References

SecReT6 contains data from 1015 references related to type VI secretion systems (T6SSs). Last Update: June 11th, 2021

Search

  

  

References of different categories

[1] Nunes-Alves C (2015) Structural biology: Hand in hand structure and function of T6SSs. Nat Rev Microbiol. 13(4):186-7. [PudMed:25749451]
[2] Salomon D et al (2015) Type VI secretion system. Curr Biol. 25(7):R265-6. [PudMed:25829005]
[3] Ceuleneer MD et al (2015) Role of the Bacterial Type VI Secretion System in the Modulation of Mammalian Host Cell Immunity. Curr Med Chem. 22(14):1734-44. [PudMed:25882545]
[4] Pieretti I et al (2015) What makes Xanthomonas albilineans unique amongst xanthomonads?. Front Plant Sci. 0.450694444. [PudMed:25964795]
[5] Wang R et al (2015) The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol. 0.35. [PudMed:25798132]
[6] Costa TR et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 13(6):343-359. [PudMed:25978706]
[7] Durand E et al (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature. 523(7562):555-60. [PudMed:26200339]
[8] Ryu CM (2015) Against friend and foe: Type 6 effectors in plant-associated bacteria. J Microbiol. 53(3):201-8. [PudMed:25732741]
[9] LeRoux M et al (2015) Bacterial danger sensing. J Mol Biol. pii: S0022-2836(15)00541-0. [PudMed:26434507]
[10] Alcoforado Diniz J et al (2015) Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cell Microbiol. doi: 10.1111/cmi.12532. [PudMed:26432982]
[11] Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci. 5-Oct. [PudMed:26370934]
[12] Li J et al (2015) Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 43(1):175-80. [PudMed:25541077]
[13] Jamet A et al (2015) New Players in the Toxin Field: Polymorphic Toxin Systems in Bacteria. MBio. 6(3). [PudMed:25944858]
[14] Chen L et al (2015) Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res. 172C:19-25. [PudMed:25721475]
[15] Benz J et al (2014) Antibacterial effector/immunity systems: it's just the tip of the iceberg. Curr Opin Microbiol. 17C:1-10. [PudMed:24581686]
[16] Russell AB et al (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 12(2):137-48. [PudMed:24384601]
[17] Steinert M (2014) Pathogen intelligence. Front Cell Infect Microbiol. 4:08. [PudMed:24551600]
[18] Zoued A et al (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta. 1843(8):1664-73. [PudMed:24681160]
[19] Durand E et al (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol. 22(9):498-507. [PudMed:25042941]
[20] Tashiro Y et al (2013) Interspecies Interaction between Pseudomonas aeruginosa and Other Microorganisms. Microbes Environ. 28(1):13-24. [PudMed:23363620]
[21] Erken M et al (2013) The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. Microb Ecol. 65(4):860-8. [PudMed:23354181]
[22] Filloux A (2013) The rise of the Type VI secretion system. F1000Prime Rep. 5:52. [PudMed:24381728]
[23] Coulthurst SJ (2013) The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 164(6):640-54. [PudMed:23542428]
[24] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[25] Miller JF (2013) Gaming the competition in microbial cell-cell interactions. EMBO J. 32(6):778-80. [PudMed:23443046]
[26] Braun V et al (2013) Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett. 345(1):13-21. [PudMed:23701660]
[27] Miyata ST et al (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol. 62(Pt 5):663-76. [PudMed:23429693]
[28] Ho BT et al (2013) A View to a Kill: The Bacterial Type VI Secretion System. Cell Host Microbe. 15(1):9-21. [PudMed:24332978]
[29] Pukatzki S et al (2013) Vibrio cholerae as a predator: lessons from evolutionary principles. Front Microbiol. 0.433333333. [PudMed:24368907]
[30] Ceccarelli D et al (2013) Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol. 0.192361111. [PudMed:24377090]
[31] Cascales E et al (2012) Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci. 367(1592):1102-11. [PudMed:22411981]
[32] Dalbey RE et al (2012) Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. FEMS Microbiol Rev. 36(6):1023-45. [PudMed:22250915]
[33] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[34] Hodges K et al (2012) Interspecies communication in the gut, from bacterial delivery to host-cell response. J Physiol. 590(Pt 3):433-40. [PudMed:22106176]
[35] Leung KY et al (2012) Edwardsiella tarda - virulence mechanisms of an emerging gastroenteritis pathogen. Microbes Infect. 14(1):26-34. [PudMed:21924375]
[36] Silverman JM et al (2012) Structure and Regulation of the Type VI Secretion System. Annu Rev Microbiol. 66:453-72. [PudMed:22746332]
[37] Silby MW et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev. 35(4):652-80. [PudMed:21361996]
[38] Leung KY et al (2011) Type VI secretion regulation: crosstalk and intracellular communication. Curr Opin Microbiol. 14(1):9-15. [PudMed:20971679]
[39] Li J et al (2011) [Advances in bacterial type VI secretion system--a review]. Wei Sheng Wu Xue Bao. 51(3):291-6. [PudMed:21604542]
[40] Veesler D et al (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev. 75(3):423-33. [PudMed:21885679]
[41] O'Brien HE et al (2011) Next-generation genomics of Pseudomonas syringae. Curr Opin Microbiol. 14(1):24-30. [PudMed:21233007]
[42] Kitaoka M et al (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol. 60(Pt 4):397-407. [PudMed:21252269]
[43] Miyata ST et al (2010) The Vibrio Cholerae Type VI Secretion System: Evaluating its Role in the Human Disease Cholera. Front Microbiol. 0.122916667. [PudMed:21607085]
[44] Schwarz S et al (2010) What is type VI secretion doing in all those bugs. Trends Microbiol. 18(12):531-7. [PudMed:20961764]
[45] Bonemann G et al (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol. 76(4):815-21. [PudMed:20444095]
[46] Jani AJ et al (2010) Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe. 8(1):2-6. [PudMed:20638635]
[47] Hayes CS et al (2010) Bacterial contact-dependent delivery systems. Annu Rev Genet. 44:71-90. [PudMed:21047256]
[48] Bleves S et al (2010) Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int J Med Microbiol. 300(8):534-43. [PudMed:20947426]
[49] Holland IB (2010) The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol Biol. 619:1-20. [PudMed:20419401]
[50] Bernard CS et al (2010) Nooks and crannies in type VI secretion regulation. J Bacteriol. 192(15):3850-60. [PudMed:20511495]
[51] Santic M et al (2010) Cell biology and molecular ecology of Francisella tularensis. Cell Microbiol. 12(2):129-39. [PudMed:19863554]
[52] Satchell KJ (2009) Bacterial martyrdom: phagocytes disabled by type VI secretion after engulfing bacteria. Cell Host Microbe. 5(3):213-4. [PudMed:19286128]
[53] Matsumoto H et al (2009) Translocated effectors of Yersinia. Curr Opin Microbiol. 12(1):94-100. [PudMed:19185531]
[54] Pukatzki S et al (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol. 12(1):11-7. [PudMed:19162533]
[55] Ray K et al (2009) Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol. 7(5):333-40. [PudMed:19369949]
[56] Filloux A et al (2008) The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology. 154(Pt 6):1570-83. [PudMed:18524912]
[57] Bingle LE et al (2008) Type VI secretion: a beginner's guide. Curr Opin Microbiol. 11(1):3-8. [PudMed:18289922]
[58] Tamayo R et al (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol. 61:131-48. [PudMed:17480182]
[59] Nano FE et al (2007) The Francisella pathogenicity island. Ann N Y Acad Sci. 1105:122-37. [PudMed:17395722]
[60] Gerlach RG et al (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 297(6):401-15. [PudMed:17482513]
[61] Titball RW et al (2007) Francisella tularensis genomics and proteomics. Ann N Y Acad Sci. 1105:98-121. [PudMed:17435122]
[62] Cambronne ED et al (2006) Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic. 7(8):929-39. [PudMed:16734660]
[63] Venturi V. (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev. 30(2):274-91. [PudMed:16472307]
[64] Costerton JW et al (1999) Bacterial biofilms: a common cause of persistent infections. Science. 284(5418):1318-22. [PudMed:10334980]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[3] Wang Z, Huang X, Jan M, Kong D, Pan J, Zhang X. (2021) The global regulator Hfq exhibits far more extensive and intensive regulation than Crc in Pseudomonas protegens H78.. Mol Plant Pathol. NA. [PudMed:33963656]
[4] Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. (2021) Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida.. Front Microbiol. 12:643498. [PudMed:33776977]
[5] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[6] Crisan CV, Nichols HL, Wiesenfeld S, Steinbach G, Yunker PJ, Hammer BK. (2021) Glucose confers protection to Escherichia coli against contactkilling by Vibrio cholerae.. Sci Rep. 11(1):2935. [PudMed:33536444]
[7] Liu Y, Wang J, Zhang Z, Wang F, Gong Y, Sheng DH, Li YZ. (2021) Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus.. Appl Environ Microbiol. 87(9). [PudMed:33608292]
[8] Bernal P, Furniss RCD, Fecht S, Leung RCY, Spiga L, Mavridou DAI, Filloux A. (2021) A novel stabilization mechanism for the type VI secretion system sheath.. Proc Natl Acad Sci U S A. 118(7). [PudMed:33558227]
[9] Myint SL, Zlatkov N, Aung KM, Toh E, Sjstrm A, Nadeem A, Duperthuy M, Uhlin BE, Wai SN. (2021) Ecotin and LamB in Escherichia coli influence the susceptibility to Type VI secretion-mediated interbacterial competition and killing by Vibrio cholerae.. Biochim Biophys Acta Gen Subj. 1865(7):129912. [PudMed:33892013]
[10] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[11] Cai R, Gao F, Pan J, Hao X, Yu Z, Qu Y, Li J, Wang D, Wang Y, Shen X, Liu X, Yang Y. (2021) The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis.. Microbiol Res. 249:126787. [PudMed:33991717]
[12] Wang S, Geng Z, Zhang H, She Z, Dong Y. (2021) The Pseudomonasaeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector.. FEBS J. NA. [PudMed:33838074]
[13] Wang N, Han N, Tian R, Chen J, Gao X, Wu Z, Liu Y, Huang L. (2021) Role of the Type VI Secretion System in the Pathogenicity of Pseudomonas syringae pv. actinidiae, the Causative Agent of Kiwifruit Bacterial Canker.. Front Microbiol. 12:627785. [PudMed:33679650]
[14] Montenegro Benavides NA, Alvarez B A, Arrieta-Ortiz ML, Rodriguez-R LM, Botero D, Tabima JF, Castiblanco L, Trujillo C, Restrepo S, Bernal A. (2021) The type VI secretion system of Xanthomonas phaseoli pv. manihotis is involved in virulence and in vitro motility.. BMC Microbiol. 21(1):14. [PudMed:33407123]
[15] Dur��n D, Bernal P, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Mart��n M. (2021) Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the rhizosphere microbiome.. Sci Rep. 11(1):5772. [PudMed:33707614]
[16] Kretsch AM, Morgan GL, Acken KA, Barr SA, Li B. (2021) Pseudomonas Virulence Factor Pathway Synthesizes Autoinducers That Regulate the Secretome of a Pathogen.. ACS Chem Biol. 16(3):501-509. [PudMed:33595276]
[17] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[18] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[19] Liang X, Pei TT, Wang ZH, Xiong W, Wu LL, Xu P, Lin S, Dong TG. (2021) Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU.. Appl Environ Microbiol. 87(12):e0043521. [PudMed:33837015]
[20] Jiao H, Li F, Wang T, Yam JKH, Yang L, Liang H. (2021) The Pyocin Regulator PrtR Regulates Virulence Expression of Pseudomonas aeruginosa by Modulation of Gac/Rsm System and c-di-GMP Signaling Pathway.. Infect Immun. 89(2). [PudMed:33168590]
[21] Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. (2020) Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.. Nat Commun. 11(1):1865. [PudMed:32313027]
[22] Antar A, Lee MA, Yoo Y, Cho MH, Lee SW. (2020) PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae.. Pathogens. 9(11). [PudMed:33212951]
[23] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[24] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[25] Hersch SJ, Watanabe N, Stietz MS, Manera K, Kamal F, Burkinshaw B, Lam L, Pun A, Li M, Savchenko A, Dong TG. (2020) Envelope stress responses defend against type six secretion system attacks independently of immunity proteins.. Nat Microbiol. 5(5):706-714. [PudMed:32094588]
[26] Speare L, Smith S, Salvato F, Kleiner M, Septer AN. (2020) Environmental Viscosity Modulates Interbacterial Killing during Habitat Transition.. mBio. 11(1). [PudMed:32019799]
[27] Kamal F, Liang X, Manera K, Pei TT, Kim H, Lam LG, Pun A, Hersch SJ, Dong TG. (2020) Differential Cellular Response to Translocated Toxic Effectors and Physical Penetration by the Type VI Secretion System.. Cell Rep. 31(11):107766. [PudMed:32553162]
[28] Brewer LK, Huang W, Hackert BJ, Kane MA, Oglesby AG. (2020) Static Growth Promotes PrrF and 2-Alkyl-4(1H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa.. J Bacteriol. 202(24). [PudMed:33020221]
[29] Wang T, Hu Z, Du X, Shi Y, Dang J, Lee M, Hesek D, Mobashery S, Wu M, Liang H. (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors.. Mol Microbiol. 114(2):308-321. [PudMed:32279364]
[30] Ahmad S, Tsang KK, Sachar K, Quentin D, Tashin TM, Bullen NP, Raunser S, McArthur AG, Prehna G, Whitney JC. (2020) Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones.. Elife. 9. [PudMed:33320089]
[31] Wang Z, Wang T, Cui R, Zhang Z, Chen K, Li M, Hua Y, Gu H, Xu L, Wang Y, Yang Y, Shen X. (2020) HpaR, the Repressor of Aromatic Compound Metabolism, Positively Regulates the Expression of T6SS4 to Resist Oxidative Stress in Yersinia pseudotuberculosis.. Front Microbiol. 0.947916667. [PudMed:32362886]
[32] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[33] Zhu PC, Li YM, Yang X, Zou HF, Zhu XL, Niu XN, Xu LH, Jiang W, Huang S, Tang JL, He YQ. (2020) Type VI secretion system is not required for virulence on rice but for inter-bacterial competition in Xanthomonas oryzae pv. oryzicola.. Res Microbiol. 171(2):64-73. [PudMed:31676435]
[34] Chien CF, Liu CY, Lu YY, Sung YH, Chen KY, Lin NC. (2020) HSI-II Gene Cluster of Pseudomonas syringae pv. tomato DC3000 Encodes a Functional Type VI Secretion System Required for Interbacterial Competition.. Front Microbiol. 1.234722222. [PudMed:32582082]
[35] Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, Matsuyama BY, Mesnage S, Patel A, de Souza RF, Guzzo CR, Bayer-Santos E. (2020) A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan.. Cell Rep. 31(12):107813. [PudMed:32579939]
[36] Soria-Bustos J, Ares MA, G��mez-Aldapa CA, Gonz��lez-Y-Merchand JA, Gir��n JA, De la Cruz MA. (2020) Two Type VI Secretion Systems of Enterobacter cloacae Are Required for Bacterial Competition, Cell Adherence, and Intestinal Colonization.. Front Microbiol. 11:560488. [PudMed:33072020]
[37] Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK. (2020) Molecular characterization of megaplasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards.. Sci Rep. 10(1):12514. [PudMed:32719325]
[38] Song H, Kang Y, Qian A, Shan X, Li Y, Zhang L, Zhang H, Sun W. (2020) Inactivation of the T6SS inner membrane protein DotU results in severe attenuation and decreased pathogenicity of Aeromonas veronii TH0426.. BMC Microbiol. 20(1):76. [PudMed:32245412]
[39] Kochanowsky RM, Bradshaw C, Forlastro I, Stock SP. (2020) Xenorhabdus bovienii strain jolietti uses a type 6 secretion system to kill closely related Xenorhabdus strains.. FEMS Microbiol Ecol. 96(8). [PudMed:32558899]
[40] Knittel V, Sadana P, Seekircher S, Stolle AS, Krner B, Volk M, Jeffries CM, Svergun DI, Heroven AK, Scrima A, Dersch P. (2020) RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression.. PLoS Pathog. 16(9):e1008552. [PudMed:32966346]
[41] Guckes KR, Cecere AG, Williams AL, McNeil AE, Miyashiro T. (2020) The Bacterial Enhancer Binding Protein VasH Promotes Expression of a Type VI Secretion System in Vibrio fischeri during Symbiosis.. J Bacteriol. 202(7). [PudMed:31964698]
[42] Lin HH, Yu M, Sriramoju MK, Hsu SD, Liu CT, Lai EM. (2020) A High-Throughput Interbacterial Competition Screen Identifies ClpAP in Enhancing Recipient Susceptibility to Type VI Secretion System-Mediated Attack by Agrobacterium tumefaciens.. Front Microbiol. 2.553472222. [PudMed:32117077]
[43] Qiu Y, Hu L, Yang W, Yin Z, Zhou D, Yang H, Zhang Y. (2020) The type VI secretion system 2 of Vibrio parahaemolyticus is regulated by QsvR.. Microb Pathog. 149:104579. [PudMed:33091577]
[44] Zhang W, Xie R, Zhang XD, Lee LTO, Zhang H, Yang M, Peng B, Zheng J. (2020) Organism dual RNA-seq reveals the importance of BarA/UvrY in Vibrio parahaemolyticus virulence.. FASEB J. 34(6):7561-7577. [PudMed:32281204]
[45] Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. (2020) In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes.. Mol Plant Microbe Interact. 33(2):349-363. [PudMed:31609645]
[46] Bellieny-Rabelo D, Nkomo NP, Shyntum DY, Moleleki LN. (2020) Horizontally Acquired Quorum-Sensing Regulators Recruited by the PhoP Regulatory Network Expand the Host Adaptation Repertoire in the Phytopathogen Pectobacterium brasiliense.. mSystems. 5(1). [PudMed:31992632]
[47] Alam A, Golovliov I, Javed E, Kumar R, d��n J, Sjstedt A. (2020) Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence.. PLoS Pathog. 16(4):e1008466. [PudMed:32275693]
[48] Yin K, Zhang J, Ma J, Jin P, Ma Y, Zhang Y, Liu X, Wang Q. (2020) MviN mediates the regulation of environmental osmotic pressure on esrB to control the virulence in the marine fish pathogen Edwardsiella piscicida.. Microbiol Res. 239:126528. [PudMed:32622286]
[49] Hu L, Wang C, Lu W, Lu H, Chen H, Tan C. (2020) BaeSR activates type VI secretion system expression in porcine extra-intestinal pathogenic Escherichia coli to enhance bacterial resistance to zinc stress.. Microb Pathog. 147:104357. [PudMed:32603765]
[50] Brunet YR, Bernard CS, Cascales E. (2020) Fur-Dam Regulatory Interplay at an Internal Promoter of the Enteroaggregative Escherichia coli Type VI Secretion sci1 Gene Cluster.. J Bacteriol. 202(10). [PudMed:32152218]
