moreau GB, Mann BJ. (2016) Components of the type six secretion system are substrates of Francisella tularensis Schu S4 DsbA-like FipB protein.. Virulence. 7(8):882-894. [PudMed:27028889]
[31] P��rinet S, Jeukens J, Kukavica-Ibrulj I, Ouellet MM, Charette SJ, Levesque RC. (2016) Molybdate transporter ModABC is important for Pseudomonas aeruginosa chronic lung infection.. BMC Res Notes. 9:23. [PudMed:26758577]
[32] Liang X et al (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A. 112(29):9106-11. [PudMed:26150500]
[33] Unterweger D et al (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J. 34(16):2198-210. [PudMed:26194724]
[34] Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD (2015) An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell. 163(3):607-19. [PudMed:26456113]
[35] Pederick VG, Eijkelkamp BA, Ween MP, Begg SL, Paton JC, McDevitt CA. (2014) Acquisition and role of molybdate in Pseudomonas aeruginosa.. Appl Environ Microbiol. 80(21):6843-52. [PudMed:25172858]
[36] Miyata ST et al (2013) Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathog. 9(12):e1003752. [PudMed:24348240]
[37] Lossi NS et al (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol. 86(2):437-56. [PudMed:22906320]
[38] Aschtgen MS et al (2012) The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. Microbiologyopen. 1(1):71-82. [PudMed:22950014]
[39] Aschtgen MS et al (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol. 75(4):886-99. [PudMed:20487285]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Flaugnatti N, Isaac S, Lemos Rocha LF, Stutzmann S, Rendueles O, Stoudmann C, Vesel N, Garcia-Garcera M, Buffet A, Sana TG, Rocha EPC, Blokesch M. (2021) Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms.. Nat Commun. 12(1):5751. [PudMed:34599171]
[3] Myint SL, Zlatkov N, Aung KM, Toh E, Sjstrm A, Nadeem A, Duperthuy M, Uhlin BE, Wai SN. (2021) Ecotin and LamB in Escherichia coli influence the susceptibility to Type VI secretion-mediated interbacterial competition and killing by Vibrio cholerae.. Biochim Biophys Acta Gen Subj. 1865(7):129912. [PudMed:33892013]
[4] Crisan CV, Nichols HL, Wiesenfeld S, Steinbach G, Yunker PJ, Hammer BK. (2021) Glucose confers protection to Escherichia coli against contactkilling by Vibrio cholerae.. Sci Rep. 11(1):2935. [PudMed:33536444]
[5] Le NH, Peters K, Espaillat A, Sheldon JR, Gray J, Di Venanzio G, Lopez J, Djahanschiri B, Mueller EA, Hennon SW, Levin PA, Ebersberger I, Skaar EP, Cava F, Vollmer W, Feldman MF. (2020) Peptidoglycan editing provides immunity to Acinetobacter baumannii during bacterial warfare.. Sci Adv. 6(30):eabb5614. [PudMed:32832672]
[6] Hersch SJ, Manera K, Dong TG. (2020) Defending against the Type Six Secretion System: beyond Immunity Genes.. Cell Rep. 33(2):108259. [PudMed:33053336]
[7] Hersch SJ, Watanabe N, Stietz MS, Manera K, Kamal F, Burkinshaw B, Lam L, Pun A, Li M, Savchenko A, Dong TG. (2020) Envelope stress responses defend against type six secretion system attacks independently of immunity proteins.. Nat Microbiol. 5(5):706-714. [PudMed:32094588]
[8] Kamal F, Liang X, Manera K, Pei TT, Kim H, Lam LG, Pun A, Hersch SJ, Dong TG. (2020) Differential Cellular Response to Translocated Toxic Effectors and Physical Penetration by the Type VI Secretion System.. Cell Rep. 31(11):107766. [PudMed:32553162]
[9] Lin HH, Yu M, Sriramoju MK, Hsu SD, Liu CT, Lai EM. (2020) A High-Throughput Interbacterial Competition Screen Identifies ClpAP in Enhancing Recipient Susceptibility to Type VI Secretion System-Mediated Attack by Agrobacterium tumefaciens.. Front Microbiol. 2.553472222. [PudMed:32117077]
[10] Mariano G, Monlezun L, Coulthurst SJ. (2018) Dual Role for DsbA in Attacking and Targeted Bacterial Cells during Type VI Secretion System-Mediated Competition.. Cell Rep. 22(3):774-785. [PudMed:29346773]
<
[1] Pang M et al (2015) Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep. 7.036805556. [PudMed:26014286]
[2] Guan J et al (2015) Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol. 53(9):633-42. [PudMed:26310305]
[3] Spencer C et al (2015) Biochemical Characterization of a Pseudomonas aeruginosa Phospholipase D. Biochemistry. 54(5):1208-18. [PudMed:25565226]
[4] Burroughs AM et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Biol Direct. 10(1):21. [PudMed:25976611]
[5] Dong TG et al (2015) Generation of reactive oxygen species by lethal attacks from competing microbes. Proc Natl Acad Sci U S A. 112(7):2181-6. [PudMed:25646446]
[6] Martinez-Garcia PM et al (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci. 10:10. [PudMed:25685259]
[7] Cheng AT et al (2015) Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System. PLoS Pathog. 11(5):e1004933. [PudMed:26000450]
[8] Jones CL et al (2015) Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii With Enhanced Virulence. Clin Infect Dis. pii: civ225. [PudMed:25824815]
[9] Dolores JS et al (2015) Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol. 95(4):590-604. [PudMed:25427654]
[10] Saraswati S et al (2015) Aging and the human gut microbiota-from correlation to causality. Front Microbiol. 0.738888889. [PudMed:25628610]
[11] Wang R et al (2015) The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol. 0.35. [PudMed:25798132]
[12] Lyons NA et al (2015) On the evolution of bacterial multicellularity. Curr Opin Microbiol. 24C:21-28. [PudMed:25597443]
[13] Balsanelli E et al (2015) Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere. Environ Microbiol. doi: 10.1111/1462-2920.12887. [PudMed:25923055]
[14] Hasan NA et al (2015) Nontoxigenic Vibrio cholerae Non-O1/O139 Isolate from a Case of Human Gastroenteritis in the U.S. Gulf Coast. J Clin Microbiol. 53(1):9-14. [PudMed:25339398]
[15] Li J et al (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. doi: 10.1111/1462-2920.12794. [PudMed:25640659]
[16] Costa TR et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 13(6):343-359. [PudMed:25978706]
[17] Sabag-Daigle A et al (2015) Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Front Cell Infect Microbiol. 5:47. [PudMed:26075189]
[18] Nandi T et al (2015) Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Res. 25(1):129-41. [PudMed:25236617]
[19] Ge P et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. doi: 10.1038/nsmb.2995. [PudMed:25822993]
[20] Nelson MS et al (2015) Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci. 0.590972222. [PudMed:26191069]
[21] Li J et al (2015) Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 43(1):175-80. [PudMed:25541077]
[22] Collins AJ et al (2015) Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Front Microbiol. 0.335416667. [PudMed:25755651]
[23] S Massier et al (2015) Involvement of type VI secretion systems in virulence of adherent-invasive Escherichia coli isolated from patients with Crohn's disease. J Crohns Colitis. 9 Suppl 1:S67-8. [PudMed:25718291]
[24] Cui Y et al (2015) Epidemic clones, oceanic gene pools and eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol Biol Evol. pii: msv009. [PudMed:25605790]
[25] Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-015-2323-z. [PudMed:25630538]
[26] Trampari E et al (2015) Bacterial Rotary Export ATPases Are Allosterically Regulated by the Nucleotide Second Messenger Cyclic-di-GMP. J Biol Chem. 290(40):24470-83. [PudMed:26265469]
[27] Wang RY et al (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods. 12(4):335-338. [PudMed:25707029]