[51] Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. (2020) Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae.. BMC Genomics. 21(1):296. [PudMed:32272893]
[52] Donato SL, Beck CM, Garza-S��nchez F, Jensen SJ, Ruhe ZC, Cunningham DA, Singleton I, Low DA, Hayes CS. (2020) The ��-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion.. Proc Natl Acad Sci U S A. NA. [PudMed:33323487]
[53] Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. (2020) tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system.. Mol Plant Pathol. 21(8):1042-1054. [PudMed:32608174]
[54] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[55] Seibt H, Aung KM, Ishikawa T, Sjstrm A, Gullberg M, Atkinson GC, Wai SN, Shingler V. (2020) Elevated levels of VCA0117 (VasH) in response to external signals activate the type VI secretion system of Vibrio cholerae O1 El Tor A1552.. Environ Microbiol. 22(10):4409-4423. [PudMed:32592280]
[56] Guillemette R, Ushijima B, Jalan M, Hse CC, Azam F. (2020) Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus.. PLoS One. 15(1):e0227864. [PudMed:31990915]
[57] Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. (2020) Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system.. Vet Res. 51(1):71. [PudMed:32448355]
[58] Kaiyu Yin, Yue Peng, Moamer A H Ahmed, Jiabao Ma 1, Rongjing Xu 2, Yuanxing Zhang 3, Yue Ma 4, Qiyao Wang (2020) PepA Binds to and Negatively Regulates esrB to Control Virulence in the Fish Pathogen Edwardsiella Piscicida. Microbiol Res. 232:126349. [PudMed:31816594]
[59] Choi Y, Kim N, Mannaa M, Kim H, Park J, Jung H, Han G, Lee HH, Seo YS. (2020) Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice.. Plant Pathol J. 36(3):289-296. [PudMed:32547344]
[60] Joshi A, Mahmoud SA, Kim SK, Ogdahl JL, Lee VT, Chien P, Yildiz FH. (2020) c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae.. PLoS Genet. 16(6):e1008897. [PudMed:32589664]
[61] Caro F, Caro JA, Place NM, Mekalanos JJ. (2020) Transcriptional Silencing by TsrA in the Evolution of Pathogenic Vibrio cholerae Biotypes.. mBio. 11(6). [PudMed:33234688]
[62] Vacheron J, P��chy-Tarr M, Brochet S, Heiman CM, Stojiljkovic M, Maurhofer M, Keel C. (2019) T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens.. ISME J. 13(5):1318-1329. [PudMed:30683920]
[63] Xiaobing Yang, Yunhong Song, Qingyun Dai, Hongyun Zhang, Li Song, Zhuo Wang, Junfeng Pan, Yao Wang (2019) The Stringent Response Factor, RelA, Positively Regulates T6SS4 Expression Through the RovM/RovA Pathway in Yersinia Pseudotuberculosis. Microbiol Res. 220:32-41. [PudMed:30744817]
[64] Lisa C Metzger, Noémie Matthey, Candice Stoudmann, Esther J Collas, Melanie Blokesch (2019) Ecological Implications of Gene Regulation by TfoX and TfoY Among Diverse Vibrio Species. Environ Microbiol. 21(7):2231-2247. [PudMed:30761714]
[65] Nicole M Bzdyl, Nichollas E Scott, Isobel H Norville, Andrew E Scott, Timothy Atkins, Stanley Pang, Derek S Sarovich, Geoffrey Coombs, Timothy J J Inglis, Charlene M Kahler, Mitali Sarkar-Tyson (2019) Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia Pseudomallei. Infect Immun. 87(10):e00528-19. [PudMed:31331957]
[66] Guckes KR, Cecere AG, Wasilko NP, Williams AL, Bultman KM, Mandel MJ, Miyashiro T. (2019) Incompatibility of Vibrio fischeri Strains during Symbiosis Establishment Depends on Two Functionally Redundant hcp Genes.. J Bacteriol. 201(19). [PudMed:31331977]
[67] T G Sana , R Lomas, M R Gimenez, A Laubier, C Soscia, C Chauvet, A Conesa, R Voulhoux, B Ize, S Bleves (2019) Differential Modulation of Quorum Sensing Signaling Through QslA in Pseudomonas Aeruginosa Strains PAO1 and PA14. J Bacteriol. 201(21):e00362-19. [PudMed:31405911]
[68] Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. (2019) The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization.. Front Microbiol. 2.405555556. [PudMed:31921044]
[69] Szwedziak P, Pilhofer M. (2019) Bidirectional contraction of a type six secretion system.. Nat Commun. 10(1):1565. [PudMed:30952865]
[70] Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. (2019) Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters.. Genome Biol. 20(1):163. [PudMed:31405375]
[71] Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. (2019) Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp.. Appl Environ Microbiol. 85(2). [PudMed:30413477]
[72] Wood TE, Howard SA, Frster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. (2019) The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology.. Cell Rep. 29(1):187-201. [PudMed:31577948]
[73] Pei-Fang Hsieh, Yi-Rou Lu, Tzu-Lung Lin, Li-Yin Lai, Jin-Town Wang (2019) Klebsiella Pneumoniae Type VI Secretion System Contributes to Bacterial Competition, Cell Invasion, Type-1 Fimbriae Expression, and In Vivo Colonization. J Infect Dis. 219(4):637-647. [PudMed:30202982]
[74] Rotem Ben-Yaakov, Dor Salomon (2019) The Regulatory Network of Vibrio Parahaemolyticus Type VI Secretion System 1. Environ Microbiol. 21(7):2248-2260. [PudMed:30882997]
[75] Zhengfei Yi, Dong Wang, Suhua Xin, Dongliang Zhou, Tao Li, Mingxing Tian, Jingjing Qi, Chan Ding, Shaohui Wang, Shengqing Yu (2019) The CpxR Regulates Type VI Secretion System 2 Expression and Facilitates the Interbacterial Competition Activity and Virulence of Avian Pathogenic Escherichia Coli. Vet Res. 50(1):40. [PudMed:31126325]
[76] Lifan Wei, Haoxian Qiao, Bing Liu, Kaiyu Yin, Qin Liu, Yuanxing Zhang, Yue Ma, Qiyao Wang (2019) MarTrack: A Versatile Toolbox of Mariner Transposon Derivatives Used for Functional Genetic Analysis of Bacterial Genomes. Microbiol Res. 228:126306. [PudMed:31422233]
[77] Li L, Wang YN, Jia HB, Wang P, Dong JF, Deng J, Lu FM, Zou QH. (2019) The type VI secretion system protein AsaA in Acinetobacter baumannii is a periplasmic protein physically interacting with TssM and required for T6SS assembly.. Sci Rep. 9(1):9438. [PudMed:31263148]
[78] Tekedar HC, Abdelhamed H, Kumru S, Blom J, Karsi A, Lawrence ML. (2019) Comparative Genomics of Aeromonas hydrophila Secretion Systems and Mutational Analysis of hcp1 and vgrG1 Genes From T6SS.. Front Microbiol. 2.608333333. [PudMed:30687246]
[79] Giuseppina Mariano, Katharina Trunk, David J Williams, Laura Monlezun, Henrik Strahl, Samantha J Pitt, Sarah J Coulthurst (2019) A Family of Type VI Secretion System Effector Proteins That Form Ion-Selective Pores. Nat Commun. 10(1):5484. [PudMed:31792213]
[80] Biswanath Jana, Chaya M Fridman, Eran Bosis, Dor Salomon (2019) A Modular Effector With a DNase Domain and a Marker for T6SS Substrates. Nat Commun. 10(1):3595. [PudMed:31399579]
[81] Di Venanzio G, Moon KH, Weber BS, Lopez J, Ly PM, Potter RF, Dantas G, Feldman MF. (2019) Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination.. Proc Natl Acad Sci U S A. 116(4):1378-1383. [PudMed:30626645]
[82] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[83] Yuying Han, Tietao Wang, Gukui Chen, Qinqin Pu, Qiong Liu, Yani Zhang, Linghui Xu, Min Wu, Haihua Liang (2019) A Pseudomonas Aeruginosa Type VI Secretion System Regulated by CueR Facilitates Copper Acquisition. PLoS Pathog. 15(12):e1008198. [PudMed:31790504]
[84] Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. (2019) Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition.. Microbiologyopen. NA. [PudMed:30628184]
[85] Salinero-Lanzarote A, Pacheco-Moreno A, Domingo-Serrano L, Dur��n D, Ormeo-Orrillo E, Mart��nez-Romero E, Albareda M, Palacios JM, Rey L. (2019) The Type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis.. FEMS Microbiol Ecol. 95(5). [PudMed:30977796]
[86] Ronan R McCarthy, Manda Yu, Kira Eilers, Yi-Chieh Wang, Erh-Min Lai, Alain Filloux (2019) Cyclic di-GMP Inactivates T6SS and T4SS Activity in Agrobacterium Tumefaciens. Mol Microbiol. 112(2):632-648. [PudMed:31102484]
[87] Berni B, Soscia C, Djermoun S, Ize B, Bleves S (2019) A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol. 1.2625. [PudMed:31231326]
[88] Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y, Zheng Y, Hu L, Li P, Chen H, Tan C. (2019) Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli.. Virulence. 10(1):118-132. [PudMed:30676217]
[89] Santin YG, Camy CE, Zoued A, Doan T, Aschtgen MS, Cascales E. (2019) Role and Recruitment of the TagL Peptidoglycan-Binding Protein during Type VI Secretion System Biogenesis.. J Bacteriol. 201(12). [PudMed:30910811]
[90] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[91] Tan J, Yang D, Wang Z, Zheng X, Zhang Y, Liu Q (2019) EvpP inhibits neutrophils recruitment via Jnk-caspy inflammasome signaling in vivo. Fish Shellfish Immunol. 92:851-860. [PudMed:31129187]
[92] Ahmad S, Wang B, Walker MD, Tran HR, Stogios PJ, Savchenko A, Grant RA, McArthur AG, Laub MT, Whitney JC (2019) An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 575(7784):674-678. [PudMed:31695193]
[93] Josh S Sharp , Arne Rietsch, Simon L Dove (2019) RNase E Promotes Expression of Type III Secretion System Genes in Pseudomonas Aeruginosa. J Bacteriol. 201(22):e00336-19. [PudMed:31481542]
[94] Shaohui Wang, Denghui Yang, Xiaojun Wu, Zhengfei Yi, Yang Wang, Suhua Xin, Dong Wang, Mingxing Tian, Tao Li, Jingjing Qi, Chan Ding, Shengqing Yu (2019) The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the clpV Promoter in Salmonella enterica Serovar Typhimurium. Infect Immun. 87(10):e00562-19. [PudMed:31383745]
[95] Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. (2019) A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae.. Mol Microbiol. 111(6):1493-1509. [PudMed:30825339]
[96] Panayiota Pissaridou, Luke P Allsopp, Sarah Wettstadt, Sophie A Howard, Despoina A I Mavridou, Alain Filloux (2018) The Pseudomonas aeruginosa T6SS-VgrG1b Spike Is Topped by a PAAR Protein Eliciting DNA Damage to Bacterial Competitors. Proc Natl Acad Sci U S A. 115(49):12519-12524. [PudMed:30455305]
[97] Yuzhou Wang, Ye Li, Jianli Wang, Xiaoyuan Wang (2018) FleQ Regulates Both the Type VI Secretion System and Flagella in Pseudomonas Putida. Biotechnol Appl Biochem. 65(3):419-427. [PudMed:28968917]
[98] Santin YG, Doan T, Lebrun R, Espinosa L, Journet L, Cascales E (2018) In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol. 3(11):1304-1313. [PudMed:30275513]
[99] Jer-Sheng Lin, Panayiota Pissaridou, Hsin-Hui Wu, Ming-Daw Tsai, Alain Filloux, Erh-Min Lai (2018) TagF-mediated Repression of Bacterial Type VI Secretion Systems Involves a Direct Interaction With the Cytoplasmic Protein Fha. J Biol Chem. 293(23):8829-8842. [PudMed:29599293]
[100] Romero M, Silistre H, Lovelock L, Wright VJ, Chan KG, Hong KW, Williams P, Cámara M, Heeb S. (2018) Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN. Nucleic Acids Res. 46(13):6823-6840. [PudMed:29718466]
[101] Ethel Bayer-Santos, Lídia Dos Passos Lima, Lucas de Moraes Ceseti, Camila Yuri Ratagami, Eliane Silva de Santana, Aline Maria da Silva, Chuck Shaker Farah, Cristina Elisa Alvarez-Martinez (2018) Xanthomonas Citri T6SS Mediates Resistance to Dictyostelium Predation and Is Regulated by an ECF σ Factor and Cognate Ser/Thr Kinase. Environ Microbiol. 20(4):1562-1575. [PudMed:29488354]
[102] Liliana Losada, April A Shea, David DeShazer (2018) A MarR Family Transcriptional Regulator and Subinhibitory Antibiotics Regulate Type VI Secretion Gene Clusters in Burkholderia Pseudomallei. Microbiology. 164(9):1196-1211. [PudMed:30052173]
[103] Li P, Xu D, Ma T, Wang D, Li W, He J, Ran T, Wang W. (2018) Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism.. Biochem J. 475(13):2209-2224. [PudMed:29858276]
[104] Corbitt J, Yeo JS, Davis CI, LeRoux M, Wiggins PA. (2018) Type VI Secretion System Dynamics Reveals a Novel Secretion Mechanism in Pseudomonas aeruginosa.. J Bacteriol. 200(11). [PudMed:29555704]
[105] Chourashi R, Das S, Dhar D, Okamoto K, Mukhopadhyay AK, Chatterjee NS. (2018) Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.. Microbiology (Reading). 164(5):751-763. [PudMed:29633936]
[106] Zhang L, Jiang Z, Fang S, Huang Y, Yang D, Wang Q, Zhang Y, Liu Q (2018) Systematic Identification of Intracellular-Translocated Candidate Effectors in Edwardsiella piscicida. Front Cell Infect Microbiol. 8:37. [PudMed:29503811]
[107] Zepeda-Rivera MA, Saak CC, Gibbs KA (2018) A Proposed Chaperone of the Bacterial Type VI Secretion System Functions To Constrain a Self-Identity Protein. J Bacteriol. 200(14). pii: e00688-17. [PudMed:29555703]
[108] Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS, Mandel MJ, Miyashiro T, Septer AN. (2018) Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host.. Proc Natl Acad Sci U S A. 115(36):E8528-E8537. [PudMed:30127013]
[109] Nannan Wang, Jin Liu, Maoda Pang, Yafeng Wu, Furqan Awan, Mark R Liles, Chengping Lu, Yongjie Liu (2018) Diverse Roles of Hcp Family Proteins in the Environmental Fitness and Pathogenicity of Aeromonas Hydrophila Chinese Epidemic Strain NJ-35. Appl Microbiol Biotechnol. 102(16):7083-7095. [PudMed:29862449]
[110] Kaiyu Yin, Yunpeng Guan, Ruiqing Ma, Lifan Wei, Bing Liu, Xiaohong Liu, Xiangshan Zhou, Yue Ma, Yuanxing Zhang, Matthew K Waldor, Qiyao Wang (2018) Critical Role for a Promoter Discriminator in RpoS Control of Virulence in Edwardsiella Piscicida. PLoS Pathog. 14(8):e1007272. [PudMed:30169545]
[111] Irina Debnath, Anne M Stringer, Sara N Smith, Emily Bae, Harry L T Mobley, Joseph T Wade, Melanie M Pearson (2018) MrpJ Directly Regulates Proteus Mirabilis Virulence Factors, Including Fimbriae and Type VI Secretion, During Urinary Tract Infection. Infect Immun. 86(10):e00388-18. [PudMed:30082479]
[112] Zhen Yang, Xuetong Wang, Wensheng Xu, Mian Zhou, Yuanxing Zhang, Yue Ma, Qiyao Wang (2018) Phosphorylation of PppA at Threonine 253 Controls T6SS2 Expression and Bacterial Killing Capacity in the Marine Pathogen Vibrio Alginolyticus. Microbiol Res. 209:70-78. [PudMed:29580623]
[113] Xiating Gao, Xuetong Wang, Qiaoqiao Mao, Rongjing Xu, Xiaohui Zhou, Yue Ma, Qin Liu, Yuanxing Zhang, Qiyao Wang (2018) VqsA, a Novel LysR-Type Transcriptional Regulator, Coordinates Quorum Sensing (QS) and Is Controlled by QS To Regulate Virulence in the Pathogen Vibrio Alginolyticus. Appl Environ Microbiol. 84(12):e00444-18. [PudMed:29625990]
[114] Zhen Yang, Xiaohui Zhou , Yue Ma, Mian Zhou, Matthew K Waldor, Yuanxing Zhang, Qiyao Wang (2018) Serine/threonine Kinase PpkA Coordinates the Interplay Between T6SS2 Activation and Quorum Sensing in the Marine Pathogen Vibrio Alginolyticus. Environ Microbiol. 20(2):903-919. [PudMed:29314504]
[115] Adam Ostrowski, Francesca R Cianfanelli, Michael Porter, Giuseppina Mariano, Julien Peltier, Jun Jie Wong, Jason R Swedlow, Matthias Trost, Sarah J Coulthurst (2018) Killing With Proficiency: Integrated Post-Translational Regulation of an Offensive Type VI Secretion System. PLoS Pathog. 14(7):e1007230. [PudMed:30052683]
[116] Katharina Trunk, Julien Peltier, Yi-Chia Liu, Brian D Dill, Louise Walker, Neil A R Gow, Michael J R Stark, Janet Quinn, Henrik Strahl, Matthias Trost, Sarah J Coulthurst (2018) The Type VI Secretion System Deploys Antifungal Effectors Against Microbial Competitors. Nat Microbiol. 3(8):920-931. [PudMed:30038307]
[117] Mariano G, Monlezun L, Coulthurst SJ. (2018) Dual Role for DsbA in Attacking and Targeted Bacterial Cells during Type VI Secretion System-Mediated Competition.. Cell Rep. 22(3):774-785. [PudMed:29346773]
[118] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[119] Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol. 3(5):632-640. [PudMed:29632369]
[120] Byun B, Mahasenan KV, Dik DA, Marous DR, Speri E, Kumarasiri M, Fisher JF, Hermoso JA, Mobashery S. (2018) Mechanism of the Escherichia coli MltE lytic transglycosylase, the cell-wall-penetrating enzyme for Type VI secretion system assembly.. Sci Rep. 8(1):4110. [PudMed:29515200]
[121] Jiale Ma, Min Sun, Zihao Pan, Chengping Lu, Huochun Yao (2018) Diverse Toxic Effectors Are Harbored by vgrG Islands for Interbacterial Antagonism in Type VI Secretion System. Biochim Biophys Acta Gen Subj. 1862(7):1635-1643. [PudMed:29674124]
[122] Maroniche GA, Diaz PR, Borrajo MP, Valverde CF, Creus CM. (2018) Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization.. FEMS Microbiol Ecol. 94(12). [PudMed:30299474]
[123] Jask��lska M, Stutzmann S, Stoudmann C, Blokesch M. (2018) QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae.. Nucleic Acids Res. 46(20):10619-10634. [PudMed:30102403]
[124] Wang C, Pu T, Lou W, Wang Y, Gao Z, Hu B, Fan J. (2018) Hfq, a RNA Chaperone, Contributes to Virulence by Regulating Plant Cell Wall-Degrading Enzyme Production, Type VI Secretion System Expression, Bacterial Competition, and Suppressing Host Defense Response in Pectobacterium carotovorum.. Mol Plant Microbe Interact. 31(11):1166-1178. [PudMed:30198820]
[125] Shao X, Zhang X, Zhang Y, Zhu M, Yang P, Yuan J, Xie Y, Zhou T, Wang W, Chen S, Liang H, Deng X. (2018) RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1.. J Bacteriol. 200(16). [PudMed:29760208]
[126] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[127] Pan J, Zhao M, Huang Y, Li J, Liu X, Ren Z, Kan B, Liang W. (2018) Integration Host Factor Modulates the Expression and Function of T6SS2 in Vibrio fluvialis.. Front Microbiol. 1.043055556. [PudMed:29867866]
[128] Troselj V, Treuner-Lange A, Søgaard-Andersen L, Wall D (2018) Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium. mBio. 9(1). pii: e01645-17. [PudMed:29437919]
[129] Wang M, Cao H, Wang Q, Xu T, Guo X, Liu B. (2018) The Roles of Two Type VI Secretion Systems in Cronobacter sakazakii ATCC 12868.. Front Microbiol. 2.110416667. [PudMed:30405562]
[130] Tang JY, Bullen NP, Ahmad S, Whitney JC (2018) Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem. 293(5):1504-1514. [PudMed:29237732]