[28] Avican K et al (2015) Reprogramming of Yersinia from virulent to persistent mode revealed by complex in vivo RNA-seq analysis. PLoS Pathog. 11(1):e1004600. [PudMed:25590628]
[29] Chieng S et al (2015) Transcriptome analysis of Burkholderia pseudomallei T6SS identifies Hcp1 as a potential serodiagnostic marker. Microb Pathog. 79:47-56. [PudMed:25616255]
[30] Sapountzis P et al (2015) The Enterobacterium Trabulsiella odontotermitis Presents Novel Adaptations Related to Its Association with Fungus-Growing Termites. Appl Environ Microbiol. 81(19):6577-88. [PudMed:26162887]
[31] Trantas EA et al (2015) Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol. 0.813194444. [PudMed:26300874]
[32] Jamet A et al (2015) New Players in the Toxin Field: Polymorphic Toxin Systems in Bacteria. MBio. 6(3). [PudMed:25944858]
[33] Lee SJ et al (2015) Crystal structure of YwpF from Staphylococcus aureus reveals its architecture comprised of a beta-barrel core domain resembling type VI secretion system proteins and a two-helix pair. Proteins. 83(4):781-8. [PudMed:25663006]
[34] Desilets M et al (2015) Genome-based Definition of an Inflammatory Bowel Disease-associated Adherent-Invasive Escherichia coli Pathovar. Inflamm Bowel Dis. . [PudMed:26444104]
[35] LeRoux M et al (2015) Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. Elife. doi: 10.7554/eLife.05701. [PudMed:25643398]
[36] Choudhury JD et al (2015) The Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile Is a New Strain of Pseudoalteromonas agarivorans Containing Abundant and Diverse Virulence-Related Genes. Mar Biotechnol (NY). doi:10.1007/s10126-015-9627-y. [PudMed:25837832]
[37] Kang H et al (2015) Characterization and Genomic Analysis of Quinolone-Resistant Delftia sp. 670 Isolated from a Patient Who Died from Severe Pneumonia. Curr Microbiol. . [PudMed:25935202]
[38] Grube M et al (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9(2):412-24. [PudMed:25072413]
[39] Ponnusamy D et al (2015) High-throughput signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun. pii: IAI.02913-14. [PudMed:25754198]
[40] Bode NJ et al (2015) Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun. pii: IAI.02978-14. [PudMed:25847961]
[41] Wilson MM et al (2015) Analysis of the Outer Membrane Proteome and Secretome of Bacteroides fragilis Reveals a Multiplicity of Secretion Mechanisms. PLoS One. 10(2):e0117732. [PudMed:25658944]
[42] Raveh-Sadka T et al (2015) Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. Elife. 4. [PudMed:25735037]
[43] Aragon IM et al (2015) Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. Environ Microbiol. doi: 10.1111/1462-2920.12856. [PudMed:25809128]
[44] Seo YS et al (2015) Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. BMC Genomics. 0.909027778. [PudMed:25943361]
[45] Liu L et al (2015) The type VI secretion system modulates flagellar gene expression and secretion in Citrobacter freundii and contributes to the adhesion and cytotoxicity to host cells. Infect Immun. pii: IAI.03071-14. [PudMed:25870231]
[46] Almblad H et al (2015) The cAMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by c-di-GMP. J Bacteriol. pii: JB.00193-15. [PudMed:25897033]
[47] Podeur G et al (2015) Development of a real-time PCR method coupled with a selective pre-enrichment step for quantification of Morganella morganii and Morganella psychrotolerans in fish products. Int J Food Microbiol. 203:55-62. [PudMed:25791250]
[48] Osterman J et al (2015) Genomic features separating ten strains of Neorhizobium galegae with different symbiotic phenotypes. BMC Genomics. 0.908333333. [PudMed:25933608]
[49] Richards VP et al (2015) Genome Based Phylogeny and Comparative Genomic Analysis of Intra-Mammary Pathogenic Escherichia coli. PLoS One. 10(3):e0119799. [PudMed:25807497]
[50] Martinez-Garica PM et al (2015) T346Hunter: A Novel Web-Based Tool for the Prediction of Type III, Type IV and Type VI Secretion Systems in Bacterial Genomes. PLoS One. 10(4):e0119317. [PudMed:25867189]
[51] Borgeaud S et al (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63-7. [PudMed:25554784]
[52] LeRoux M et al (2015) Bacterial danger sensing. J Mol Biol. pii: S0022-2836(15)00541-0. [PudMed:26434507]
[53] Li P et al (2015) Comparative Genome Analyses of Serratia marcescens FS14 Reveals Its High Antagonistic Potential. PLoS One. 10(4):e0123061. [PudMed:25856195]
[54] Kernell Burke A et al (2015) OpaR Controls a Network of Downstream Transcription Factors in Vibrio parahaemolyticus BB22OP. PLoS One. 10(4):e0121863. [PudMed:25901572]
[55] Ceuleneer MD et al (2015) Role of the Bacterial Type VI Secretion System in the Modulation of Mammalian Host Cell Immunity. Curr Med Chem. 22(14):1734-44. [PudMed:25882545]
[56] Langridge GC et al (2015) Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc Natl Acad Sci U S A. 112(3):863-8. [PudMed:25535353]
[57] Grim CJ et al (2014) Functional Genomic Characterization of Virulence Factors from Necrotizing Fasciitis-Causing Strains of Aeromonas hydrophila. Appl Environ Microbiol. 80(14):4162-83. [PudMed:24795370]
[58] Kingry LC et al (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol. 4:35. [PudMed:24660164]
[59] Bleves S et al (2014) HoPaCI-DB: host-Pseudomonas and Coxiella interaction database. Nucleic Acids Res. 42(1):D671-6. [PudMed:24137008]
[60] Lee JH et al (2014) Draft genome sequence of Xanthomonas axonopodis pv. glycines 8ra possessing transcription activator-like effectors used for genetic engineering. J Biotechnol. 179C:15-16. [PudMed:24657734]
[61] Pezoa D et al (2014) Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res. 45(1):2. [PudMed:24405577]
[62] Uda A et al (2014) Role of Pathogenicity Determinant Protein C (PdpC) in Determining the Virulence of the Francisella tularensis Subspecies tularensis SCHU. PLoS One. 9(2):e89075. [PudMed:24558472]
[63] Gardiner DM et al (2014) Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems. PLoS One. 9(1):e84995. [PudMed:24416331]
[64] Moretti J et al (2014) Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr Opin Immunol. 26:100-10. [PudMed:24556406]
[65] Ahmer BM (2014) In this issue of Gut Microbes. Gut Microbes. 5(1). [PudMed:24468723]
[66] Dowling AJ et al (2014) An unbiased method for clustering bacterial effectors using host cellular phenotypes. Appl Environ Microbiol. 80(3):1185-96. [PudMed:24296505]
[67] Kamath KS et al (2014) Proteomics of hosts and pathogens in cystic fibrosis. Proteomics Clin Appl. 9(1-2):134-46. [PudMed:25418359]
[68] Skwor T et al (2014) Aeromonas hydrophila and Aeromonas veronii Predominate among Potentially Pathogenic Ciprofloxacin- and Tetracycline-Resistant Aeromonas Isolates from Lake Erie. Appl Environ Microbiol. 80(3):841-8. [PudMed:24242249]
[69] Ali S et al (2014) A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp.. J Theor Biol. 343:193-8. [PudMed:24513137]
[70] Angus AA et al (2014) Plant-associated symbiotic burkholderia species lack hallmark strategies required in Mammalian pathogenesis. PLoS One. 9(1):e83779. [PudMed:24416172]
[71] Fredlund J et al (2014) Cytoplasmic access by intracellular bacterial pathogens. Trends Microbiol. 22(3):128-137. [PudMed:24530174]
[72] McWhinnie RL et al (2014) Synthetic Promoters Functional in Francisella novicida and Escherichia coli. Appl Environ Microbiol. 80(1):226-34. [PudMed:24141126]
[73] Whitaker WB et al (2014) Loss of Sigma Factor RpoN Increases Intestinal Colonization of Vibrio parahaemolyticus in an Adult Mouse Model. Infect Immun. 82(2):544-56. [PudMed:24478070]
[74] Ramos PI et al (2014) Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics. 15(1):54. [PudMed:24450656]
[75] Aragon IM et al (2014) New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi. FEMS Microbiol Lett. 356(2):184-92. [PudMed:24606017]
[76] Mahdavi A et al (2014) Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proc Natl Acad Sci U S A. 111(1):433-8. [PudMed:24347637]
[77] Benz J et al (2014) Antibacterial effector/immunity systems: it's just the tip of the iceberg. Curr Opin Microbiol. 17C:1-10. [PudMed:24581686]
[78] Wright MS et al (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):e00963-13. [PudMed:24449752]
[79] Yang W et al (2014) An invasive and low virulent Edwardsiella tarda esrB mutant promising as live attenuated vaccine in aquaculture. Appl Microbiol Biotechnol. 99(4):1765-77. [PudMed:25431010]
[80] Moule MG et al (2014) Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development. MBio. 5(1):e00926-13. [PudMed:24520057]
[81] Zhou H et al (2014) Population structural analysis of O1 El Tor Vibrio cholerae isolated in China among the seventh cholera pandemic on the basis of multilocus sequence typing and virulence gene profiles. Infect Genet Evol. 22:72-80. [PudMed:24448269]
[82] Caly DL et al (2014) Communication, Cooperation, and Social Interactions: a Report from the Third Young Microbiologists Symposium on Microbe Signalling, Organisation, and Pathogenesis . J Bacteriol. 196(20):3527-33. [PudMed:25070739]
[83] Kapitein N et al (2014) Type VI Secretion System Helps Find a Niche. Cell Host Microbe. 16(1):5-6. [PudMed:25011102]
[84] Hu W et al (2014) A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding. PLoS One. 9(11):e110810. [PudMed:25401506]
[85] Richards AM et al (2014) Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol. 30(1):2-15. [PudMed:25052812]
[86] Sarris PF et al (2014) A Phage Tail-Derived Element with Wide Distribution among Both Prokaryotic Domains: A Comparative Genomic and Phylogenetic Study. Genome Biol Evol. 6(7):1739-1747. [PudMed:25015235]
[87] Schmidt A et al (2014) Neutrophil elastase-mediated increase in airway temperature during inflammation. J Cyst Fibros. 13(6):623-31. [PudMed:24713593]
[88] Russell AB et al (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 12(2):137-48. [PudMed:24384601]
[89] Ghequire MG et al (2014) Ribosomally-encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev. 38(4):523-68. [PudMed:24923764]
[90] Steinert M (2014) Pathogen intelligence. Front Cell Infect Microbiol. 4:08. [PudMed:24551600]
[91] Wang S et al (2014) DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli. Front Microbiol. 0.616666667. [PudMed:25426107]
[92] Bachmann NL et al (2014) Genome analysis and CRISPR typing of Salmonella enterica serovar Vircho. BMC Genomics. 0.895138889. [PudMed:24885207]
[93] Jaradat ZW et al (2014) Cronobacter, an opportunistic food borne pathogen; a review of its virulence and environmental adaptive traits. J Med Microbiol. 63(Pt 8):1023-1037. [PudMed:24878566]
[94] Shyntum D et al (2014) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact. doi:http://dx.doi.org/10.1094/MPMI-07-14-0219-R. [PudMed:25411959]
[95] Koskiniemi S et al (2014) Selection of Orphan Rhs Toxin Expression in Evolved Salmonella enterica Serovar Typhimurium. PLoS Genet. 10(3):e1004255. [PudMed:24675981]
[96] Law HT et al (2014) IglC and PdpA Are Important for Promoting Francisella Invasion and Intracellular Growth in Epithelial Cells. PLoS One. 9(8):e104881. [PudMed:25115488]
[97] Rydzewski K et al (2014) Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol. 14(1):169. [PudMed:24961323]
[98] Zhang J et al (2014) A new target for the old regulator: H-NS suppress T6SS secretory protein EvpP, the major virulence factor in the fish pathogen Edwardsiella tarda. Lett Appl Microbiol. 59(5):557-564. [PudMed:25131176]
[99] Hachani A et al (2014) The VgrG proteins are "A la carte" delivery systems for bacterial type VI effectors. J Biol Chem. 289(25):17872-17884. [PudMed:24794869]
[100] Li B et al (2014) Transcriptome analysis of Acidovorax avenae subsp. avenae cultivated in vivo and co-culture with Burkholderia seminalis. Sci Rep. 4.123611111. [PudMed:25027476]
[101] Heckel BC et al (2014) Agrobacterium tumefaciens ExoR Controls Acid Response Genes and Impacts Exopolysaccharide Synthesis, Horizontal Gene Transfer and Virulence Gene Expression. J Bacteriol. 196(18):3221-33. [PudMed:24982308]
[102] Liu F et al (2014) Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genomics. 15(1):1163. [PudMed:25534766]
[103] Adam Z et al (2014) Draft Genome Sequence of Pantoea ananatis Strain LMG 2665T, a Bacterial Pathogen of Pineapple Fruitlets. Genome Announc. 2(3). [PudMed:24855311]
[104] Whitney JC et al (2014) Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol. 92(3):529-42. [PudMed:24589350]
[105] Beck CM et al (2014) CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria. Structure. 22(5):707-18. [PudMed:24657090]
[106] Jiang F et al (2014) A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host Microbe. 15(5):600-10. [PudMed:24832454]
[107] Song C et al (2014) The Rsm regulon of plant growth-promoting Pseudomonas fluorescens SS101: role of small RNAs in regulation of lipopeptide biosynthesis. Microb Biotechnol. 8(2):296-310. [PudMed:25488342]
[108] Moscoso JA et al (2014) The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa . J Bacteriol. 196(23):4081-8. [PudMed:25225264]
[109] Raspoet R et al (2014) Microarray-based detection of Salmonella Enteritidis genes involved in chicken reproductive tract colonization. Appl Environ Microbiol. 80(24):7710-6. [PudMed:25281378]
[110] Memisevic V et al (2014) DBSecSys: a database of Burkholderia mallei secretion systems. BMC Bioinformatics. 0.794444444. [PudMed:25030112]
[111] Rudder S et al (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics. 15(1):268. [PudMed:24708309]
[112] Zhu Ge X et al (2014) Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains. PLoS One. 9(11):e112048. [PudMed:25397580]
[113] Ushijima B et al (2014) Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol. 80(7):2102-9. [PudMed:24463971]
[114] Tummler B et al (2014) Advances in understanding Pseudomonas. F1000Prime Rep. 6:09. [PudMed:24592321]
[115] Darby A et al (2014) Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals. PLoS One. 9(7):e100542. [PudMed:25057966]
[116] Kumari H et al (2014) LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics. 96:328-42. [PudMed:24291602]
[117] Bishop AH et al (2014) Identification of Genes Required for Soil Survival in Burkholderia thailandensis by Transposon-Directed Insertion Site Sequencing. Curr Microbiol. 68(6):693-701. [PudMed:24488501]
[118] Chen Z et al (2014) Cloning, purification, crystallization and preliminary X-ray studies of the putative type VI secretion immunity protein Tli5 (PA5088) from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun. 70(Pt 7):903-5. [PudMed:25005085]
[119] Yap KP et al (2014) Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics. 15(1):1007. [PudMed:25412680]
[120] Alavi P et al (2014) Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics. 0.959722222. [PudMed:24939220]
[121] Gopinath G et al (2014) Draft Genome Sequences of Nine Salmonella enterica Serovar Bovismorbificans Isolates from Various Sources. Genome Announc. 2(2). [PudMed:24604660]
[122] Burtnick MN et al (2014) Proteomic Analysis of the Burkholderia pseudomallei Type II Secretome Reveals Hydrolytic Enzymes, Novel Proteins and the Deubiquitinase TssM. Infect Immun. 82(8):3214-26. [PudMed:24866793]