[131] Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB, Powell D, Harper M#, Boyce JD (2018) Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. Infect Immun. 86(8). pii: e00297-18. [PudMed:29735524]
[132] Ledvina HE, Kelly KA, Eshraghi A, Plemel RL, Peterson SB, Lee B, Steele S, Adler M, Kawula TH, Merz AJ, Skerrett SJ, Celli J, Mougous JD (2018) A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe. 24(2):285-295.e8. [PudMed:30057173]
[133] Gong Y, Zhang Z, Liu Y, Zhou XW, Anwar MN, Li ZS, Hu W1, Li YZ (2018) A nuclease-toxin and immunity system for kin discrimination in Myxococcus xanthus. Environ Microbiol. 20(7):2552-2567. [PudMed:29806725]
[134] Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD (2018) Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell. 175(5):1380-1392.e14. [PudMed:30343895]
[135] Santin YG, Cascales E. (2017) Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system.. EMBO Rep. 18(1):138-149. [PudMed:27920034]
[136] Wang T, Chen K, Gao F, Kang Y, Chaudhry MT, Wang Z, Wang Y, Shen X. (2017) ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis.. J Microbiol. 55(6):448-456. [PudMed:28281200]
[137] Li P, Kinch LN, Ray A, Dalia AB, Cong Q, Nunan LM, Camilli A, Grishin NV, Salomon D, Orth K. (2017) Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires.. Appl Environ Microbiol. 83(13). [PudMed:28432099]
[138] Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM, Wettstadt S, Filloux A (2017) RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 114(29):7707-7712. [PudMed:28673999]
[139] Yiquan Zhang, He Gao, George Osei-Adjei, Ying Zhang, Wenhui Yang, Huiying Yang, Zhe Yin, Xinxiang Huang, Dongsheng Zhou (2017) Transcriptional Regulation of the Type VI Secretion System 1 Genes by Quorum Sensing and ToxR in Vibrio parahaemolyticus. Front Microbiol. 1.725694444. [PudMed:29085350]
[140] Meiru Si, Chao Zhao, Brianne Burkinshaw, Bing Zhang, Dawei Wei, Yao Wang, Tao G Dong, Xihui Shen (2017) Manganese Scavenging and Oxidative Stress Response Mediated by Type VI Secretion System in Burkholderia thailandensis. Proc Natl Acad Sci U S A. 114(11):E2233-E2242. [PudMed:28242693]
[141] Lingyu Zhang, George Osei-Adjei, Ying Zhang, He Gao, Wenhui Yang, Dongsheng Zhou, Xinxiang Huang, Huiying Yang, Yiquan Zhang (2017) CalR Is Required for the Expression of T6SS2 and the Adhesion of Vibrio Parahaemolyticus to HeLa Cells. Arch Microbiol. 199(6):931-938. [PudMed:28378143]
[142] Lin J, Zhang W, Cheng J, Yang X, Zhu K, Wang Y, Wei G, Qian PY, Luo ZQ, Shen X (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun. 28;8:14888. [PudMed:28348410]
[143] Nicolle L Barbieri, Jessica A Vande Vorde, Alison R Baker, Fabiana Horn, Ganwu Li, Catherine M Logue, Lisa K Nolan (2017) FNR Regulates the Expression of Important Virulence Factors Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Front Cell Infect Microbiol. 0.475694444. [PudMed:28690981]
[144] Meiru Si, Yao Wang, Bing Zhang, Chao Zhao, Yiwen Kang, Haonan Bai, Dawei Wei, Lingfang Zhu, Lei Zhang, Tao G Dong, Xihui Shen (2017) The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep. 20(4):949-959. [PudMed:28746878]
[145] Clayton W Hall, Li Zhang, Thien-Fah Mah (2017) PA3225 Is a Transcriptional Repressor of Antibiotic Resistance Mechanisms in Pseudomonas Aeruginosa. Antimicrob Agents Chemother. 61(8):e02114-16. [PudMed:28584154]
[146] Brms JE, Meyer L, Sjstedt A. (2017) A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control Type VI system-mediated secretion.. Virulence. 8(6):821-847. [PudMed:27830989]
[147] Wan B, Zhang Q, Ni J, Li S, Wen D, Li J, Xiao H, He P, Ou HY, Tao J, Teng Q, Lu J, Wu W, Yao YF (2017) Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog. 13(3):e1006246. [PudMed:28288207]
[148] Alteri CJ, Himpsl SD, Zhu K, Hershey HL, Musili N, Miller JE, Mobley HLT. (2017) Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.. PLoS Pathog. 13(11):e1006729. [PudMed:29155899]
[149] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[150] Lazzaro M, Feldman MF, Garc��a V��scovi E. (2017) A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.. mBio. 8(4). [PudMed:28830939]
[151] Tian Y, Zhao Y, Shi L, Cui Z, Hu B, Zhao Y. (2017) Type VI Secretion Systems of Erwinia amylovora Contribute to Bacterial Competition, Virulence, and Exopolysaccharide Production.. Phytopathology. 107(6):654-661. [PudMed:28421913]
[152] Anderson MC, Vonaesch P, Saffarian A, Marteyn BS, Sansonetti PJ. (2017) Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy.. Cell Host Microbe. 21(6):769-776. [PudMed:28618272]
[153] Ann Ray, Nika Schwartz, Marcela de Souza Santos, Junmei Zhang, Kim Orth, Dor Salomon (2017) Type VI Secretion System MIX-effectors Carry Both Antibacterial and Anti-Eukaryotic Activities. EMBO Rep.. 18(11):1978-1990. [PudMed:28912123]
[154] Jiale Ma, Zihao Pan, Jinhu Huang, Min Sun, Chengping Lu, Huochun Yao (2017) The Hcp Proteins Fused With Diverse Extended-Toxin Domains Represent a Novel Pattern of Antibacterial Effectors in Type VI Secretion Systems. Virulence. 8(7):1189-1202. [PudMed:28060574]
[155] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[156] Huang Y, Du P, Zhao M, Liu W, Du Y, Diao B, Li J, Kan B, Liang W. (2017) Functional Characterization and Conditional Regulation of the Type VI Secretion System in Vibrio fluvialis.. Front Microbiol. 0.7. [PudMed:28424671]
[157] Ho BT, Fu Y, Dong TG, Mekalanos JJ (2017) Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci U S A. 114(35):9427-9432. [PudMed:28808000]
[158] de Campos SB, Lardi M, Gandolfi A, Eberl L, Pessi G. (2017) Mutations in Two Paraburkholderia phymatum Type VI Secretion Systems Cause Reduced Fitness in Interbacterial Competition.. Front Microbiol. 2.050694444. [PudMed:29312183]
[159] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[160] Chen H, Yang D, Han F, Tan J, Zhang L, Xiao J, Zhang Y, Liu Q (2017) The Bacterial T6SS Effector EvpP Prevents NLRP3 Inflammasome Activation by Inhibiting the Ca2+ -Dependent MAPK-Jnk Pathway. Cell Host Microbe. 21(1):47-58. [PudMed:28081443]
[161] Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H (2017) PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. (1):345-360. [PudMed:27871130]
[162] Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE (2016) Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci U S A. 113(13):3627-32. [PudMed:26951680]
[163] Qin A, Zhang Y, Clark ME, Moore EA, Rabideau MM, Moreau GB, Mann BJ. (2016) Components of the type six secretion system are substrates of Francisella tularensis Schu S4 DsbA-like FipB protein.. Virulence. 7(8):882-894. [PudMed:27028889]
[164] Jennifer Chua, Jeffrey L Senft, Stephen J Lockett, Paul J Brett, Mary N Burtnick, David DeShazer, Arthur M Friedlander (2016) pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infect Immun. 85(1):e00586-16. [PudMed:27799332]
[165] Tang L, Yue S, Li GY, Li J, Wang XR, Li SF, Mo ZL. (2016) Expression, secretion and bactericidal activity of type VI secretion system in Vibrio anguillarum.. Arch Microbiol. 198(8):751-60. [PudMed:27172981]
[166] Wexler AG, Bao Y, Whitney JC, Bobay LM, Xavier JB, Schofield WB, Barry NA, Russell AB, Tran BQ, Goo YA, Goodlett DR, Ochman H, Mougous JD, Goodman AL. (2016) Human symbionts inject and neutralize antibacterial toxins to persist in the gut.. Proc Natl Acad Sci U S A. 113(13):3639-44. [PudMed:26957597]
[167] Rogers A, Townsley L, Gallego-Hernandez AL, Beyhan S, Kwuan L, Yildiz FH. (2016) The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio cholerae.. J Bacteriol. 198(6):973-85. [PudMed:26755629]
[168] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[169] Charlotte Majerczyk, Emily Schneider, E Peter Greenberg (2016) Quorum Sensing Control of Type VI Secretion Factors Restricts the Proliferation of Quorum-Sensing Mutants. Elife. 5:e14712. [PudMed:27183270]
[170] Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L (2016) A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol. 99(6):1099-118. [PudMed:26714038]
[171] P��rinet S, Jeukens J, Kukavica-Ibrulj I, Ouellet MM, Charette SJ, Levesque RC. (2016) Molybdate transporter ModABC is important for Pseudomonas aeruginosa chronic lung infection.. BMC Res Notes. 9:23. [PudMed:26758577]
[172] Lisa C Metzger, Sandrine Stutzmann, Tiziana Scrignari, Charles Van der Henst, Noémie Matthey, Melanie Blokesch (2016) Independent Regulation of Type VI Secretion in Vibrio Cholerae by TfoX and TfoY. Cell Rep. 15(5):951-958. [PudMed:27117415]
[173] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[174] Church SR, Lux T, Baker-Austin C, Buddington SP, Michell SL. (2016) Vibrio vulnificus Type 6 Secretion System 1 Contains Anti-Bacterial Properties.. PLoS One. 11(10):e0165500. [PudMed:27798649]
[175] Daniel F Aubert, Hao Xu, Jieling Yang, Xuyan Shi, Wenqing Gao, Lin Li, Fabiana Bisaro, She Chen, Miguel A Valvano, Feng Shao (2016) A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe. 19(5):664-74. [PudMed:27133449]
[176] Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM (2016) Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A. 113(34):E5044-51. [PudMed:27503894]
[177] Stutzmann S, Blokesch M. (2016) Circulation of a Quorum-Sensing-Impaired Variant of Vibrio cholerae Strain C6706 Masks Important Phenotypes.. mSphere. 1(3). [PudMed:27303743]
[178] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[179] Jiang F, Wang X, Wang B, Chen L, Zhao Z, Waterfield NR, Yang G, Jin Q (2016) The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep. 16(6):1502-1509. [PudMed:27477276]
[180] Cui S, Xiao J, Wang Q, Zhang Y. (2016) H-NS binding to evpB and evpC and repressing T6SS expression in fish pathogen Edwardsiella piscicida.. Arch Microbiol. 198(7):653-61. [PudMed:27125651]
[181] Townsley L, Sison Mangus MP, Mehic S, Yildiz FH. (2016) Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton.. Appl Environ Microbiol. 82(14):4441-52. [PudMed:27208110]
[182] Peng Y, Wang X, Shou J, Zong B, Zhang Y, Tan J, Chen J, Hu L, Zhu Y, Chen H, Tan C. (2016) Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system.. Sci Rep. 6:26816. [PudMed:27229766]
[183] Chen R, Weng Y, Zhu F, Jin Y, Liu C, Pan X, Xia B, Cheng Z, Jin S, Wu W. (2016) Polynucleotide Phosphorylase Regulates Multiple Virulence Factors and the Stabilities of Small RNAs RsmY/Z in Pseudomonas aeruginosa.. Front Microbiol. 0.463194444. [PudMed:26973625]
[184] Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD (2016) Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe. 20(5):573-583. [PudMed:27832588]
[185] Wang T et al (2015) Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog. 11(7):e1005020. [PudMed:26134274]
[186] Trampari E et al (2015) Bacterial Rotary Export ATPases Are Allosterically Regulated by the Nucleotide Second Messenger Cyclic-di-GMP. J Biol Chem. 290(40):24470-83. [PudMed:26265469]
[187] Jones CL et al (2015) Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii With Enhanced Virulence. Clin Infect Dis. pii: civ225. [PudMed:25824815]
[188] Sabag-Daigle A et al (2015) Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Front Cell Infect Microbiol. 5:47. [PudMed:26075189]
[189] LeRoux M et al (2015) Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. Elife. doi: 10.7554/eLife.05701. [PudMed:25643398]
[190] S Massier et al (2015) Involvement of type VI secretion systems in virulence of adherent-invasive Escherichia coli isolated from patients with Crohn's disease. J Crohns Colitis. 9 Suppl 1:S67-8. [PudMed:25718291]
[191] Brunet YR et al (2015) H-NS silencing of the SPI-6-encoded Type VI secretion system limits Salmonella enterica serovar Typhimurium interbacterial killing. Infect Immun. pii: IAI.00198-15. [PudMed:25916986]
[192] Cheng AT et al (2015) Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System. PLoS Pathog. 11(5):e1004933. [PudMed:26000450]
[193] Sun S et al (2015) Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms. ISME J. doi: 10.1038/ismej.2014.265. [PudMed:25615438]
[194] Siddiqui F et al (2015) Molecular detection identified a Type Six Secretion System in Campylobacter jejuni from various sources but not from human cases. J Appl Microbiol. doi: 10.1111/jam.12748. [PudMed:25580664]
[195] Hammond JH et al (2015) Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms. J Bacteriol. 197(17):2810-20. [PudMed:26078448]
[196] Sana TG et al (2015) Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. MBio. 6(3):e00712. [PudMed:26037124]
[197] Altindis E et al (2015) Secretome Analysis of Vibrio cholerae Type VI Secretion System Reveals a New Effector-Immunity Pair. MBio. pii: e00075-15. [PudMed:25759499]
[198] Liu L et al (2015) Pseudomonas fluorescens: identification of Fur-regulated proteins and evaluation of their contribution to pathogenesis. Dis Aquat Organ. 115(1):67-80. [PudMed:26119301]
[199] Ruiz FM et al (2015) Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System. PLoS One. 10(6):e0129691. [PudMed:26079269]
[200] Wang N et al (2015) Protective efficacy of recombinant hemolysin co-regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio). Fish Shellfish Immunol. 46(2):297-304. [PudMed:26093203]
[201] Wong J et al (2015) Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. Cell Host Microbe. 18(1):38-48. [PudMed:26094804]
[202] Borgeaud S et al (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63-7. [PudMed:25554784]
[203] Liang X et al (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A. 112(29):9106-11. [PudMed:26150500]
[204] Liu L et al (2015) The type VI secretion system modulates flagellar gene expression and secretion in Citrobacter freundii and contributes to the adhesion and cytotoxicity to host cells. Infect Immun. pii: IAI.03071-14. [PudMed:25870231]
[205] Yunhong Song, Xiao Xiao, Changfu Li, Tietao Wang, Ruoxi Zhao, Weipeng Zhang, Lei Zhang, Yao Wang, Xihui Shen (2015) The Dual Transcriptional Regulator RovM Regulates the Expression of AR3- And T6SS4-dependent Acid Survival Systems in Response to Nutritional Status in Yersinia Pseudotuberculosis. Environ Microbiol. 17(11):4631-45. [PudMed:26234561]
[206] Bachmann V et al (2015) Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae. PLoS Negl Trop Dis. 9(8):e0004031. [PudMed:26317760]
[207] Weber BS et al (2015) A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci U S A. 112(30):9442-7. [PudMed:26170289]
[208] Corcionivoschi N et al (2015) Virulence characteristics of hcp (+) Campylobacter jejuni and Campylobacter coli isolates from retail chicken. Gut Pathog. 7:20. [PudMed:26207145]
[209] Unterweger D et al (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J. 34(16):2198-210. [PudMed:26194724]
[210] Repizo GD et al (2015) Differential Role of the T6SS in Acinetobacter baumannii Virulence. PLoS One. 10(9):e0138265. [PudMed:26401654]
[211] Guan J et al (2015) Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol. 53(9):633-42. [PudMed:26310305]
[212] Kudryashev M et al (2015) Structure of the Type VI Secretion System Contractile Sheath. Cell. 160(5):952-62. [PudMed:25723169]
[213] Clemens DL et al (2015) Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell. 160(5):940-51. [PudMed:25723168]
[214] Decoin V et al (2015) A Pseudomonas fluorescens type 6 secretion system is related to mucoidy, motility and bacterial competition. BMC Microbiol. 15(1):72. [PudMed:25886496]
[215] Cui Z et al (2015) Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis. Int J Mol Sci. 16(9):22008-26. [PudMed:26378528]
[216] Kernell Burke A et al (2015) OpaR Controls a Network of Downstream Transcription Factors in Vibrio parahaemolyticus BB22OP. PLoS One. 10(4):e0121863. [PudMed:25901572]
[217] Nguyen VS et al (2015) Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody. PLoS One. 10(3):e0122187. [PudMed:25811612]
[218] Dong TG et al (2015) Generation of reactive oxygen species by lethal attacks from competing microbes. Proc Natl Acad Sci U S A. 112(7):2181-6. [PudMed:25646446]
[219] Aubert DF et al (2015) Quantification of Type VI secretion system activity in macrophages infected with Burkholderia cenocepacia. Microbiology. doi: 10.1099/mic.0.000174. [PudMed:26364149]
[220] Balsanelli E et al (2015) Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere. Environ Microbiol. doi: 10.1111/1462-2920.12887. [PudMed:25923055]
[221] Blokesch M (2015) Competence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: Intestinal interbacterial killing by competence-induced V. cholera. Bioessays. doi: 10.1002/bies.201500101. [PudMed:26445388]
[222] Bode NJ et al (2015) Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun. pii: IAI.02978-14. [PudMed:25847961]
[223] Watve SS et al (2015) CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae. PLoS One. 10(9):e0138834. [PudMed:26401962]
[224] Salomon D et al (2015) Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog. 11(8):e1005128. [PudMed:26305100]
[225] Aragon IM et al (2015) Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. Environ Microbiol. doi: 10.1111/1462-2920.12856. [PudMed:25809128]
[226] Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD (2015) An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell. 163(3):607-19. [PudMed:26456113]
[227] Diniz JA et al (2015) Intra-species Competition in Serratia marcescens is Mediated by Type VI Secretion Rhs Effectors and a Conserved Effector-Associated Accessory Protein. J Bacteriol. pii: JB.00199-15. [PudMed:25939831]
[228] Almblad H et al (2015) The cAMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by c-di-GMP. J Bacteriol. pii: JB.00193-15. [PudMed:25897033]
[229] Yu Y et al (2015) VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages. Front Microbiol. 0.366666667. [PudMed:25784905]
[230] Moule MG et al (2014) Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development. MBio. 5(1):e00926-13. [PudMed:24520057]