[123] Liu H et al (2014) Protein Profiling Analyses of the Outer Membrane of Burkholderia cenocepacia Reveal a Niche-Specific Proteome. Microb Ecol. 69(1):75-83. [PudMed:25081413]
[124] Kado CI (2014) Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front Microbiol. 0.444444444. [PudMed:25147542]
[125] Duca D et al (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. UW4 that converts indole-3-acetonitrile to produce indole-3-acetic acid. Appl Environ Microbiol. 80(15):4640-9. [PudMed:24837382]
[126] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[127] Abby SS et al (2014) Bacteria in Ostreococcus tauri cultures - friends, foes or hitchhikers?. Front Microbiol. 0.559027778. [PudMed:25426102]
[128] Crnigoj M et al (2014) The Escherichia coli uropathogenic-specific-protein-associated immunity protein 3 (Imu3) has nucleic acid -binding activity. BMC Microbiol. 14:16. [PudMed:24472116]
[129] Unterweger D et al (2014) The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun. 2.672916667. [PudMed:24686479]
[130] Shao S et al (2014) Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: Propose a novel species as Edwardsiella anguillarum sp. nov . Syst Appl Microbiol. 38(1):36-47. [PudMed:25466920]
[131] Bocsanczy AM et al (2014) Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors. BMC Genomics. 15(1):280. [PudMed:24725348]
[132] Broberg M et al (2014) The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193. Appl Environ Microbiol. 80(6):1972-84. [PudMed:24441162]
[133] Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion exported protein required for multinucleated giant cell formation and virulence. Infect Immun. 82(4):1445-52. [PudMed:24452686]
[134] Aravena-Roman M et al (2014) Distribution of 13 virulence genes among clinical and environmental Aeromonas spp. in Western Australia. Eur J Clin Microbiol Infect Dis. 33(11):1889-95. [PudMed:24859908]
[135] Klaponski N et al (2014) The requirement for the LysR-type regulator PtrA for Pseudomonas chlororaphis PA23 biocontrol revealed through proteomic and phenotypic analysis. BMC Microbiol. 0.648611111. [PudMed:24739259]
[136] Pegoraro G et al (2014) A high-content imaging assay for the quantification of the Burkholderia pseudomallei induced multinucleated giant cell (MNGC) phenotype in murine macrophages. BMC Microbiol. 14(1):98. [PudMed:24750902]
[137] Ma J et al (2014) Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infect Immun. 82(9):3867-79. [PudMed:24980972]
[138] Shikuma NJ et al (2014) Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science. 343(6170):529-33. [PudMed:24407482]
[139] Sall KM et al (2014) A gacS Deletion in Pseudomonas aeruginosa Cystic Fibrosis Isolate CHA Shapes Its Virulence. PLoS One. 9(4):e95936. [PudMed:24780952]
[140] Puah SM et al (2014) Molecular characterization of putative virulence determinants in Burkholderia pseudomallei. ScientificWorldJournal. 2014:590803. [PudMed:25215325]
[141] Chirakul S et al (2014) Characterization of BPSS1521 (bprD), a Regulator of Burkholderia pseudomallei Virulence Gene Expression in the Mouse Model. PLoS One. 9(8):e104313. [PudMed:25111708]
[142] Wang S et al (2014) Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics. 15(1):440. [PudMed:24906389]
[143] Eijkelkamp BA et al (2014) Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 15(1):1020. [PudMed:25422040]
[144] Carvalho CL et al (2014) Tularaemia: a challenging zoonosis. Comp Immunol Microbiol Infect Dis. 37(2):85-96. [PudMed:24480622]
[145] Jitprasutwit S et al (2014) Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions. BMC Genomics. 15(1):787. [PudMed:25214426]
[146] Zuleta LF et al (2014) The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics. 15(1):535. [PudMed:24972629]
[147] Cava F et al (2014) Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr Opin Microbiol. 18C:46-53. [PudMed:24607990]
[148] Livny J et al (2014) Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Res. 42(19):12212-23. [PudMed:25262354]
[149] Schumacher J et al (2014) Differential secretome analysis of Pseudomonas syringae pv tomato using gel-free MS proteomics. Front Plant Sci. 0.376388889. [PudMed:25071788]
[150] Bielecki P et al (2014) In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles. MBio. 5(4). [PudMed:25096872]
[151] Mora Y et al (2014) Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl Environ Microbiol. 80(18):5644-54. [PudMed:25002426]
[152] Karlsen C et al (2014) Host specificity and clade dependent distribution of putative virulence genes in Moritella viscosa. Microb Pathog. 77C:53-65. [PudMed:25277600]
[153] Kongrueng J et al (2014) Characterization of Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease in southern Thailand. J Fish Dis. doi: 10.1111/jfd.12308. [PudMed:25287127]
[154] Steele S et al (2014) A method for functional trans-complementation of intracellular Francisella tularensis. PLoS One. 9(2):e88194. [PudMed:24505427]
[155] Chen Y et al (2014) Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon. BMC Microbiol. 14(1):206. [PudMed:25085508]
[156] Lindgren M et al (2014) Identification of Mechanisms for Attenuation of the FSC043 Mutant of Francisella tularensis SCHU S4. Infect Immun. 82(9):3622-35. [PudMed:24935978]
[157] Coyne MJ et al (2014) Evidence of Extensive DNA Transfer between Bacteroidales Species within the Human Gut. MBio. 5(3). [PudMed:24939888]
[158] Vromman F et al (2014) Exploitation of host lipids by bacteria. Curr Opin Microbiol. 17:38-45. [PudMed:24581691]
[159] Abt MC et al (2014) Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol. 29C:16-22. [PudMed:24727150]
[160] Peano C et al (2014) Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis. PLoS One. 9(3):e93009. [PudMed:24671187]
[161] Lery LM et al (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 12(1):41. [PudMed:24885329]
[162] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[163] Patel H et al (2014) Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae. BMC Microbiol. 14(1):274. [PudMed:25394860]
[164] De Maayer P et al (2014) Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics. 15(1):404. [PudMed:24884520]
[165] Castagnola A et al (2014) Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests. Insects. 5(1):139-166. [PudMed:24634779]
[166] Chang YW et al (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods. 11(7):737-9. [PudMed:24813625]
[167] Jones CJ et al (2014) ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa. PLoS Pathog. 10(3):e1003984. [PudMed:24603766]
[168] Xu H et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 513(7517):237-41. [PudMed:24919149]
[169] Short FL et al (2014) Polybacterial human disease: the ills of social networking. Trends Microbiol. 22(9):508-16. [PudMed:24938173]
[170] Castro-Gomes T et al (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol. 52(4):350-3. [PudMed:24535738]
[171] Chou S et al (2014) Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature. 518(7537):98-101. [PudMed:25470067]
[172] Siqueira AF et al (2014) Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics. 0.916666667. [PudMed:24888481]
[173] Chang JH et al (2014) The ABCs and 123s of bacterial secretion systems in plant pathogenesis. Annu Rev Phytopathol. 52:317-45. [PudMed:24906130]
[174] Sarkar A et al (2014) Transcriptional Profiling of Nitrogen Fixation and the Role of NifA in the Diazotrophic Endophyte Azoarcus sp. Strain BH72. PLoS One. 9(2):e86527. [PudMed:24516534]