[231] Broberg M et al (2014) The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193. Appl Environ Microbiol. 80(6):1972-84. [PudMed:24441162]
[232] Burtnick MN et al (2014) Proteomic Analysis of the Burkholderia pseudomallei Type II Secretome Reveals Hydrolytic Enzymes, Novel Proteins and the Deubiquitinase TssM. Infect Immun. 82(8):3214-26. [PudMed:24866793]
[233] Pezoa D et al (2014) Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res. 45(1):2. [PudMed:24405577]
[234] Heckel BC et al (2014) Agrobacterium tumefaciens ExoR Controls Acid Response Genes and Impacts Exopolysaccharide Synthesis, Horizontal Gene Transfer and Virulence Gene Expression. J Bacteriol. 196(18):3221-33. [PudMed:24982308]
[235] Law HT et al (2014) IglC and PdpA Are Important for Promoting Francisella Invasion and Intracellular Growth in Epithelial Cells. PLoS One. 9(8):e104881. [PudMed:25115488]
[236] Dowling AJ et al (2014) An unbiased method for clustering bacterial effectors using host cellular phenotypes. Appl Environ Microbiol. 80(3):1185-96. [PudMed:24296505]
[237] Angus AA et al (2014) Plant-associated symbiotic burkholderia species lack hallmark strategies required in Mammalian pathogenesis. PLoS One. 9(1):e83779. [PudMed:24416172]
[238] Aragon IM et al (2014) New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi. FEMS Microbiol Lett. 356(2):184-92. [PudMed:24606017]
[239] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[240] Decoin V et al (2014) A Type VI Secretion System Is Involved in Pseudomonas fluorescens Bacterial Competition. PLoS One. 9(2):e89411. [PudMed:24551247]
[241] Shyntum D et al (2014) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact. doi:http://dx.doi.org/10.1094/MPMI-07-14-0219-R. [PudMed:25411959]
[242] Whitaker WB et al (2014) Loss of Sigma Factor RpoN Increases Intestinal Colonization of Vibrio parahaemolyticus in an Adult Mouse Model. Infect Immun. 82(2):544-56. [PudMed:24478070]
[243] Zhang J et al (2014) Crystallization and preliminary X-ray study of TsiV3 from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 3):335-8. [PudMed:24598921]
[244] Jiang F et al (2014) A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host Microbe. 15(5):600-10. [PudMed:24832454]
[245] Grim CJ et al (2014) Functional Genomic Characterization of Virulence Factors from Necrotizing Fasciitis-Causing Strains of Aeromonas hydrophila. Appl Environ Microbiol. 80(14):4162-83. [PudMed:24795370]
[246] Duca D et al (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. UW4 that converts indole-3-acetonitrile to produce indole-3-acetic acid. Appl Environ Microbiol. 80(15):4640-9. [PudMed:24837382]
[247] Forster A et al (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem. 289(47):33032-43. [PudMed:25305017]
[248] Brunet YR et al (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15(3):315-21. [PudMed:24488256]
[249] Gueguen E et al (2014) Transcriptional Frameshifting Rescues Citrobacter rodentium Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted tssM Gene. PLoS Genet. 10(12):e1004869. [PudMed:25474156]
[250] Li B et al (2014) Transcriptome analysis of Acidovorax avenae subsp. avenae cultivated in vivo and co-culture with Burkholderia seminalis. Sci Rep. 4.123611111. [PudMed:25027476]
[251] Hachani A et al (2014) The VgrG proteins are "A la carte" delivery systems for bacterial type VI effectors. J Biol Chem. 289(25):17872-17884. [PudMed:24794869]
[252] Chang YW et al (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods. 11(7):737-9. [PudMed:24813625]
[253] Kube S et al (2014) Structure of the VipA/B Type VI Secretion Complex Suggests a Contraction-State-Specific Recycling Mechanism. Cell Rep. 16(1):94-104. [PudMed:24953649]
[254] Lu D et al (2014) Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol Microbiol. 92(5):1092-112. [PudMed:24724564]
[255] Shao Y et al (2014) Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol. 92(5):921-30. [PudMed:24698180]
[256] Unterweger D et al (2014) The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun. 2.672916667. [PudMed:24686479]
[257] Lin JS et al (2014) Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLoS Pathog. 10(3):e1003991. [PudMed:24626341]
[258] Bielecki P et al (2014) In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles. MBio. 5(4). [PudMed:25096872]
[259] Pegoraro G et al (2014) A high-content imaging assay for the quantification of the Burkholderia pseudomallei induced multinucleated giant cell (MNGC) phenotype in murine macrophages. BMC Microbiol. 14(1):98. [PudMed:24750902]
[260] Uda A et al (2014) Role of Pathogenicity Determinant Protein C (PdpC) in Determining the Virulence of the Francisella tularensis Subspecies tularensis SCHU. PLoS One. 9(2):e89075. [PudMed:24558472]
[261] Kakar KU et al (2014) Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol. 30(2):469-78. [PudMed:23990042]
[262] Bocsanczy AM et al (2014) Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors. BMC Genomics. 15(1):280. [PudMed:24725348]
[263] Yang W et al (2014) An invasive and low virulent Edwardsiella tarda esrB mutant promising as live attenuated vaccine in aquaculture. Appl Microbiol Biotechnol. 99(4):1765-77. [PudMed:25431010]
[264] Klaponski N et al (2014) The requirement for the LysR-type regulator PtrA for Pseudomonas chlororaphis PA23 biocontrol revealed through proteomic and phenotypic analysis. BMC Microbiol. 0.648611111. [PudMed:24739259]
[265] Chen Z et al (2014) Cloning, purification, crystallization and preliminary X-ray studies of the putative type VI secretion immunity protein Tli5 (PA5088) from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun. 70(Pt 7):903-5. [PudMed:25005085]
[266] B��cker R, Heroven AK, Becker J, Dersch P, Wittmann C. (2014) The pyruvate-tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis.. J Biol Chem. 289(43):30114-32. [PudMed:25164818]
[267] Yang X et al (2014) Molecular mechanism for self-protection against the type VI secretion system in Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 70(Pt 4):1094-103. [PudMed:24699653]
[268] Castro-Gomes T et al (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol. 52(4):350-3. [PudMed:24535738]
[269] Sarkar A et al (2014) Transcriptional Profiling of Nitrogen Fixation and the Role of NifA in the Diazotrophic Endophyte Azoarcus sp. Strain BH72. PLoS One. 9(2):e86527. [PudMed:24516534]
[270] Nguyen J et al (2014) Lipidation of the FPI Protein IglE contributes to Francisella tularensis subsp. novicida Intramacrophage Replication and Virulence. Pathog Dis. 72(1):10-8. [PudMed:24616435]
[271] Salomon D et al (2014) H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1. Microbiology. 160(Pt 9):1867-73. [PudMed:24987102]
[272] Xu H et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 513(7517):237-41. [PudMed:24919149]
[273] Hopf V et al (2014) BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun. 82(5):2006-15. [PudMed:24595140]
[274] Hu H et al (2014) Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallogr D Biol Crystallogr. 70(Pt 8):2175-2185. [PudMed:25084336]
[275] Chirakul S et al (2014) Characterization of BPSS1521 (bprD), a Regulator of Burkholderia pseudomallei Virulence Gene Expression in the Mouse Model. PLoS One. 9(8):e104313. [PudMed:25111708]
[276] Kumari H et al (2014) LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics. 96:328-42. [PudMed:24291602]
[277] Lery LM et al (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 12(1):41. [PudMed:24885329]
[278] Whitney JC et al (2014) Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol. 92(3):529-42. [PudMed:24589350]
[279] Zhang L et al (2014) TssB is essential for virulence and required for Type VI secretion system in Ralstonia solanacearum. Microb Pathog. 74C:1-7. [PudMed:24972114]
[280] Tian Y et al (2014) The Type VI Protein Secretion System Contributes to Biofilm Formation and Seed-to-Seedling Transmission of Acidovorax citrulli on melon. Mol Plant Pathol. 16(1):38-47. [PudMed:24863458]
[281] Peano C et al (2014) Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis. PLoS One. 9(3):e93009. [PudMed:24671187]
[282] Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion exported protein required for multinucleated giant cell formation and virulence. Infect Immun. 82(4):1445-52. [PudMed:24452686]
[283] Hu W et al (2014) A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding. PLoS One. 9(11):e110810. [PudMed:25401506]
[284] Patel H et al (2014) Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae. BMC Microbiol. 14(1):274. [PudMed:25394860]
[285] Sall KM et al (2014) A gacS Deletion in Pseudomonas aeruginosa Cystic Fibrosis Isolate CHA Shapes Its Virulence. PLoS One. 9(4):e95936. [PudMed:24780952]
[286] Kamath KS et al (2014) Proteomics of hosts and pathogens in cystic fibrosis. Proteomics Clin Appl. 9(1-2):134-46. [PudMed:25418359]
[287] Ma LS et al (2014) Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta. Cell Host Microbe. 16(1):94-104. [PudMed:24981331]
[288] Zhang J et al (2014) Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett. 588(10):1891-8. [PudMed:24751834]
[289] Jeong JH et al (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 9):1260-3. [PudMed:25195905]
[290] English G et al (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG sub-complex. Biochem J. 461(2):291-304. [PudMed:24779861]
[291] Toesca IJ et al (2014) The Type VI Secretion System Spike Protein VgrG5 Mediates Membrane Fusion during Intercellular Spread by Pseudomallei Group Burkholderia Species. Infect Immun. 82(4):1436-44. [PudMed:24421040]
[292] Song C et al (2014) The Rsm regulon of plant growth-promoting Pseudomonas fluorescens SS101: role of small RNAs in regulation of lipopeptide biosynthesis. Microb Biotechnol. 8(2):296-310. [PudMed:25488342]
[293] Jitprasutwit S et al (2014) Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions. BMC Genomics. 15(1):787. [PudMed:25214426]
[294] Singha H et al (2014) Optimization and validation of indirect ELISA using truncated TssB protein for the serodiagnosis of glanders amongst equines. ScientificWorldJournal. 2014:469407. [PudMed:24672321]
[295] Sun K et al (2014) Screening for inhibition of the Vibrio cholerae VipA-VipB interaction identifies small molecule compounds active against type VI secretion. Antimicrob Agents Chemother. 58(7):4123-4130. [PudMed:24798289]
[296] Hare RF et al (2014) Francisella novicida Pathogenicity Island Encoded Proteins Were Secreted during Infection of Macrophage-Like Cells. PLoS One. 9(8):e105773. [PudMed:25158041]
[297] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[298] Chen Y et al (2014) Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon. BMC Microbiol. 14(1):206. [PudMed:25085508]
[299] Jones CJ et al (2014) ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa. PLoS Pathog. 10(3):e1003984. [PudMed:24603766]
[300] Preeprem S et al (2014) Isolation and Characterization of Vibrio cholerae Isolates from Seafood in Hat Yai City, Songkhla, Thailand. Foodborne Pathog Dis. 11(11):881-6. [PudMed:25188839]
[301] Crnigoj M et al (2014) The Escherichia coli uropathogenic-specific-protein-associated immunity protein 3 (Imu3) has nucleic acid -binding activity. BMC Microbiol. 14:16. [PudMed:24472116]
[302] Steele S et al (2014) A method for functional trans-complementation of intracellular Francisella tularensis. PLoS One. 9(2):e88194. [PudMed:24505427]
[303] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[304] Russell AB et al (2014) A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host Microbe. 16(2):227-36. [PudMed:25070807]
[305] Zhang J et al (2014) A new target for the old regulator: H-NS suppress T6SS secretory protein EvpP, the major virulence factor in the fish pathogen Edwardsiella tarda. Lett Appl Microbiol. 59(5):557-564. [PudMed:25131176]
[306] Pederick VG, Eijkelkamp BA, Ween MP, Begg SL, Paton JC, McDevitt CA. (2014) Acquisition and role of molybdate in Pseudomonas aeruginosa.. Appl Environ Microbiol. 80(21):6843-52. [PudMed:25172858]
[307] Lindgren M et al (2014) Identification of Mechanisms for Attenuation of the FSC043 Mutant of Francisella tularensis SCHU S4. Infect Immun. 82(9):3622-35. [PudMed:24935978]
[308] Koskiniemi S et al (2014) Selection of Orphan Rhs Toxin Expression in Evolved Salmonella enterica Serovar Typhimurium. PLoS Genet. 10(3):e1004255. [PudMed:24675981]
[309] Ma J et al (2014) Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infect Immun. 82(9):3867-79. [PudMed:24980972]
[310] Bishop AH et al (2014) Identification of Genes Required for Soil Survival in Burkholderia thailandensis by Transposon-Directed Insertion Site Sequencing. Curr Microbiol. 68(6):693-701. [PudMed:24488501]
[311] Pradhan S et al (2013) Vibrio cholerae Classical Biotype Is Converted to the Viable Non-Culturable State when Cultured with the El Tor Biotype. PLoS One. 8(1):e53504. [PudMed:23326443]
[312] Eijkelkamp BA et al (2013) H-NS Plays a Role in Expression of Acinetobacter baumannii Virulence Features. Infect Immun. 81(7):2574-83. [PudMed:23649094]
[313] van Delden C et al (2013) Involvement of Fe uptake systems and AmpC beta-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 57(5):2095-102. [PudMed:23422914]
[314] Morin N et al (2013) Characterization of the AggR regulon in enteroaggregative Escherichia coli. Infect Immun. 81(1):122-32. [PudMed:23090962]
[315] Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem. 288(8):5928-39. [PudMed:23288853]
[316] Lu D et al (2013) Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 5):524-7. [PudMed:23695568]
[317] Pezoa D et al (2013) The Type VI Secretion System Encoded in SPI-6 Plays a Role in Gastrointestinal Colonization and Systemic Spread of Salmonella enterica serovar Typhimurium in the Chicken. PLoS One. 8(5):e63917. [PudMed:23691117]
[318] Kaakoush NO et al (2013) The Secretome of Helicobacter Trogontum. Helicobacter. 18(4):316-20. [PudMed:23406293]
[319] Filiatrault MJ et al (2013) Pseudomonas aeruginosa PA1006, Which Plays a Role in Molybdenum Homeostasis, Is Required for Nitrate Utilization, Biofilm Formation, and Virulence. PLoS One. 8(2):e55594. [PudMed:23409004]
[320] Tashiro Y et al (2013) Interspecies Interaction between Pseudomonas aeruginosa and Other Microorganisms. Microbes Environ. 28(1):13-24. [PudMed:23363620]
[321] Dong TG et al (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A . 110(7):2623-8. [PudMed:23362380]
[322] Blondel CJ et al (2013) The Type VI Secretion System encoded in SPI-19 is required for Salmonella Gallinarum survival within infected macrophages. Infect Immun. 81(4):1207-20. [PudMed:23357385]
[323] Cattoir V et al (2013) Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. MBio. 3(6):e00410-12. [PudMed:23143799]
[324] Bebeacua C et al (2013) Visualizing a Complete Siphoviridae Member by Single-Particle Electron Microscopy: the Structure of Lactococcal Phage TP901-1. J Virol. 87(2):1061-8. [PudMed:23135714]
[325] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[326] Kaakoush NO et al (2013) Do Type VI Secretion Systems Translocate More Than Proteins?. Helicobacter. 18(3):242-3. [PudMed:23305101]
[327] Zhang L et al (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One. 8(4):e61625. [PudMed:23637868]
[328] Gueguen E et al (2013) Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator. PLoS One. 8(6):e66615. [PudMed:23840509]
[329] Benz J et al (2013) Structural Insights into the Effector - Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS One. 8(6):e67362. [PudMed:23826277]
[330] Wang D et al (2013) Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. Microbiologyopen. 2(3):505-24. [PudMed:23606419]
[331] Marin MA et al (2013) Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis. 7(2):e2049. [PudMed:23459673]
[332] Novotny LA et al (2013) Structural Stability of Burkholderia cenocepacia Biofilms Is Reliant on eDNA Structure and Presence of a Bacterial Nucleic Acid Binding Protein. PLoS One. 8(6):e67629. [PudMed:23799151]
[333] McCaig WD et al (2013) Production of Outer Membrane Vesicles and Outer Membrane Tubes by Francisella novicida. J Bacteriol. 195(6):1120-32. [PudMed:23264574]
[334] Duan J et al (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One. 8(3):e58640. [PudMed:23516524]
[335] Aubert DF et al (2013) The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol. 15(2):372-85. [PudMed:22830644]
[336] Sha J et al (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology. 159(Pt 6):1120-35. [PudMed:23519162]
[337] Alavi P et al (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405(T.). Front Plant Sci. 0.264583333. [PudMed:23717321]
[338] Lindgren M et al (2013) The Francisella tularensis LVS DeltapdpC mutant exhibits a unique phenotype during intracellular infection. BMC Microbiol. 13(1):20. [PudMed:23356941]
[339] Kidarsa TA et al (2013) Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS . Environ Microbiol. 15(3):716-35. [PudMed:23297839]
[340] Burtnick MN et al (2013) Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc. PLoS One. 8(10):e76767. [PudMed:24146925]
[341] Marden JN et al (2013) An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 110(37):15055-60. [PudMed:23980177]
[342] Robb CS et al (2013) Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 6):607-10. [PudMed:23722835]
[343] Kapitein N et al (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol. 87(5):1013-28. [PudMed:23289512]
[344] Wei X et al (2013) Global control of GacA on secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol. 195(15):3387-400. [PudMed:23708134]
[345] Arvizu-Gomez JL et al (2013) Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: physiology of phytopathogenic bacteria. BMC Microbiol. 0.597916667. [PudMed:23587016]