[175] Pedron J et al (2014) Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics. 15(1):283. [PudMed:24735398]
[176] Kakar KU et al (2014) Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol. 30(2):469-78. [PudMed:23990042]
[177] Kwong WK et al (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A. 111(31):11509-14. [PudMed:25053814]
[178] Pearson JS et al (2014) Post-modern pathogens: surprising activities of translocated effectors from E. coli and Legionella. Curr Opin Microbiol. 23C:73-79. [PudMed:25461576]
[179] Nibali L et al (2014) Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases. J Oral Microbiol. 6. [PudMed:24578801]
[180] Preeprem S et al (2014) Isolation and Characterization of Vibrio cholerae Isolates from Seafood in Hat Yai City, Songkhla, Thailand. Foodborne Pathog Dis. 11(11):881-6. [PudMed:25188839]
[181] Pradhan S et al (2013) Vibrio cholerae Classical Biotype Is Converted to the Viable Non-Culturable State when Cultured with the El Tor Biotype. PLoS One. 8(1):e53504. [PudMed:23326443]
[182] Ceccarelli D et al (2013) Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol. 0.192361111. [PudMed:24377090]
[183] van Delden C et al (2013) Involvement of Fe uptake systems and AmpC beta-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 57(5):2095-102. [PudMed:23422914]
[184] Grim CJ et al (2013) Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 0.8375. [PudMed:23724777]
[185] Filloux A (2013) The rise of the Type VI secretion system. F1000Prime Rep. 5:52. [PudMed:24381728]
[186] Ruhe ZC et al (2013) Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. MBio. 4(4). [PudMed:23882017]
[187] Pukatzki S et al (2013) Vibrio cholerae as a predator: lessons from evolutionary principles. Front Microbiol. 0.433333333. [PudMed:24368907]
[188] Ruhe ZC et al (2013) Bacterial contact-dependent growth inhibition. Trends Microbiol. 21(5):230-7. [PudMed:23473845]
[189] Morin N et al (2013) Characterization of the AggR regulon in enteroaggregative Escherichia coli. Infect Immun. 81(1):122-32. [PudMed:23090962]
[190] Pezoa D et al (2013) The Type VI Secretion System Encoded in SPI-6 Plays a Role in Gastrointestinal Colonization and Systemic Spread of Salmonella enterica serovar Typhimurium in the Chicken. PLoS One. 8(5):e63917. [PudMed:23691117]
[191] Filloux A (2013) Microbiology: a weapon for bacterial warfare. Nature. 500(7462):284-5. [PudMed:23925115]
[192] Kaakoush NO et al (2013) The Secretome of Helicobacter Trogontum. Helicobacter. 18(4):316-20. [PudMed:23406293]
[193] Filiatrault MJ et al (2013) Pseudomonas aeruginosa PA1006, Which Plays a Role in Molybdenum Homeostasis, Is Required for Nitrate Utilization, Biofilm Formation, and Virulence. PLoS One. 8(2):e55594. [PudMed:23409004]
[194] Tashiro Y et al (2013) Interspecies Interaction between Pseudomonas aeruginosa and Other Microorganisms. Microbes Environ. 28(1):13-24. [PudMed:23363620]
[195] Dong TG et al (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A . 110(7):2623-8. [PudMed:23362380]
[196] Blondel CJ et al (2013) The Type VI Secretion System encoded in SPI-19 is required for Salmonella Gallinarum survival within infected macrophages. Infect Immun. 81(4):1207-20. [PudMed:23357385]
[197] Erken M et al (2013) The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. Microb Ecol. 65(4):860-8. [PudMed:23354181]
[198] Marchler-Bauer A et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41(D1):D348-52. [PudMed:23197659]
[199] Cattoir V et al (2013) Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. MBio. 3(6):e00410-12. [PudMed:23143799]
[200] Bebeacua C et al (2013) Visualizing a Complete Siphoviridae Member by Single-Particle Electron Microscopy: the Structure of Lactococcal Phage TP901-1. J Virol. 87(2):1061-8. [PudMed:23135714]
[201] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[202] Zhang L et al (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One. 8(4):e61625. [PudMed:23637868]
[203] Singh AP et al (2013) Evolutionary Analysis of Burkholderia pseudomallei Identifies Putative Novel Virulence Genes, Including a Microbial Regulator of Host Cell Autophagy. J Bacteriol. 195(24):5487-98. [PudMed:24097950]
[204] Kaakoush NO et al (2013) Do Type VI Secretion Systems Translocate More Than Proteins?. Helicobacter. 18(3):242-3. [PudMed:23305101]
[205] Mann RA et al (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS One. 8(2):e55644. [PudMed:23409014]
[206] Marin MA et al (2013) Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis. 7(2):e2049. [PudMed:23459673]
[207] Celli J et al (2013) Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med. 3(4):a010314. [PudMed:23545572]
[208] McCaig WD et al (2013) Production of Outer Membrane Vesicles and Outer Membrane Tubes by Francisella novicida. J Bacteriol. 195(6):1120-32. [PudMed:23264574]
[209] Hogan DA et al (2013) Bacterial type 6 secreted phospholipases play family feud. Cell Host Microbe. 13(5):507-8. [PudMed:23684302]
[210] Marden JN et al (2013) An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 110(37):15055-60. [PudMed:23980177]
[211] Robertson GT et al (2013) IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of Type A Francisella tularensis. Infect Immun. 81(11):4026-40. [PudMed:23959721]
[212] Ho BT et al (2013) Type 6 Secretion System-Mediated Immunity to Type 4 Secretion System-Mediated Gene Transfer. Science. 342(6155):250-253. [PudMed:24115441]
[213] Alavi P et al (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405(T.). Front Plant Sci. 0.264583333. [PudMed:23717321]
[214] Kidarsa TA et al (2013) Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS . Environ Microbiol. 15(3):716-35. [PudMed:23297839]
[215] Grad YH et al (2013) Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. MBio. 4(1):e00452-12. [PudMed:23341549]
[216] Kamada N et al (2013) Role of the gut microbiota in immunity and inflammatory disease . Nat Rev Immunol. 13(5):321-35. [PudMed:23618829]
[217] Wei X et al (2013) Global control of GacA on secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol. 195(15):3387-400. [PudMed:23708134]
[218] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[219] Hornung C et al (2013) The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One. 8(2):e55045. [PudMed:23405110]
[220] Mitter B et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants . Front Plant Sci. 0.25. [PudMed:23641251]
[221] Ciprandi A et al (2013) Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies. Curr Microbiol. 67(1):100-6. [PudMed:23455494]
[222] Horton RE et al (2013) Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One. 8(5):e63394. [PudMed:23704903]
[223] Braun V et al (2013) Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett. 345(1):13-21. [PudMed:23701660]
[224] Casabona MG et al (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics. 13(16):2419-23. [PudMed:23744604]
[225] Khodai-Kalaki M et al (2013) Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem. 288(42):30473-84. [PudMed:24014026]
[226] Bartonickova L et al (2013) Hcp and VgrG1 are secreted components of the Helicobacter hepaticus type VI secretion system and VgrG1 increases the bacterial colitogenic potential. Cell Microbiol. 15(6):992-1011. [PudMed:23278999]
[227] Frangipani E et al (2013) The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ Microbiol. 16(3):676-88. [PudMed:23796404]
[228] Smits TH et al (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol. 36(7):449-56. [PudMed:23726521]