[346] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[347] Zoued A et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the Type VI secretion system. J Biol Chem. 288(38):27031-41. [PudMed:23921384]
[348] Freeman BC et al (2013) Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in their epiphytic fitness and osmotolerance. J Bacteriol. 195(20):4742-52. [PudMed:23955010]
[349] Ciprandi A et al (2013) Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies. Curr Microbiol. 67(1):100-6. [PudMed:23455494]
[350] Shneider MM et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350-3. [PudMed:23925114]
[351] Dong C et al (2013) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J. 454(1):59-68. [PudMed:23730712]
[352] Horton RE et al (2013) Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One. 8(5):e63394. [PudMed:23704903]
[353] Braun V et al (2013) Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett. 345(1):13-21. [PudMed:23701660]
[354] Casabona MG et al (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics. 13(16):2419-23. [PudMed:23744604]
[355] Basler M et al (2013) Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions. Cell. 152(4):884-94. [PudMed:23415234]
[356] Khodai-Kalaki M et al (2013) Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem. 288(42):30473-84. [PudMed:24014026]
[357] Brunet YR et al (2013) Imaging Type VI Secretion-Mediated Bacterial Killing. Cell Rep. 3(1):36-41. [PudMed:23291094]
[358] Bartonickova L et al (2013) Hcp and VgrG1 are secreted components of the Helicobacter hepaticus type VI secretion system and VgrG1 increases the bacterial colitogenic potential. Cell Microbiol. 15(6):992-1011. [PudMed:23278999]
[359] Long ME et al (2013) Disruption of Francisella tularensis Schu S4 iglI, iglJ, and pdpC genes results in attenuation for growth in human macrophages and in vivo virulence in mice, and reveals a unique phenotype for pdpC. Infect Immun. 81(3):850-61. [PudMed:23275090]
[360] Frangipani E et al (2013) The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ Microbiol. 16(3):676-88. [PudMed:23796404]
[361] Broms JE et al (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol. 13(1):96. [PudMed:23642157]
[362] Wang L et al (2013) Cell Density- and Quorum Sensing-Dependent Expression of Type VI Secretion System 2 in Vibrio parahaemolyticus. PLoS One. 8(8):e73363. [PudMed:23977385]
[363] Lin JS et al (2013) Systematic Dissection of the Agrobacterium Type VI Secretion System Reveals Machinery and Secreted Components for Subcomplex Formation. PLoS One. 8(7):e67647. [PudMed:23861778]
[364] Wang L et al (2013) AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. Int J Food Microbiol. 160(3):245-51. [PudMed:23290231]
[365] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[366] Koiv V et al (2013) Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae. PLoS One. 8(1):e54248. [PudMed:23372695]
[367] Brooks TM et al (2013) Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 is Inhibited by the Antitoxin TsaB. J Biol Chem. 288(11):7618-25. [PudMed:23341465]
[368] Lossi NS et al (2013) The HsiB1C1 (TssB/TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath-like structure. J Biol Chem. 288(11):7536-48. [PudMed:23341461]
[369] Cheng X, et al (2013) The Gac regulon of Pseudomonas fluorescens SBW25. Environ Microbiol Rep. 5(4):608-19. [PudMed:23864577]
[370] Wang Y et al (2013) Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogen Edwardsiella tarda. FEMS Microbiol Lett. 343(2):145-55. [PudMed:23551118]
[371] Weber BS et al (2013) Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter. PLoS One. 8(1):e55142. [PudMed:23365692]
[372] Suanyuk N et al (2013) Mortality and pathology of hybrid catfish, Clarias macrocephalus (Gunther) X Clarias gariepinus (Burchell), associated with Edwardsiella ictaluri infection in southern Thailand. J Fish Dis. 37(4):385-395. [PudMed:23763374]
[373] Li K et al (2013) SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa. MBio. 4(6):e00419-13. [PudMed:24169572]
[374] Carruthers MD et al (2013) Acinetobacter baumannii Utilizes a Type VI Secretion System for Bacterial Competition. PLoS One. 8(3):e59388. [PudMed:23527179]
[375] Wenren LM et al (2013) Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export. MBio. 4(4). [PudMed:23882014]
[376] Ciofu O et al (2013) P. aeruginosa in the paranasal sinuses and transplanted lungs have similar adaptive mutations as isolates from chronically infected CF lungs. J Cyst Fibros. 12(6):729-36. [PudMed:23478131]
[377] Hockett KL et al (2013) Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae. PLoS One. 8(3):e59850. [PudMed:23527276]
[378] Lindgren M et al (2013) Importance of PdpC, IglC, IglI, and IglG for modulation of a host cell death pathway induced by Francisella tularensis LVS. Infect Immun. 81(6):2076-84. [PudMed:23529623]
[379] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[380] Sarris PF et al (2013) Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots. PLoS One. 8(3):e59366. [PudMed:23555661]
[381] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[382] Hachani A et al (2013) A Visual Assay to Monitor T6SS-mediated Bacterial Competition. J Vis Exp. (73):e50103. [PudMed:23542679]
[383] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[384] Russell AB et al (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature. 496(7446):508-12. [PudMed:23552891]
[385] Whitney JC et al (2013) Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem. 288(37):26616-24. [PudMed:23878199]
[386] Fritsch MJ et al (2013) Proteomic identification of novel secreted anti-bacterial toxins of the Serratia marcescens Type VI secretion system. Mol Cell Proteomics. 12(10):2735-2749. [PudMed:23842002]
[387] Ho BT et al (2013) Type 6 Secretion System-Mediated Immunity to Type 4 Secretion System-Mediated Gene Transfer. Science. 342(6155):250-253. [PudMed:24115441]
[388] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[389] Salomon D et al (2013) Vibrio parahaemolyticus Type VI Secretion System 1 Is Activated in Marine Conditions to Target Bacteria, and Is Differentially Regulated from System 2. PLoS One. 8(4):e61086. [PudMed:23613791]
[390] Varivarn K et al (2013) Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol. 13(1):92. [PudMed:23622502]
[391] Robertson GT et al (2013) IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of Type A Francisella tularensis. Infect Immun. 81(11):4026-40. [PudMed:23959721]
[392] Li L et al (2013) Structural Insights on the Bacteriolytic and Self-protection Mechanism of Muramidase Effector Tse3 in Pseudomonas aeruginosa. J Biol Chem. 288(42):30607-13. [PudMed:24025333]
[393] Bleumink-Pluym NM et al (2013) Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity. PLoS Pathog. 9(5):e1003393. [PudMed:23737749]
[394] Memisevic V et al (2013) Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions. Mol Cell Proteomics. 12(11):3036-51. [PudMed:23800426]
[395] Sana TG et al (2013) Divergent Control of Two Type VI Secretion Systems by RpoN in Pseudomonas aeruginosa. PLoS One. 8(10):e76030. [PudMed:24204589]
[396] Darrasse A et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics. 14(1):761. [PudMed:24195767]
[397] Koskiniemi S et al (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A. 110(17):7032-7. [PudMed:23572593]
[398] Nykyri J et al (2013) Role and Regulation of the Flp/Tad Pilus in the Virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS One. 8(9):e73718. [PudMed:24040039]
[399] Jones C et al (2013) Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System. PLoS One. 8(11):e81132. [PudMed:24260549]
[400] Zhang XY et al (2013) Dissection of the TssB-TssC Interface during Type VI Secretion Sheath Complex Formation. PLoS One. 8(11):e81074. [PudMed:24282569]
[401] Fu Y et al (2013) Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host Microbe. 14(6):652-63. [PudMed:24331463]
[402] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[403] Jones C et al (2013) An rhs-encoding gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol. 196(4):800-10. [PudMed:24317402]
[404] Hao B et al (2013) Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol. 97(6):2575-85. [PudMed:22940804]
[405] Singh AP et al (2013) Evolutionary Analysis of Burkholderia pseudomallei Identifies Putative Novel Virulence Genes, Including a Microbial Regulator of Host Cell Autophagy. J Bacteriol. 195(24):5487-98. [PudMed:24097950]
[406] Miyata ST et al (2013) Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathog. 9(12):e1003752. [PudMed:24348240]
[407] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[408] He Y et al (2012) FliC, a flagellin protein, is essential for the growth and virulence of fish pathogen Edwardsiella tarda. PLoS One. 7(9):e45070. [PudMed:23024793]
[409] Gavrilin MA et al (2012) Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J Immunol. 188(7):3469-77. [PudMed:22368275]
[410] Rosales-Reyes R et al (2012) The suhB gene of Burkholderia cenocepacia is required for protein secretion, biofilm formation, motility and polymyxin B resistance. Microbiology. 158(Pt 9):2315-24. [PudMed:22767545]
[411] Lalaouna D et al (2012) Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA-dependent Rsm small RNAs. Appl Environ Microbiol. 78(6):1658-65. [PudMed:22247157]
[412] Iraola G et al (2012) Reduced set of virulence genes allows high accuracy prediction of bacterial pathogenicity in humans. PLoS One. 7(8):e42144. [PudMed:22916122]
[413] Casabona MG et al (2012) An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa. Environ Microbiol. 15(2):471-86. [PudMed:22765374]
[414] Zhou Y et al (2012) Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun. 80(3):1243-51. [PudMed:22184413]
[415] Lv Y et al (2012) Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda. Vet Microbiol. 157(1-2):190-9. [PudMed:22227416]
[416] Sheng L et al (2012) Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus. Arch Microbiol. 194(5):379-90. [PudMed:22173829]
[417] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[418] Ishikawa T et al (2012) Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun. 80(2):575-84. [PudMed:22083711]
[419] Sirianni A et al (2012) The Pathogenic Potential of Helicobacter pullorum: Possible Role for the Type VI Secretion System. Helicobacter. 18(2):102-11. [PudMed:23067230]
[420] Silva CA et al (2012) Infection of mice by Salmonella enterica serovar Enteritidis involves additional genes that are absent in the genome of serovar Typhimurium. Infect Immun. 80(2):839-49. [PudMed:22083712]
[421] Henry R et al (2012) Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-beta-1,6-N-acetylglucosamine. Antimicrob Agents Chemother. 56(1):59-69. [PudMed:22024825]
[422] Rosales-Reyes R et al (2012) The Type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol. 14(2):255-73. [PudMed:22023353]
[423] Flannagan RS et al (2012) Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42. Cell Microbiol. 14(2):239-54. [PudMed:22023324]
[424] Browning C et al (2012) Phage pierces the host cell membrane with the iron-loaded spike. Structure. 20(2):326-39. [PudMed:22325780]
[425] Wu CF et al (2012) Acid-Induced Type VI Secretion System Is Regulated by ExoR-ChvG/ChvI Signaling Cascade in Agrobacterium tumefaciens. PLoS Pathog. 8(9):e1002938. [PudMed:23028331]
[426] Reen FJ et al (2012) Respiratory pathogens adopt a chronic lifestyle in response to bile. PLoS One. 7(9):e45978. [PudMed:23049911]
[427] Pilatova M et al (2012) Burkholderia thailandensis is virulent in Drosophila melanogaster. PLoS One. 7(11):e49745. [PudMed:23209596]
[428] Weyrich LS et al (2012) A Type VI Secretion System Encoding Locus Is Required for Bordetella bronchiseptica Immunomodulation and Persistence In Vivo. PLoS One. 7(10):e45892. [PudMed:23071529]
[429] Yu Y et al (2012) VPA1045 and VPA1049 of Vibrio parahaemolyticus regulate translocation of Hcp2. Wei Sheng Wu Xue Bao. 52(8):954-61. [PudMed:23173431]
[430] Shidore T et al (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Environ Microbiol. 14(10):2775-87. [PudMed:22616609]
[431] Robb CS et al (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol. 419(5):277-83. [PudMed:22504227]
[432] Liu H et al (2012) Investigation of the roles of T6SS genes in motility, biofilm formation, and extracellular protease Asp production in Vibrio alginolyticus with modified Gateway-compatible plasmids. Lett Appl Microbiol. 55(1):73-81. [PudMed:22563695]
[433] Elvers M et al (2012) A novel role for phospholipase D as an endogenous negative regulator of platelet sensitivity. Cell Signal. 24(9):1743-52. [PudMed:22579635]
[434] Broms JE et al (2012) Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection. PLoS One. 7(11):e50473. [PudMed:23185631]
[435] Gueguen E et al (2012) Promoter swapping unveils the role of the Citrobacter rodentium CTS1 Type VI secretion system in inter-bacterial competition. Appl Environ Microbiol. 79(1):32-8. [PudMed:23064344]
[436] Russell AB et al (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe. 11(5):538-49. [PudMed:22607806]
[437] Nykyri J et al (2012) Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11):e1003013. [PudMed:23133391]
[438] Sana TG et al (2012) The Second Type VI Secretion System of Pseudomonas aeruginosa Strain PAO1 Is Regulated by Quorum Sensing and Fur and Modulates Internalization in Epithelial Cells. J Biol Chem. 287(32):27095-105. [PudMed:22665491]
[439] Rosales-Reyes R et al (2012) Burkholderia cenocepacia Type VI Secretion System Mediates Escape of Type II Secreted Proteins into the Cytoplasm of Infected Macrophages. PLoS One. 7(7):e41726. [PudMed:22848580]
[440] Yang G et al (2012) Pdl1 is a putative lipase that enhances Photorhabdus toxin complex secretion. PLoS Pathog. 8(5):e1002692. [PudMed:22615559]
[441] Leroux M et al (2012) Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc Natl Acad Sci U S A. 109(48):19804-9. [PudMed:23150540]
[442] Liu J et al (2012) The type VI secretion system gene cluster of Salmonella typhimurium: required for full virulence in mice. J Basic Microbiol. 53(7):600-7. [PudMed:22961625]
[443] English G et al (2012) New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol. 86(4):921-36. [PudMed:22957938]
[444] Unterweger D et al (2012) Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One. 7(10):e48320. [PudMed:23110230]
[445] Shang G et al (2012) Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function. Biochem J. 448(2):201-11. [PudMed:22931054]
[446] Zhang W et al (2012) A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol. 15(2):557-69. [PudMed:23094603]
[447] Aschtgen MS et al (2012) The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. Microbiologyopen. 1(1):71-82. [PudMed:22950014]
[448] Kamada N et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 336(6086):1325-9. [PudMed:22582016]
[449] Lertpiriyapong K et al (2012) Campylobacter jejuni Type VI Secretion System: Roles in Adaptation to Deoxycholic Acid, Host Cell Adherence, Invasion, and In Vivo Colonization. PLoS One. 7(8):e42842. [PudMed:22952616]
[450] Haapalainen M et al (2012) Hcp2, a Secreted Protein of the Phytopathogen Pseudomonas syringae pv. Tomato DC3000, Is Required for Fitness for Competition against Bacteria and Yeasts. J Bacteriol. 194(18):4810-22. [PudMed:22753062]
[451] Broms JE et al (2012) DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity. PLoS One. 7(4):e34639. [PudMed:22514651]
[452] Ma L et al (2012) Expression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in Vibrio parahaemolyticus. Scientific World Journal. 2012:982140. [PudMed:22924031]
[453] Kung VL et al (2012) An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci U S A. 109(4):1275-80. [PudMed:22232685]
[454] Ibrahim M et al (2012) Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PLoS One. 7(11):e49657. [PudMed:23166741]
[455] Dong TG et al (2012) Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Res. 40(16):7766-75. [PudMed:22723378]
[456] Babujee L et al (2012) Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. BMC Genomics. 0.618055556. [PudMed:22439737]
[457] Yu Y et al (2012) Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Arch Microbiol. 194(10):827-35. [PudMed:22535222]
[458] Dogan B et al (2012) Phylogroup and lpfA influence epithelial invasion by mastitis associated Escherichia coli. Vet Microbiol. 159(1-2):163-70. [PudMed:22510704]
[459] Mulder DT et al (2012) Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect Immun. 80(6):1996-2007. [PudMed:22493086]
[460] Sheng L et al (2012) Connecting type VI secretion, quorum sensing, and c-di-GMP production in fish pathogen Vibrio alginolyticus through phosphatase PppA. Vet Microbiol. 162(2-4):652-62. [PudMed:23021863]
[461] Lossi NS et al (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol. 86(2):437-56. [PudMed:22906320]
[462] Bai L et al (2012) Isolation and characterization of cytotoxic, aggregative Citrobacter freundii. PLoS One. 7(3):e33054. [PudMed:22470435]
[463] Tolman JS et al (2012) Global changes in gene expression by the opportunistic pathogen Burkholderia cenocepacia in response to internalization by murine macrophages. BMC Genomics. 0.585416667. [PudMed:22321740]
[464] Olivares J et al (2012) Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol. 14(8):1968-81. [PudMed:22417660]
[465] Ma LS et al (2012) IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem. 287(19):15610-21. [PudMed:22393043]
[466] Stauff DL, Bassler BL. (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.. J Bacteriol. 193(15):3871-8. [PudMed:21622734]
[467] de Bruin OM et al (2011) The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiology. 157(Pt 12):3483-91. [PudMed:21980115]
[468] Brunet YR, Bernard CS, Gavioli M, Lloub��s R, Cascales E. (2011) An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster.. PLoS Genet. 7(7):e1002205. [PudMed:21829382]
[469] Podladchikova O et al (2011) Yersinia pestis autoagglutination factor is a component of the type six secretion system. Int J Med Microbiol. 301(7):562-9. [PudMed:21784704]
[470] Mikkelsen H et al (2011) The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One. 6(12):e29113. [PudMed:22216178]
[471] Mandlik A et al (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe. 10(2):165-74. [PudMed:21843873]
[472] Newell PD et al (2011) A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 9(2):e1000587. [PudMed:21304920]
[473] Navarro MV et al (2011) Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol. 9(2):e1000588. [PudMed:21304926]
[474] Opota O et al (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog. 7(9):e1002259. [PudMed:21980286]
[475] Dai S et al (2011) The acid phosphatase AcpA is secreted in vitro and in macrophages by Francisella spp. Infect Immun . 80(3):1088-97. [PudMed:22184418]
[476] Gonzalez A et al (2011) Detection and functional characterization of a large genomic deletion resulting in decreased pathogenicity in Ralstonia solanacearum race 3 biovar 2 strains. Environ Microbiol. 13(12):3172-85. [PudMed:22050636]
[477] Silverman JM et al (2011) Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol Microbiol. 82(5):1277-90. [PudMed:22017253]
[478] Loeffelholz MJ et al (2011) Comparison of the FilmArray Respiratory Panel and Prodesse real-time PCR assays for detection of respiratory pathogens. J Clin Microbiol. 49(12):4083-8. [PudMed:21998418]
[479] Murdoch SL et al (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol. 193(21):6057-69. [PudMed:21890705]
[480] Dalloneau E et al (2011) Prmt2 regulates the lipopolysaccharide-induced responses in lungs and macrophages. J Immunol. 187(9):4826-34. [PudMed:21957146]
[481] Moscoso JA et al (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol. 13(12):3128-38. [PudMed:21955777]
[482] Zhang W et al (2011) Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol. 193(5):351-63. [PudMed:21298257]
[483] Kitaoka M et al (2011) VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J Bacteriol. 193(23):6471-82. [PudMed:21949076]
[484] Zheng J et al (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One. 6(8):e23876. [PudMed:21909372]
[485] Poole SJ et al (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet. 7(8):e1002217. [PudMed:21829394]
[486] de Pace F et al (2011) Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology. 157(Pt 10):2954-62. [PudMed:21778203]
[487] Zhang L et al (2011) Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol. 193(19):5510-3. [PudMed:21784934]
[488] Franco AA et al (2011) Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 77(10):3255-67. [PudMed:21421789]
[489] Russell AB et al (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 475(7356):343-7. [PudMed:21776080]
[490] French CT et al (2011) Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc Natl Acad Sci U S A. 108(29):12095-100. [PudMed:21730143]
[491] Weber B et al (2011) The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum. Microbiology. 157(Pt 12):3324-39. [PudMed:21948044]
[492] Broms JE et al (2011) IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun. 79(9):3683-96. [PudMed:21690239]
[493] Gode-Potratz CJ et al (2011) Quorum sensing and silencing in Vibrio parahaemolyticus. J Bacteriol. 193(16):4224-37. [PudMed:21705592]
[494] Chen Y et al (2011) Regulation of type VI secretion system during Burkholderia pseudomallei infection. Infect Immun. 79(8):3064-73. [PudMed:21670170]
[495] Gaus K et al (2011) Destabilization of YopE by the ubiquitin-proteasome pathway fine-tunes Yop delivery into host cells and facilitates systemic spread of Yersinia enterocolitica in host lymphoid tissue. Infect Immun. 79(3):1166-75. [PudMed:21149597]
[496] Miyata ST et al (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun. 79(7):2941-9. [PudMed:21555399]
[497] Rogge ML et al (2011) Regulation of the Edwardsiella ictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl Environ Microbiol. 77(13):4293-302. [PudMed:21551284]
[498] Somnuke P et al (2011) N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology. 413(2):253-64. [PudMed:21429549]
[499] Wang M et al (2011) Molecular characterization of a functional type VI secretion system in Salmonella enterica serovar Typhi. Curr Microbiol. 63(1):22-31. [PudMed:21487806]
[500] Burtnick MN et al (2011) The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 79(4):1512-25. [PudMed:21300775]
[501] Hachani A et al (2011) Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem. 286(14):12317-27. [PudMed:21325275]
[502] O'Grady EP et al (2011) Burkholderia cenocepacia Differential Gene Expression during Host-Pathogen Interactions and Adaptation to the Host Environment. Front Cell Infect Microbiol. 1:15. [PudMed:22919581]
[503] Bernard CS et al (2011) Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins. J Bacteriol. 193(9):2158-67. [PudMed:21378190]
[504] Mutschler H et al (2011) A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9(3):e1001033. [PudMed:21445328]
[505] Pietrosiuk A et al (2011) Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem. 286(34):30010-21. [PudMed:21733841]
[506] Broms JE et al (2010) The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front Microbiol. 0.136111111. [PudMed:21687753]
[507] Miyata ST et al (2010) The Vibrio Cholerae Type VI Secretion System: Evaluating its Role in the Human Disease Cholera. Front Microbiol. 0.122916667. [PudMed:21607085]
[508] Asare R et al (2010) Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol. 0.142361111. [PudMed:21687747]
[509] Andrews GP et al (2010) Identification of in vivo-induced conserved sequences from Yersinia pestis during experimental plague infection in the rabbit. Vector Borne Zoonotic Dis. 10(8):749-56. [PudMed:20055582]
[510] Hood RD et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 7(1):25-37. [PudMed:20114026]
[511] Morin N et al (2010) Autoactivation of the AggR regulator of enteroaggregative Escherichia coli in vitro and in vivo. FEMS Immunol Med Microbiol. 58(3):344-55. [PudMed:20132305]
[512] Suarez G et al (2010) Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. Microbiology. 156(Pt 12):3678-88. [PudMed:20798163]
[513] Sun GW et al (2010) Identification of a regulatory cascade controlling Type III Secretion System 3 gene expression in Burkholderia pseudomallei. Mol Microbiol. 76(3):677-89. [PudMed:20345664]
[514] Burtnick MN et al (2010) Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun. 78(1):88-99. [PudMed:19884331]
[515] Blondel CJ et al (2010) Contribution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS One. 5(7):e11724. [PudMed:20661437]
[516] Asare R et al (2010) Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by Francisella tularensis. Environ Microbiol. 12(9):2559-86. [PudMed:20482590]
[517] Aschtgen MS et al (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol. 75(4):886-99. [PudMed:20487285]
[518] Al-Khodor S et al (2010) Triggering Ras signalling by intracellular Francisella tularensis through recruitment of PKCalpha and betaI to the SOS2/GrB2 complex is essential for bacterial proliferation in the cytosol. Cell Microbiol. 12(11):1604-21. [PudMed:20618341]
[519] Tan KS et al (2010) Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. J Immunol. 184(9):5160-71. [PudMed:20335533]
[520] Wang X et al (2010) Hemolysin EthA in Edwardsiella tarda is essential for fish invasion in vivo and in vitro and regulated by two-component system EsrA-EsrB and nucleoid protein HhaEt. Fish Shellfish Immunol. 29(6):1082-91. [PudMed:20832475]
[521] Suarez G et al (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol. 192(1):155-68. [PudMed:19880608]
[522] Sanchez S et al (2010) Pheno-genotypic characterisation of Escherichia coli O157:H7 isolates from domestic and wild ruminants. Vet Microbiol. 142(3-4):445-9. [PudMed:19914011]
[523] Renzi F et al (2010) Identification of genes regulated by the MvaT-like paralogues TurA and TurB of Pseudomonas putida KT2440. Environ Microbiol. 12(1):254-63. [PudMed:19788653]
[524] Records AR et al (2010) Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol. 192(14):3584-96. [PudMed:20472799]
[525] MacIntyre DL et al (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A. 107(45):19520-4. [PudMed:20974937]
[526] Zheng J et al (2010) Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci U S A. 107(49):21128-33. [PudMed:21084635]
[527] Bell BL et al (2010) Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect Immun. 78(5):2189-98. [PudMed:20231408]
[528] Schwarz S et al (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6(8):e1001068. [PudMed:20865170]
[529] Bordi C et al (2010) Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol. 76(6):1427-43. [PudMed:20398205]
[530] Chow J et al (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe. 7(4):265-76. [PudMed:20413095]
[531] Hassan KA et al (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 12(4):899-915. [PudMed:20089046]
[532] Santic M et al (2010) Cell biology and molecular ecology of Francisella tularensis. Cell Microbiol. 12(2):129-39. [PudMed:19863554]
[533] Chakraborty S et al (2010) Temperature and Mg2+ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda. J Biol Chem. 285(50):38876-88. [PudMed:20937832]
[534] Fang N et al (2010) Improvement of extracellular production of a thermophilic subtilase expressed in Escherichia coli by random mutagenesis of its N-terminal propeptide. Appl Microbiol Biotechnol. 85(5):1473-81. [PudMed:19697018]
[535] Dowling AJ et al (2010) Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243. PLoS One. 5(12):e15693. [PudMed:21203527]
[536] Hentschke M et al (2010) Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation. PLoS One. 5(10). [PudMed:20957203]
[537] Aoki SK et al (2010) A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature. 468(7322):439-42. [PudMed:21085179]
[538] Shanks J et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun. 77(4):1636-48. [PudMed:19168747]
[539] Ma AT et al (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe. 5(3):234-43. [PudMed:19286133]
[540] Barker JR et al (2009) The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol. 74(6):1459-70. [PudMed:20054881]
[541] Mueller RS et al (2009) Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol. 191(11):3504-16. [PudMed:19329638]
[542] Khajanchi BK et al (2009) N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology. 155(Pt 11):3518-31. [PudMed:19729404]
[543] Sakai T et al (2009) Identification of novel putative virulence factors, adhesin AIDA and type VI secretion system, in atypical strains of fish pathogenic Edwardsiella tarda by genomic subtractive hybridization. Microbiol Immunol. 53(3):131-9. [PudMed:19302523]
[544] Lloyd AL et al (2009) Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol. 191(11):3469-81. [PudMed:19329634]
[545] Byrd MS et al (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol. 73(4):622-38. [PudMed:19659934]
[546] Brencic A et al (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol. 73(3):434-45. [PudMed:19602144]
[547] Ueda A et al (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog. 5(6):e1000483. [PudMed:19543378]
[548] Lesic B et al (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology. 155(Pt 9):2845-55. [PudMed:19497948]
[549] Starkey M et al (2009) Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc. 4(2):117-24. [PudMed:19180083]
[550] Wehrly TD et al (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol. 11(7):1128-50. [PudMed:19388904]
[551] Brencic A et al (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol. 72(3):612-32. [PudMed:19426209]
[552] Vaysse PJ et al (2009) Proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm formation at the alkane-water interface reveals novel proteins and cellular processes involved in hexadecane assimilation. Res Microbiol. 160(10):829-37. [PudMed:19786096]
[553] Syed KA et al (2009) The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol. 191(21):6555-70. [PudMed:19717600]
[554] Bonemann G et al (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28(4):315-25. [PudMed:19131969]
[555] Hsu F et al (2009) TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol. 72(5):1111-25. [PudMed:19400797]
[556] Charity JC et al (2009) Small molecule control of virulence gene expression in Francisella tularensis. PLoS Pathog. 5(10):e1000641. [PudMed:19876386]
[557] Carranza P et al (2009) Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen. Proteomics. 9(13):3564-79. [PudMed:19609963]
[558] Buchan BW et al (2009) Identification of migR, a regulatory element of the Francisella tularensis live vaccine strain iglABCD virulence operon required for normal replication and trafficking in macrophages. Infect Immun. 77(6):2517-29. [PudMed:19349423]
[559] Clemens DL et al (2009) Francisella tularensis phagosomal escape does not require acidification of the phagosome. Infect Immun. 77(5):1757-73. [PudMed:19237528]
[560] Weber B et al (2009) Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol. 11(12):3018-28. [PudMed:19624706]
[561] Meibom KL et al (2009) Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun. 77(5):1866-80. [PudMed:19223477]
[562] Schmerk CL et al (2009) A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology. 155(Pt 5):1498-504. [PudMed:19372155]
[563] Wang X et al (2009) Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol. 27(3):469-77. [PudMed:19563898]
[564] Schmerk CL et al (2009) Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology. 155(Pt 5):1489-97. [PudMed:19372153]
[565] Ishikawa T et al (2009) Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One. 4(8):e6734. [PudMed:19701456]
[566] Pieper R et al (2009) Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology. 155(Pt 2):498-512. [PudMed:19202098]
[567] Robinson JB et al (2009) Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog. 47(5):243-51. [PudMed:19716410]
[568] Winter SE et al (2009) The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol. 74(1):175-93. [PudMed:19703107]
[569] O'Grady EP et al (2009) Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics. 0.722916667. [PudMed:19761612]
[570] Haneda T et al (2009) Genome-wide identification of novel genomic islands that contribute to Salmonella virulence in mouse systemic infection. FEMS Microbiol Lett. 297(2):241-9. [PudMed:19583791]
[571] Termine E et al (2009) Transcriptome and secretome analyses of the adaptive response of Pseudomonas aeruginosa to suboptimal growth temperature. Int Microbiol. 12(1):7-12. [PudMed:19440978]
[572] Ma LS et al (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol. 191(13):4316-29. [PudMed:19395482]
[573] Waterfield NR et al (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci U S A. 105(41):15967-72. [PudMed:18838673]
[574] Ge Z et al (2008) Helicobacter hepaticus HHGI1 is a pathogenicity island associated with typhlocolitis in B6.129-IL10 tm1Cgn mice. Microbes Infect. 10(7):726-33. [PudMed:18538610]
[575] Aschtgen MS et al (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol. 190(22):7523-31. [PudMed:18805985]
[576] Chong A et al (2008) The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun. 76(12):5488-99. [PudMed:18852245]
[577] Aubert DF et al (2008) A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia. Infect Immun. 76(5):1979-91. [PudMed:18316384]
[578] Bonquist L et al (2008) MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect Immun. 76(8):3502-10. [PudMed:18474647]
[579] Kang Y et al (2008) The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology. 154(Pt 6):1584-98. [PudMed:18524913]
[580] Butchar JP et al (2008) Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion. PLoS One. 3(8):e2924. [PudMed:18698339]
[581] Castang S et al (2008) H-NS family members function coordinately in an opportunistic pathogen. Proc Natl Acad Sci U S A. 105(48):18947-52. [PudMed:19028873]
[582] Wu HY et al (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol. 190(8):2841-50. [PudMed:18263727]
[583] Cole LE et al (2008) Macrophage proinflammatory response to Francisella tularensis live vaccine strain requires coordination of multiple signaling pathways. J Immunol. 180(10):6885-91. [PudMed:18453609]
[584] Ludu JS et al (2008) The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol. 190(13):4584-95. [PudMed:18469101]
[585] Brotcke A et al (2008) Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect Immun. 76(8):3473-80. [PudMed:18559431]
[586] Suarez G et al (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog. 44(4):344-61. [PudMed:18037263]
[587] Gibbs KA et al (2008) Genetic determinants of self identity and social recognition in bacteria. Science. 321(5886):256-9. [PudMed:18621670]
[588] Liu H et al (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 4(6):e1000093. [PudMed:18566662]
[589] Pieper R et al (2008) Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics. 8(7):1442-58. [PudMed:18383009]
[590] de Berardinis V et al (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol. 0.2875. [PudMed:18319726]
[591] Nemoto M et al (2008) ORF334 in Vibrio phage KVP40 plays the role of gp27 in T4 phage to form a heterohexameric complex. J Bacteriol. 190(10):3606-12. [PudMed:18326574]
[592] Schell MA et al (2007) Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 64(6):1466-85. [PudMed:17555434]
[593] Lesic B et al (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog. 3(9):1229-39. [PudMed:17941706]
[594] Smith MG et al (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5):601-14. [PudMed:17344419]
[595] Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol. 9(7):797-803. [PudMed:17558395]