[229] Chaand M et al (2013) Vibrio cholerae VttR(A) and VttR(B) regulatory influences extend beyond the type 3 secretion system genomic island. J Bacteriol. 195(10):2424-36. [PudMed:23524608]
[230] Wang L et al (2013) AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. Int J Food Microbiol. 160(3):245-51. [PudMed:23290231]
[231] Miyata ST et al (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol. 62(Pt 5):663-76. [PudMed:23429693]
[232] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[233] Heymann JB et al (2013) Three-dimensional structure of the toxin-delivery particle antifeeding prophage of Serratia entomophila. J Biol Chem. 288(35):25276-84. [PudMed:23857636]
[234] Johnson CN (2013) Fitness factors in vibrios: a mini-review. Microb Ecol. 65(4):826-51. [PudMed:23306394]
[235] Afroz A et al (2013) Plant-bacterium interactions analyzed by proteomics. Front Plant Sci. 4:21. [PudMed:23424014]
[236] Koiv V et al (2013) Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae. PLoS One. 8(1):e54248. [PudMed:23372695]
[237] Wang Y et al (2013) Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogen Edwardsiella tarda. FEMS Microbiol Lett. 343(2):145-55. [PudMed:23551118]
[238] Brooks TM et al (2013) Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 is Inhibited by the Antitoxin TsaB. J Biol Chem. 288(11):7618-25. [PudMed:23341465]
[239] Basler M et al (2013) Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions. Cell. 152(4):884-94. [PudMed:23415234]
[240] Xu S et al (2013) FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis. Environ Microbiol. 16(4):1090-104. [PudMed:23957589]
[241] Suanyuk N et al (2013) Mortality and pathology of hybrid catfish, Clarias macrocephalus (Gunther) X Clarias gariepinus (Burchell), associated with Edwardsiella ictaluri infection in southern Thailand. J Fish Dis. 37(4):385-395. [PudMed:23763374]
[242] Li K et al (2013) SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa. MBio. 4(6):e00419-13. [PudMed:24169572]
[243] Sugawara M et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 14(2):R17. [PudMed:23425606]
[244] Ciofu O et al (2013) P. aeruginosa in the paranasal sinuses and transplanted lungs have similar adaptive mutations as isolates from chronically infected CF lungs. J Cyst Fibros. 12(6):729-36. [PudMed:23478131]
[245] Desai PT et al (2013) Evolutionary Genomics of Salmonella enterica Subspecies. MBio. 4(2):e00198-13. [PudMed:23462113]
[246] Baron C (2013) A novel strategy to target bacterial virulence. Future Microbiol. 8(1):1-3. [PudMed:23252486]
[247] Effantin G et al (2013) Cryo-electron microscopy three-dimensional structure of the jumbo phage RSL1 infecting the phytopathogen Ralstonia solanacearum. Structure. 21(2):298-305. [PudMed:23394943]
[248] Weber BS et al (2013) Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter. PLoS One. 8(1):e55142. [PudMed:23365692]
[249] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[250] Liu WY et al (2013) Comparative Genome Analysis of Enterobacter cloacae. PLoS One. 8(9):e74487. [PudMed:24069314]
[251] Sarris PF et al (2013) Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots. PLoS One. 8(3):e59366. [PudMed:23555661]
[252] Hachani A et al (2013) A Visual Assay to Monitor T6SS-mediated Bacterial Competition. J Vis Exp. (73):e50103. [PudMed:23542679]
[253] Koskiniemi S et al (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A. 110(17):7032-7. [PudMed:23572593]
[254] Khan A et al (2013) Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards. World J Microbiol Biotechnol. 29(11):2033-44. [PudMed:23653265]
[255] Barret M et al (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep. 5(1):117-26. [PudMed:23757140]
[256] Varivarn K et al (2013) Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol. 13(1):92. [PudMed:23622502]
[257] Bullman S et al (2013) Genomic investigation into strain heterogeneity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus. PLoS One. 8(8):e71515. [PudMed:24023611]
[258] Memisevic V et al (2013) Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions. Mol Cell Proteomics. 12(11):3036-51. [PudMed:23800426]
[259] Carruthers MD et al (2013) Acinetobacter baumannii Utilizes a Type VI Secretion System for Bacterial Competition. PLoS One. 8(3):e59388. [PudMed:23527179]
[260] Darrasse A et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics. 14(1):761. [PudMed:24195767]
[261] Rosenzweig JA et al (2013) Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems. Front Cell Infect Microbiol. 0.173611111. [PudMed:24199174]
[262] Das C et al (2013) Understanding the sequential activation of Type III and Type VI Secretion Systems in Salmonella typhimurium using Boolean modeling. Gut Pathog. 5(1):28. [PudMed:24079299]
[263] Wang D et al (2013) Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. Microbiologyopen. 2(3):505-24. [PudMed:23606419]
[264] Nykyri J et al (2013) Role and Regulation of the Flp/Tad Pilus in the Virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS One. 8(9):e73718. [PudMed:24040039]
[265] Franca FL et al (2013) Genotypic and phenotypic characterisation of enteroaggregative Escherichia coli from children in Rio de Janeiro, Brazil. PLoS One. 8(7):e69971. [PudMed:23936127]
[266] Salavati A et al (2013) Proteomic insights into intra- and intercellular plant-bacteria symbiotic association during root nodule formation. Front Plant Sci. 4:28. [PudMed:23443347]
[267] Vandroemme J et al (2013) Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics. 14(1):829. [PudMed:24274055]
[268] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[269] Hao B et al (2013) Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol. 97(6):2575-85. [PudMed:22940804]
[270] Hayward MR et al (2013) Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 0.836805556. [PudMed:23725633]
[271] Miyata ST et al (2013) Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathog. 9(12):e1003752. [PudMed:24348240]
[272] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[273] Fu Y et al (2013) Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host Microbe. 14(6):652-63. [PudMed:24331463]
[274] Kaur J et al (2012) Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol Res. 167(4):199-210. [PudMed:21945101]
[275] Nikolakakis K et al (2012) The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol Microbiol. 84(3):516-29. [PudMed:22435733]
[276] Zou T et al (2012) Crystal structure of Pseudomonas aeruginosa Tsi2 reveals a stably folded superhelical antitoxin. J Mol Biol. 417(4):351-61. [PudMed:22310046]
[277] Pilatova M et al (2012) Burkholderia thailandensis is virulent in Drosophila melanogaster. PLoS One. 7(11):e49745. [PudMed:23209596]
[278] Dalbey RE et al (2012) Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. FEMS Microbiol Rev. 36(6):1023-45. [PudMed:22250915]
[279] Iraola G et al (2012) Reduced set of virulence genes allows high accuracy prediction of bacterial pathogenicity in humans. PLoS One. 7(8):e42144. [PudMed:22916122]
[280] Joseph S et al (2012) Comparative analysis of genome sequences covering the seven cronobacter species. PLoS One. 7(11):e49455. [PudMed:23166675]
[281] Basler M et al (2012) Type 6 secretion dynamics within and between bacterial cells. Science. 337(6096):815. [PudMed:22767897]
[282] Hodges K et al (2012) Interspecies communication in the gut, from bacterial delivery to host-cell response. J Physiol. 590(Pt 3):433-40. [PudMed:22106176]
[283] Rosales-Reyes R et al (2012) The Type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol. 14(2):255-73. [PudMed:22023353]
[284] Flannagan RS et al (2012) Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42. Cell Microbiol. 14(2):239-54. [PudMed:22023324]
[285] Gavrilin MA et al (2012) Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J Immunol. 188(7):3469-77. [PudMed:22368275]
[286] Kido H et al (2012) Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure. Biochim Biophys Acta. 1824(1):186-94. [PudMed:21801859]
[287] He Y et al (2012) FliC, a flagellin protein, is essential for the growth and virulence of fish pathogen Edwardsiella tarda. PLoS One. 7(9):e45070. [PudMed:23024793]
[288] Coggan KA et al (2012) Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol. 14(2):47-70. [PudMed:22354680]
[289] Kamada N et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 336(6086):1325-9. [PudMed:22582016]
[290] Ibrahim M et al (2012) Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PLoS One. 7(11):e49657. [PudMed:23166741]
[291] Unterweger D et al (2012) Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One. 7(10):e48320. [PudMed:23110230]
[292] Leroux M et al (2012) Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc Natl Acad Sci U S A. 109(48):19804-9. [PudMed:23150540]
[293] Fisher NA et al (2012) The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis. BMC Microbiol. 0.58125. [PudMed:22892068]
[294] Kung VL et al (2012) An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci U S A. 109(4):1275-80. [PudMed:22232685]
[295] Black M et al (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel). 3(1):138-66. [PudMed:24704847]
[296] McConnell MJ et al (2012) Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 37(2):130-55. [PudMed:22568581]
[297] Zhang D et al (2012) Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct. 7:18. [PudMed:22731697]
[298] Reen FJ et al (2012) Respiratory pathogens adopt a chronic lifestyle in response to bile. PLoS One. 7(9):e45978. [PudMed:23049911]
[299] Mulder DT et al (2012) Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect Immun. 80(6):1996-2007. [PudMed:22493086]
[300] Filloux A (2011) Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front Microbiol. 0.190972222. [PudMed:21811488]
[301] Silby MW et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev. 35(4):652-80. [PudMed:21361996]
[302] Opota O et al (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog. 7(9):e1002259. [PudMed:21980286]
[303] Mikkelsen H et al (2011) The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One. 6(12):e29113. [PudMed:22216178]
[304] Leung KY et al (2011) Type VI secretion regulation: crosstalk and intracellular communication. Curr Opin Microbiol. 14(1):9-15. [PudMed:20971679]
[305] Yamaguchi Y et al (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet. 45:61-79. [PudMed:22060041]
[306] Mandlik A et al (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe. 10(2):165-74. [PudMed:21843873]
[307] Moscoso JA et al (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol. 13(12):3128-38. [PudMed:21955777]
[308] Ballal SA et al (2011) Host and gut microbiota symbiotic factors: lessons from inflammatory bowel disease and successful symbionts. Cell Microbiol. 13(4):508-17. [PudMed:21314883]
[309] Yamaguchi Y et al (2011) Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Nat Rev Microbiol. 9(11):779-90. [PudMed:21927020]
[310] Poole SJ et al (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet. 7(8):e1002217. [PudMed:21829394]
[311] Mikkelsen H et al (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol. 13(7):1666-81. [PudMed:21554516]
[312] Weber B et al (2011) The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum. Microbiology. 157(Pt 12):3324-39. [PudMed:21948044]
[313] O'Brien HE et al (2011) Next-generation genomics of Pseudomonas syringae. Curr Opin Microbiol. 14(1):24-30. [PudMed:21233007]
[314] Tree JJ et al (2011) Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157:H7. Mol Microbiol. 80(5):1349-65. [PudMed:21492263]
[315] O'Grady EP et al (2011) Burkholderia cenocepacia Differential Gene Expression during Host-Pathogen Interactions and Adaptation to the Host Environment. Front Cell Infect Microbiol. 1:15. [PudMed:22919581]
[316] Burtnick MN et al (2011) The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 79(4):1512-25. [PudMed:21300775]
[317] Mutschler H et al (2011) A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9(3):e1001033. [PudMed:21445328]
[318] Fookes M et al (2011) Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog. 7(8):e1002191. [PudMed:21876672]
[319] Wu X et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. 35(2):299-323. [PudMed:20796030]
[320] Miyata ST et al (2010) The Vibrio Cholerae Type VI Secretion System: Evaluating its Role in the Human Disease Cholera. Front Microbiol. 0.122916667. [PudMed:21607085]
[321] Burtnick MN et al (2010) Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun. 78(1):88-99. [PudMed:19884331]
[322] Filloux A (2010) Secretion signal and protein targeting in bacteria: a biological puzzle. J Bacteriol. 192(15):3847-9. [PudMed:20525826]
[323] Roy PH et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 5(1):e8842. [PudMed:20107499]
[324] Dowling AJ et al (2010) Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243. PLoS One. 5(12):e15693. [PudMed:21203527]
[325] Hood RD et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 7(1):25-37. [PudMed:20114026]
[326] Suarez G et al (2010) Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. Microbiology. 156(Pt 12):3678-88. [PudMed:20798163]
[327] Ma AT et al (2010) In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A. 107(9):4365-70. [PudMed:20150509]
[328] Guindon S et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307-21. [PudMed:20525638]
[329] Blondel CJ et al (2010) Contribution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS One. 5(7):e11724. [PudMed:20661437]
[330] Asare R et al (2010) Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by Francisella tularensis. Environ Microbiol. 12(9):2559-86. [PudMed:20482590]
[331] Broms JE et al (2010) The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front Microbiol. 0.136111111. [PudMed:21687753]
[332] Tan KS et al (2010) Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. J Immunol. 184(9):5160-71. [PudMed:20335533]
[333] Bordi C et al (2010) Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol. 76(6):1427-43. [PudMed:20398205]
[334] de Pace F et al (2010) The type VI secretion system plays a role in type 1 fimbria expression and pathogenesis of an avian pathogenic Escherichia coli strain. Infect Immun. 78(12):4990-8. [PudMed:20855516]
[335] Konovalova A et al (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev. 34(2):89-106. [PudMed:19895646]
[336] Suarez G et al (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol. 192(1):155-68. [PudMed:19880608]
[337] MacIntyre DL et al (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A. 107(45):19520-4. [PudMed:20974937]
[338] Schwarz S et al (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6(8):e1001068. [PudMed:20865170]
[339] Chao G et al (2010) Distribution of genes encoding four pathogenicity islands (VPaIs), T6SS, biofilm, and type I pilus in food and clinical strains of Vibrio parahaemolyticus in China. Foodborne Pathog Dis. 7(6):649-58. [PudMed:20132020]
[340] Shrivastava S et al (2010) INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms. J Biosci. 35(3):351-64. [PudMed:20826944]