[596] Lombardo MJ et al (2007) An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci U S A. 104(46):18229-34. [PudMed:17986616]
[597] de Bruin OM et al (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 7:01. [PudMed:17233889]
[598] Bosio CM et al (2007) Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J Immunol. 178(7):4538-47. [PudMed:17372012]
[599] Charity JC et al (2007) Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog. 3(6):e84. [PudMed:17571921]
[600] Chugani S et al (2007) The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microb Pathog. 42(1):29-35. [PudMed:17166692]
[601] Guina T et al (2007) MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J Bacteriol. 189(18):6580-6. [PudMed:17644593]
[602] Santic M et al (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol. 9(10):2391-403. [PudMed:17517064]
[603] Lenco J et al (2007) Proteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC. FEMS Microbiol Lett. 269(1):11-21. [PudMed:17227466]
[604] Mohapatra NP et al (2007) Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun. 75(7):3305-14. [PudMed:17452468]
[605] Shalom G et al (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 153(Pt 8):2689-99. [PudMed:17660433]
[606] Zheng J et al (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol. 66(5):1192-206. [PudMed:17986187]
[607] Pukatzki S et al (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A. 104(39):15508-13. [PudMed:17873062]
[608] Mattinen L et al (2007) Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics. 7(19):3527-37. [PudMed:17726675]
[609] Klumpp J et al (2007) Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology. 153(Pt 4):1207-20. [PudMed:17379730]
[610] Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 312(5779):1526-30. [PudMed:16763151]
[611] Ventre I et al (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A. 103(1):171-6. [PudMed:16373506]
[612] Liberati NT et al (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A. 103(8):2833-8. [PudMed:16477005]
[613] Kulasakara H et al (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Natl Acad Sci U S A. 103(8):2839-44. [PudMed:16477007]
[614] Cathelyn JS et al (2006) RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A. 103(36):13514-9. [PudMed:16938880]
[615] Brotcke A et al (2006) Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun. 74(12):6642-55. [PudMed:17000729]
[616] Cole LE et al (2006) Immunologic consequences of Francisella tularensis live vaccine strain infection: role of the innate immune response in infection and immunity. J Immunol. 176(11):6888-99. [PudMed:16709849]
[617] Gavrilin MA et al (2006) Internalization and phagosome escape required for Francisella to induce human monocyte IL-1beta processing and release. Proc Natl Acad Sci U S A. 103(1):141-6. [PudMed:16373510]
[618] Dudley EG et al (2006) Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol. 61(5):1267-82. [PudMed:16925558]
[619] Pukatzki S et al (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A. 103(5):1528-33. [PudMed:16432199]
[620] Yang G et al (2006) Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J Bacteriol. 188(6):2254-61. [PudMed:16513755]
[621] Pilatz S et al (2006) Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 74(6):3576-86. [PudMed:16714590]
[622] Zheng J et al (2005) Regulation of a type III and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect Immun. 73(7):4127-37. [PudMed:15972502]
[623] Juhas M et al (2005) GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol Lett. 242(2):287-95. [PudMed:15621450]
[624] Lewenza S et al (2005) Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res. 15(2):321-9. [PudMed:15687295]
[625] Enos-Berlage JL et al (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol. 55(4):1160-82. [PudMed:15686562]
[626] Southey-Pillig CJ et al (2005) Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol. 187(23):8114-26. [PudMed:16291684]
[627] Bosio CM et al (2005) Francisella tularensis induces aberrant activation of pulmonary dendritic cells. J Immunol. 175(10):6792-801. [PudMed:16272336]
[628] Clemens DL et al (2005) Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect Immun. 73(9):5892-902. [PudMed:16113308]
[629] Deziel E et al (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol. 55(4):998-1014. [PudMed:15686549]
[630] Santic M et al (2005) The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 7(7):969-79. [PudMed:15953029]
[631] Parsons DA et al (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun. 73(7):4338-45. [PudMed:15972528]
[632] Lawlor MS et al (2005) Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol Microbiol. 58(4):1054-73. [PudMed:16262790]
[633] Rao PS et al (2004) Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol. 53(2):573-86. [PudMed:15228535]
[634] Clemens DL et al (2004) Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun. 72(6):3204-17. [PudMed:15155622]
[635] Lauriano CM et al (2004) MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A. 101(12):4246-9. [PudMed:15010524]
[636] Nano FE et al (2004) A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol. 186(19):6430-6. [PudMed:15375123]
[637] Yildiz FH et al (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol. 53(2):497-515. [PudMed:15228530]
[638] Lenz DH et al (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell. 118(1):69-82. [PudMed:15242645]
[639] Bladergroen MR et al (2003) Infection-Blocking Genes of a Symbiotic Rhizobium leguminosarum Strain That Are Involved in Temperature-Dependent Protein Secretion. Mol Plant Microbe Interact. 16(1):53-64. [PudMed:12580282]
[640] Alarcon-Chaidez FJ et al (2003) RpoN (sigma(54)) is required for plasmid-encoded coronatine biosynthesis in Pseudomonas syringae. Plasmid. 49(2):106-17. [PudMed:12726764]
[641] Potvin E et al (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol. 5(12):1294-308. [PudMed:14641575]
[642] Moore MM et al (2002) Cloning and characterization of Edwardsiella ictaluri proteins expressed and recognized by the channel catfish Ictalurus punctatus immune response during infection. Dis Aquat Organ. 52(2):93-107. [PudMed:12542086]
[643] Folkesson A et al (2002) The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol. 153(8):537-45. [PudMed:12437215]
[644] Das S et al (2002) Involvement of in vivo induced icmF gene of Vibrio cholerae in motility, adherence to epithelial cells, and conjugation frequency. Biochem Biophys Res Commun. 295(4):922-8. [PudMed:12127983]
[645] Zhu J et al (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A. 99(5):3129-34. [PudMed:11854465]
[646] Parkins MD et al (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol. 40(5):1215-26. [PudMed:11401724]
[647] Perna NT et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 409(6819):529-33. [PudMed:11206551]
[648] Singh PK et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 407(6805):762-4. [PudMed:11048725]
[649] Tan MW et al (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A. 96(5):2408-13. [PudMed:10051655]
[650] Costerton JW et al (1999) Bacterial biofilms: a common cause of persistent infections. Science. 284(5418):1318-22. [PudMed:10334980]
[651] Baron GS et al (1998) MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol. 29(1):247-59. [PudMed:9701818]
[652] Williams SG et al (1996) Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun. 64(1):283-9. [PudMed:8557353]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[3] Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. (2021) Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida.. Front Microbiol. 12:643498. [PudMed:33776977]
[4] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[5] Howard SA, Furniss RCD, Bonini D, Amin H, Paracuellos P, Zlotkin D, Costa TRD, Levy A, Mavridou DAI, Filloux A. (2021) The Breadth and Molecular Basis of Hcp-Driven Type VI Secretion System Effector Delivery.. mBio. NA. [PudMed:34061601]
[6] Liu Y, Wang J, Zhang Z, Wang F, Gong Y, Sheng DH, Li YZ. (2021) Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus.. Appl Environ Microbiol. 87(9). [PudMed:33608292]
[7] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[8] Wang S, Geng Z, Zhang H, She Z, Dong Y. (2021) The Pseudomonasaeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector.. FEBS J. NA. [PudMed:33838074]
[9] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[10] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[11] Liang X, Pei TT, Wang ZH, Xiong W, Wu LL, Xu P, Lin S, Dong TG. (2021) Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU.. Appl Environ Microbiol. 87(12):e0043521. [PudMed:33837015]
[12] Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. (2020) Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.. Nat Commun. 11(1):1865. [PudMed:32313027]
[13] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[14] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[15] Wang T, Hu Z, Du X, Shi Y, Dang J, Lee M, Hesek D, Mobashery S, Wu M, Liang H. (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors.. Mol Microbiol. 114(2):308-321. [PudMed:32279364]
[16] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[17] Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, Matsuyama BY, Mesnage S, Patel A, de Souza RF, Guzzo CR, Bayer-Santos E. (2020) A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan.. Cell Rep. 31(12):107813. [PudMed:32579939]
[18] Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. (2020) In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes.. Mol Plant Microbe Interact. 33(2):349-363. [PudMed:31609645]
[19] Donato SL, Beck CM, Garza-S��nchez F, Jensen SJ, Ruhe ZC, Cunningham DA, Singleton I, Low DA, Hayes CS. (2020) The ��-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion.. Proc Natl Acad Sci U S A. NA. [PudMed:33323487]
[20] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[21] Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. (2020) Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system.. Vet Res. 51(1):71. [PudMed:32448355]
[22] Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. (2019) The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization.. Front Microbiol. 2.405555556. [PudMed:31921044]
[23] Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. (2019) Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters.. Genome Biol. 20(1):163. [PudMed:31405375]
[24] Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. (2019) Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp.. Appl Environ Microbiol. 85(2). [PudMed:30413477]
[25] Wood TE, Howard SA, Frster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. (2019) The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology.. Cell Rep. 29(1):187-201. [PudMed:31577948]
[26] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[27] Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. (2019) Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition.. Microbiologyopen. NA. [PudMed:30628184]
[28] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[29] Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. (2019) A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae.. Mol Microbiol. 111(6):1493-1509. [PudMed:30825339]
[30] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[31] Alteri CJ, Himpsl SD, Zhu K, Hershey HL, Musili N, Miller JE, Mobley HLT. (2017) Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.. PLoS Pathog. 13(11):e1006729. [PudMed:29155899]
[32] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[33] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[34] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[35] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[36] Gao R et al (2015) Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated Burkholderia glumae strain PG1. Appl Environ Microbiol. pii: AEM.01043-15. [PudMed:26362987]
[37] Trantas EA et al (2015) Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol. 0.813194444. [PudMed:26300874]
[38] Jones CL et al (2015) Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii With Enhanced Virulence. Clin Infect Dis. pii: civ225. [PudMed:25824815]
[39] Grube M et al (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9(2):412-24. [PudMed:25072413]
[40] Raveh-Sadka T et al (2015) Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. Elife. 4. [PudMed:25735037]
[41] Martinez-Garcia PM et al (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci. 10:10. [PudMed:25685259]
[42] Collins AJ et al (2015) Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Front Microbiol. 0.335416667. [PudMed:25755651]
[43] Burroughs AM et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Biol Direct. 10(1):21. [PudMed:25976611]
[44] Pang M et al (2015) Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep. 7.036805556. [PudMed:26014286]
[45] Cui Y et al (2015) Epidemic clones, oceanic gene pools and eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol Biol Evol. pii: msv009. [PudMed:25605790]
[46] Li P et al (2015) Comparative Genome Analyses of Serratia marcescens FS14 Reveals Its High Antagonistic Potential. PLoS One. 10(4):e0123061. [PudMed:25856195]
[47] Li J et al (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. doi: 10.1111/1462-2920.12794. [PudMed:25640659]
[48] Langridge GC et al (2015) Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc Natl Acad Sci U S A. 112(3):863-8. [PudMed:25535353]
[49] Liu C et al (2015) Genome analysis and in vivo virulence of porcine extraintestinal pathogenic Escherichia coli strain PCN033. BMC Genomics. 16(1):717. [PudMed:26391348]
[50] Choudhury JD et al (2015) The Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile Is a New Strain of Pseudoalteromonas agarivorans Containing Abundant and Diverse Virulence-Related Genes. Mar Biotechnol (NY). doi:10.1007/s10126-015-9627-y. [PudMed:25837832]
[51] Martinez-Garica PM et al (2015) T346Hunter: A Novel Web-Based Tool for the Prediction of Type III, Type IV and Type VI Secretion Systems in Bacterial Genomes. PLoS One. 10(4):e0119317. [PudMed:25867189]
[52] Richards VP et al (2015) Genome Based Phylogeny and Comparative Genomic Analysis of Intra-Mammary Pathogenic Escherichia coli. PLoS One. 10(3):e0119799. [PudMed:25807497]
[53] Kang H et al (2015) Characterization and Genomic Analysis of Quinolone-Resistant Delftia sp. 670 Isolated from a Patient Who Died from Severe Pneumonia. Curr Microbiol. . [PudMed:25935202]
[54] Martinez-Garcia PM et al (2015) Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle. PLoS One. 10(8):e0136101. [PudMed:26313942]
[55] Seo YS et al (2015) Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. BMC Genomics. 0.909027778. [PudMed:25943361]
[56] Ge P et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. doi: 10.1038/nsmb.2995. [PudMed:25822993]
[57] Osterman J et al (2015) Genomic features separating ten strains of Neorhizobium galegae with different symbiotic phenotypes. BMC Genomics. 0.908333333. [PudMed:25933608]
[58] Suzuki M et al (2015) Genome Sequence of a Carbapenem-Resistant Strain of Ralstonia mannitolilytica. Genome Announc. 3(3). [PudMed:25953190]
[59] Gardiner DM et al (2014) Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems. PLoS One. 9(1):e84995. [PudMed:24416331]
[60] Yap KP et al (2014) Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics. 15(1):1007. [PudMed:25412680]
[61] Ramos PI et al (2014) Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics. 15(1):54. [PudMed:24450656]
[62] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[63] Wright MS et al (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):e00963-13. [PudMed:24449752]
[64] Ye L et al (2014) Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens. PLoS One. 9(11):e110038. [PudMed:25369289]
[65] Zhang J et al (2014) Crystallization and preliminary X-ray study of TsiV3 from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 3):335-8. [PudMed:24598921]
[66] Jousset A et al (2014) Full-Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas protegens CHA0. Genome Announc. 2(2). [PudMed:24762936]
[67] Sarris PF et al (2014) A Phage Tail-Derived Element with Wide Distribution among Both Prokaryotic Domains: A Comparative Genomic and Phylogenetic Study. Genome Biol Evol. 6(7):1739-1747. [PudMed:25015235]
[68] Forster A et al (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem. 289(47):33032-43. [PudMed:25305017]
[69] Brunet YR et al (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15(3):315-21. [PudMed:24488256]
[70] Eijkelkamp BA et al (2014) Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 15(1):1020. [PudMed:25422040]
[71] Raspoet R et al (2014) Microarray-based detection of Salmonella Enteritidis genes involved in chicken reproductive tract colonization. Appl Environ Microbiol. 80(24):7710-6. [PudMed:25281378]
[72] Li H et al (2014) Evolution of carbapenem-resistant Acinetobacter baumannii through whole genome sequencing and comparative genomic analysis. Antimicrob Agents Chemother. 59(2):1168-76. [PudMed:25487793]
[73] Chang JH et al (2014) Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol. 53(1):32-7. [PudMed:25471186]
[74] Memisevic V et al (2014) DBSecSys: a database of Burkholderia mallei secretion systems. BMC Bioinformatics. 0.794444444. [PudMed:25030112]
[75] Livny J et al (2014) Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Res. 42(19):12212-23. [PudMed:25262354]
[76] Lu D et al (2014) Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol Microbiol. 92(5):1092-112. [PudMed:24724564]
[77] Kenzaka T et al (2014) Draft Genome Sequences of Amoeba-Resistant Aeromonas spp. Isolated from Aquatic Environments. Genome Announc. 2(5). [PudMed:25359918]
[78] Rudder S et al (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics. 15(1):268. [PudMed:24708309]