[341] Chow J et al (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe. 7(4):265-76. [PudMed:20413095]
[342] Kucerova E1, Clifton SW, Xia XQ, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 5(3):e9556. [PudMed:20221447]
[343] Aoki SK et al (2010) A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature. 468(7322):439-42. [PudMed:21085179]
[344] Asare R et al (2010) Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol. 0.142361111. [PudMed:21687747]
[345] Desvaux M et al (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 17(4):139-45. [PudMed:19299134]
[346] Shanks J et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun. 77(4):1636-48. [PudMed:19168747]
[347] Barker JR et al (2009) The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol. 74(6):1459-70. [PudMed:20054881]
[348] Mueller RS et al (2009) Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol. 191(11):3504-16. [PudMed:19329638]
[349] Byrd MS et al (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol. 73(4):622-38. [PudMed:19659934]
[350] Ueda A et al (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog. 5(6):e1000483. [PudMed:19543378]
[351] Wehrly TD et al (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol. 11(7):1128-50. [PudMed:19388904]
[352] Schmeisser C et al (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol. 75(12):4035-45. [PudMed:19376903]
[353] Starkey M et al (2009) Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc. 4(2):117-24. [PudMed:19180083]
[354] Wang Q et al (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4(10):e7646. [PudMed:19865481]
[355] Syed KA et al (2009) The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol. 191(21):6555-70. [PudMed:19717600]
[356] Lazar Adler NR et al (2009) The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease?. FEMS Microbiol Rev. 33(6):1079-99. [PudMed:19732156]
[357] Carranza P et al (2009) Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen. Proteomics. 9(13):3564-79. [PudMed:19609963]
[358] Larsson P et al (2009) Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog. 5(6):e1000472. [PudMed:19521508]
[359] Robinson JB et al (2009) Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog. 47(5):243-51. [PudMed:19716410]
[360] Ma AT et al (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe. 5(3):234-43. [PudMed:19286133]
[361] Burdette DL et al (2009) Not without cause: Vibrio parahaemolyticus induces acute autophagy and cell death. Autophagy. 5(1):100-2. [PudMed:19011375]
[362] Weber B et al (2009) Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol. 11(12):3018-28. [PudMed:19624706]
[363] Schmerk CL et al (2009) A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology. 155(Pt 5):1498-504. [PudMed:19372155]
[364] Schmerk CL et al (2009) Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology. 155(Pt 5):1489-97. [PudMed:19372153]
[365] Wang X et al (2009) Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol. 27(3):469-77. [PudMed:19563898]
[366] Weng M et al (2009) Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli. Biochim Biophys Acta. 1794(11):1566-72. [PudMed:19631297]
[367] Haneda T et al (2009) Genome-wide identification of novel genomic islands that contribute to Salmonella virulence in mouse systemic infection. FEMS Microbiol Lett. 297(2):241-9. [PudMed:19583791]
[368] O'Grady EP et al (2009) Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics. 0.722916667. [PudMed:19761612]
[369] Ray K et al (2009) Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol. 7(5):333-40. [PudMed:19369949]
[370] Tseng TT et al (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 Suppl 1:S2. [PudMed:19278550]
[371] Boyd EF et al (2008) Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol. 0.409722222. [PudMed:18590559]
[372] Yuan ZC et al (2008) Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol. 190(2):494-507. [PudMed:17993523]
[373] Ge Z et al (2008) Helicobacter hepaticus HHGI1 is a pathogenicity island associated with typhlocolitis in B6.129-IL10 tm1Cgn mice. Microbes Infect. 10(7):726-33. [PudMed:18538610]
[374] Navarro L et al (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science. 321(5891):964-7. [PudMed:18703740]
[375] Kang Y et al (2008) The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology. 154(Pt 6):1584-98. [PudMed:18524913]
[376] Chong A et al (2008) The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun. 76(12):5488-99. [PudMed:18852245]
[377] Shrivastava S et al (2008) Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PLoS One. 3(8):e2955. [PudMed:18698408]
[378] Degrave A et al (2008) Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol Plant Microbe Interact. 21(8):1076-86. [PudMed:18616404]
[379] Zhang S et al (2008) Transcriptional response of chicken macrophages to Salmonella enterica serovar enteritidis infection. Dev Biol (Basel). 132:141-51. [PudMed:18817296]
[380] Ludu JS et al (2008) The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol. 190(13):4584-95. [PudMed:18469101]
[381] Loukiadis E et al (2008) Distribution, functional expression, and genetic organization of Cif, a phage-encoded type III-secreted effector from enteropathogenic and enterohemorrhagic Escherichia coli. J Bacteriol. 190(1):275-85. [PudMed:17873042]
[382] Waterfield NR et al (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci U S A. 105(41):15967-72. [PudMed:18838673]
[383] Fauvart M et al (2008) Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett. 285(1):1-9. [PudMed:18616593]
[384] Gibbs KA et al (2008) Genetic determinants of self identity and social recognition in bacteria. Science. 321(5886):256-9. [PudMed:18621670]
[385] Pieper R et al (2008) Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics. 8(7):1442-58. [PudMed:18383009]
[386] de Berardinis V et al (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol. 0.2875. [PudMed:18319726]
[387] Nemoto M et al (2008) ORF334 in Vibrio phage KVP40 plays the role of gp27 in T4 phage to form a heterohexameric complex. J Bacteriol. 190(10):3606-12. [PudMed:18326574]
[388] Forouhar F et al (2007) Functional insights from structural genomics. J Struct Funct Genomics. 8(2-3):37-44. [PudMed:17588214]
[389] Schell MA et al (2007) Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 64(6):1466-85. [PudMed:17555434]
[390] Smith MG et al (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5):601-14. [PudMed:17344419]
[391] Tamayo R et al (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol. 61:131-48. [PudMed:17480182]
[392] Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol. 9(7):797-803. [PudMed:17558395]
[393] Lombardo MJ et al (2007) An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci U S A. 104(46):18229-34. [PudMed:17986616]
[394] Gerlach RG et al (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 297(6):401-15. [PudMed:17482513]
[395] Guina T et al (2007) MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J Bacteriol. 189(18):6580-6. [PudMed:17644593]
[396] Santic M et al (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol. 9(10):2391-403. [PudMed:17517064]
[397] Shalom G et al (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 153(Pt 8):2689-99. [PudMed:17660433]
[398] Mohapatra NP et al (2007) Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun. 75(7):3305-14. [PudMed:17452468]
[399] Darwin AJ (2007) Regulation of the phage-shock-protein stress response in Yersinia enterocolitica. Adv Exp Med Biol. 603:167-77. [PudMed:17966413]