[79] Zhou H et al (2014) Population structural analysis of O1 El Tor Vibrio cholerae isolated in China among the seventh cholera pandemic on the basis of multilocus sequence typing and virulence gene profiles. Infect Genet Evol. 22:72-80. [PudMed:24448269]
[80] Mora Y et al (2014) Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl Environ Microbiol. 80(18):5644-54. [PudMed:25002426]
[81] Coyne MJ et al (2014) Evidence of Extensive DNA Transfer between Bacteroidales Species within the Human Gut. MBio. 5(3). [PudMed:24939888]
[82] Egan F et al (2014) Tle Distribution and Diversity in Metagenomic Datasets Reveals Niche Specialisation. Environ Microbiol Rep. 7(2):194-203. [PudMed:25345349]
[83] Liu F et al (2014) Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genomics. 15(1):1163. [PudMed:25534766]
[84] Chen Z et al (2014) Cloning, purification, crystallization and preliminary X-ray studies of the putative type VI secretion immunity protein Tli5 (PA5088) from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun. 70(Pt 7):903-5. [PudMed:25005085]
[85] Yang X et al (2014) Molecular mechanism for self-protection against the type VI secretion system in Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 70(Pt 4):1094-103. [PudMed:24699653]
[86] Zuleta LF et al (2014) The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics. 15(1):535. [PudMed:24972629]
[87] Ugarte-Ruiz M et al (2014) Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates. Zoonoses Public Health. doi: 10.1111/zph.12176. [PudMed:25496466]
[88] Dudnik A et al (2014) Genome and Transcriptome Sequences of Pseudomonas syringae pv. syringae B301D-R. Genome Announc. 2(2). [PudMed:24723725]
[89] Shen Z et al (2014) Draft genome sequences of six enterohepatic helicobacter species isolated from humans and one from rhesus macaques. Genome Announc. 2(5). [PudMed:25212613]
[90] Gopinath G et al (2014) Draft Genome Sequences of Nine Salmonella enterica Serovar Bovismorbificans Isolates from Various Sources. Genome Announc. 2(2). [PudMed:24604660]
[91] Bachmann NL et al (2014) Genome analysis and CRISPR typing of Salmonella enterica serovar Vircho. BMC Genomics. 0.895138889. [PudMed:24885207]
[92] Jaradat ZW et al (2014) Cronobacter, an opportunistic food borne pathogen; a review of its virulence and environmental adaptive traits. J Med Microbiol. 63(Pt 8):1023-1037. [PudMed:24878566]
[93] Kwong WK et al (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A. 111(31):11509-14. [PudMed:25053814]
[94] Zhu Ge X et al (2014) Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains. PLoS One. 9(11):e112048. [PudMed:25397580]
[95] Hu H et al (2014) Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallogr D Biol Crystallogr. 70(Pt 8):2175-2185. [PudMed:25084336]
[96] Shao S et al (2014) Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: Propose a novel species as Edwardsiella anguillarum sp. nov . Syst Appl Microbiol. 38(1):36-47. [PudMed:25466920]
[97] Lery LM et al (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 12(1):41. [PudMed:24885329]
[98] Wang S et al (2014) Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics. 15(1):440. [PudMed:24906389]
[99] Lu D et al (2014) The structural basis of the Tle4-Tli4 complex reveals the self-protection mechanism of H2-T6SS in Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr. 70(Pt 12):3233-43. [PudMed:25478841]
[100] Harrison JW et al (2014) Identification of Possible Virulence Marker from Campylobacter jejuni Isolates. Emerg Infect Dis. 20(6):1026-9. [PudMed:24856088]
[101] Alavi P et al (2014) Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics. 0.959722222. [PudMed:24939220]
[102] Shyntum DY et al (2014) Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics. 15(1):163. [PudMed:24571088]
[103] Zhang J et al (2014) Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett. 588(10):1891-8. [PudMed:24751834]
[104] Jeong JH et al (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 9):1260-3. [PudMed:25195905]
[105] Pedron J et al (2014) Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics. 15(1):283. [PudMed:24735398]
[106] Abby SS et al (2014) Bacteria in Ostreococcus tauri cultures - friends, foes or hitchhikers?. Front Microbiol. 0.559027778. [PudMed:25426102]
[107] Siqueira AF et al (2014) Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics. 0.916666667. [PudMed:24888481]
[108] Rydzewski K et al (2014) Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol. 14(1):169. [PudMed:24961323]
[109] Adamek M et al (2014) Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: A genome sequencing and gene expression approach. Microb Pathog. 67-68:20-30. [PudMed:24530922]
[110] Aravena-Roman M et al (2014) Distribution of 13 virulence genes among clinical and environmental Aeromonas spp. in Western Australia. Eur J Clin Microbiol Infect Dis. 33(11):1889-95. [PudMed:24859908]
[111] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[112] Ushijima B et al (2014) Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol. 80(7):2102-9. [PudMed:24463971]
[113] De Maayer P et al (2014) Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics. 15(1):404. [PudMed:24884520]
[114] Kingry LC et al (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol. 4:35. [PudMed:24660164]
[115] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[116] Russell AB et al (2014) A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host Microbe. 16(2):227-36. [PudMed:25070807]
[117] Ali S et al (2014) A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp.. J Theor Biol. 343:193-8. [PudMed:24513137]
[118] Grim CJ et al (2013) Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 0.8375. [PudMed:23724777]
[119] Barret M et al (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep. 5(1):117-26. [PudMed:23757140]
[120] Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem. 288(8):5928-39. [PudMed:23288853]
[121] Thapa SP et al (2013) Comparative genomics of Japanese Erwinia pyrifoliae strain Ejp617 with closely related erwinias. Genome. 56(2):83-90. [PudMed:23517317]
[122] Marchler-Bauer A et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41(D1):D348-52. [PudMed:23197659]
[123] Cattoir V et al (2013) Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. MBio. 3(6):e00410-12. [PudMed:23143799]
[124] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[125] Mann RA et al (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS One. 8(2):e55644. [PudMed:23409014]
[126] Benz J et al (2013) Structural Insights into the Effector - Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS One. 8(6):e67362. [PudMed:23826277]
[127] Redondo-Nieto M et al (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics. 14:54. [PudMed:23350846]
[128] Bondarev V et al (2013) The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol. 15(7):2095-113. [PudMed:23601235]
[129] Marin MA et al (2013) Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis. 7(2):e2049. [PudMed:23459673]
[130] Duan J et al (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One. 8(3):e58640. [PudMed:23516524]
[131] Grad YH et al (2013) Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. MBio. 4(1):e00452-12. [PudMed:23341549]
[132] Robb CS et al (2013) Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 6):607-10. [PudMed:23722835]
[133] Hornung C et al (2013) The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One. 8(2):e55045. [PudMed:23405110]
[134] Mitter B et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants . Front Plant Sci. 0.25. [PudMed:23641251]
[135] Liu WY et al (2013) Comparative Genome Analysis of Enterobacter cloacae. PLoS One. 8(9):e74487. [PudMed:24069314]
[136] Shneider MM et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350-3. [PudMed:23925114]
[137] Dong C et al (2013) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J. 454(1):59-68. [PudMed:23730712]
[138] Sugawara M et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 14(2):R17. [PudMed:23425606]
[139] Smits TH et al (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol. 36(7):449-56. [PudMed:23726521]
[140] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[141] Koiv V et al (2013) Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae. PLoS One. 8(1):e54248. [PudMed:23372695]
[142] Ma J et al (2013) Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. Infect Genet Evol. 20:454-64. [PudMed:24120694]
[143] Desai PT et al (2013) Evolutionary Genomics of Salmonella enterica Subspecies. MBio. 4(2):e00198-13. [PudMed:23462113]
[144] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[145] Sarris PF et al (2013) Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots. PLoS One. 8(3):e59366. [PudMed:23555661]
[146] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[147] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[148] Wang T et al (2013) Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein. Acta Crystallogr D Biol Crystallogr. 69(Pt 10):1889-1900. [PudMed:24100309]
[149] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[150] Khan A et al (2013) Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards. World J Microbiol Biotechnol. 29(11):2033-44. [PudMed:23653265]
[151] Li L et al (2013) Structural Insights on the Bacteriolytic and Self-protection Mechanism of Muramidase Effector Tse3 in Pseudomonas aeruginosa. J Biol Chem. 288(42):30607-13. [PudMed:24025333]
[152] Fory PA et al (2013) Comparative analysis of two emerging rice seed bacterial pathogens. Phytopathology. 104(5):436-44. [PudMed:24261408]
[153] Bullman S et al (2013) Genomic investigation into strain heterogeneity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus. PLoS One. 8(8):e71515. [PudMed:24023611]
[154] Memisevic V et al (2013) Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions. Mol Cell Proteomics. 12(11):3036-51. [PudMed:23800426]
[155] Grigoryeva TV et al (2013) Draft Genome of the Nitrogen-Fixing Bacterium Pseudomonas stutzeri Strain KOS6 Isolated from Industrial Hydrocarbon Sludge. Genome Announc. 1(1). [PudMed:23405317]
[156] Darrasse A et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics. 14(1):761. [PudMed:24195767]
[157] Gao X et al (2013) Genomic study of polyhydroxyalkanoates producing Aeromonas hydrophila 4AK4. Appl Microbiol Biotechnol. 97(20):9099-109. [PudMed:24000047]
[158] Franca FL et al (2013) Genotypic and phenotypic characterisation of enteroaggregative Escherichia coli from children in Rio de Janeiro, Brazil. PLoS One. 8(7):e69971. [PudMed:23936127]
[159] Vandroemme J et al (2013) Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics. 14(1):829. [PudMed:24274055]
[160] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[161] Hayward MR et al (2013) Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 0.836805556. [PudMed:23725633]
[162] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[163] Brankatschk K et al (2012) Comparative genomic analysis of Salmonella enterica subsp. enterica serovar Weltevreden foodborne strains with other serovars. Int J Food Microbiol. 155(3):247-56. [PudMed:22341936]
[164] Dias GM et al (2012) Genome sequence of the marine bacterium Vibrio campbellii DS40M4, isolated from open ocean water. J Bacteriol. 194(4):904. [PudMed:22275102]
[165] Joseph S et al (2012) Comparative analysis of genome sequences covering the seven cronobacter species. PLoS One. 7(11):e49455. [PudMed:23166675]
[166] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[167] Shidore T et al (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Environ Microbiol. 14(10):2775-87. [PudMed:22616609]
[168] Robb CS et al (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol. 419(5):277-83. [PudMed:22504227]
[169] Russell AB et al (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe. 11(5):538-49. [PudMed:22607806]
[170] Nykyri J et al (2012) Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11):e1003013. [PudMed:23133391]
[171] Yang M et al (2012) Edwardsiella comparative phylogenomics reveal the new intra/inter-species taxonomic relationships, virulence evolution and niche adaptation mechanisms. PLoS One. 7(5):e36987. [PudMed:22590641]
[172] Loper JE et al (2012) Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genet. 8(7):e1002784. [PudMed:22792073]
[173] Shang G et al (2012) Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function. Biochem J. 448(2):201-11. [PudMed:22931054]
[174] Benz J et al (2012) Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS One. 7(7):e40453. [PudMed:22792331]
[175] Goto T et al (2012) Complete genome sequence of Helicobacter cinaedi strain PAGU611, isolated in a case of human bacteremia. J Bacteriol. 194(14):3744-5. [PudMed:22740670]
[176] Ibrahim M et al (2012) Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PLoS One. 7(11):e49657. [PudMed:23166741]
[177] Black M et al (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel). 3(1):138-66. [PudMed:24704847]
[178] Zhang D et al (2012) Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct. 7:18. [PudMed:22731697]
[179] Babujee L et al (2012) Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. BMC Genomics. 0.618055556. [PudMed:22439737]
[180] Hebert L et al (2012) Genomic characterization of the Taylorella genus. PLoS One. 7(1):e29953. [PudMed:22235352]
[181] Stauff DL, Bassler BL. (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.. J Bacteriol. 193(15):3871-8. [PudMed:21622734]
[182] Lu S et al (2011) Complete genome sequence of the neonatal-meningitis-associated Escherichia coli strain CE10. J Bacteriol. 193(24):7005. [PudMed:22123760]
[183] Smits TH et al (2011) Metabolic versatility and antibacterial metabolite biosynthesis are distinguishing genomic features of the fire blight antagonist Pantoea vagans C9-1. PLoS One. 6(7):e22247. [PudMed:21789243]
[184] Thompson CC et al (2011) Genome sequence of the human pathogen Vibrio cholerae Amazonia. J Bacteriol. 193(20):5877-8. [PudMed:21952545]
[185] Franco AA et al (2011) Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 77(10):3255-67. [PudMed:21421789]
[186] Sarris PF et al (2011) Pseudomonas entomophila and Pseudomonas mendocina: potential models for studying the bacterial type VI secretion system. Infect Genet Evol. 11(6):1352-60. [PudMed:21600307]
[187] Sarris PF et al (2011) Distribution of the putative type VI secretion system core genes in Klebsiella spp. Infect Genet Evol. 11(1):157-66. [PudMed:20932940]
[188] Pedrosa FO et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet. 7(5):e1002064. [PudMed:21589895]
[189] Ortet P et al (2011) Complete genome sequence of a beneficial plant root-associated bacterium, Pseudomonas brassicacearum. J Bacteriol. 193(12):3146. [PudMed:21515771]
[190] Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact. 24(7):751-7. [PudMed:21361789]
[191] Van Puyvelde S et al (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol. 61(4):723-8. [PudMed:21340736]
[192] Barret M et al (2011) Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology. 157(Pt 6):1726-39. [PudMed:21474537]
[193] Fookes M et al (2011) Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog. 7(8):e1002191. [PudMed:21876672]
[194] Wu X et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. 35(2):299-323. [PudMed:20796030]
[195] De Maayer P et al (2011) Comparative genomics of the Type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics. 0.9. [PudMed:22115407]
[196] Petty NK et al (2010) The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol. 192(2):525-38. [PudMed:19897651]
[197] Smits TH et al (2010) Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity. BMC Genomics. 11:02. [PudMed:20047678]
[198] Kampenusa I et al (2010) Distinguishable codon usage and amino acid composition patterns among substrates of leaderless secretory pathways from proteobacteria. Appl Microbiol Biotechnol. 86(1):285-93. [PudMed:20107986]
[199] Roy PH et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 5(1):e8842. [PudMed:20107499]
[200] Guindon S et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307-21. [PudMed:20525638]
[201] Green S et al (2010) Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One. 5(4):e10224. [PudMed:20419105]
[202] Chaudhuri RR et al (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One. 5(1):e8801. [PudMed:20098708]
[203] Sarris PF et al (2010) In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol Plant Pathol. 11(6):795-804. [PudMed:21091602]
[204] Chao G et al (2010) Distribution of genes encoding four pathogenicity islands (VPaIs), T6SS, biofilm, and type I pilus in food and clinical strains of Vibrio parahaemolyticus in China. Foodborne Pathog Dis. 7(6):649-58. [PudMed:20132020]
[205] Miquel S et al (2010) Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82. PLoS One. 5(9). [PudMed:20862302]
[206] Kucerova E1, Clifton SW, Xia XQ, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 5(3):e9556. [PudMed:20221447]
[207] Shrivastava S et al (2010) INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms. J Biosci. 35(3):351-64. [PudMed:20826944]
[208] Boyer F et al (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources. BMC Genomics. 0.488888889. [PudMed:19284603]
[209] Sakai T et al (2009) Identification of novel putative virulence factors, adhesin AIDA and type VI secretion system, in atypical strains of fish pathogenic Edwardsiella tarda by genomic subtractive hybridization. Microbiol Immunol. 53(3):131-9. [PudMed:19302523]
[210] Di Bonaventura MP et al (2009) Complete genome sequence of Aggregatibacter (Haemophilus) aphrophilus NJ8700. J Bacteriol. 191(14):4693-4. [PudMed:19447908]
[211] Yang JC et al (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One. 4(7):e6085. [PudMed:19568419]
[212] Persson OP et al (2009) High abundance of virulence gene homologues in marine bacteria. Environ Microbiol. 11(6):1348-57. [PudMed:19207573]
[213] Tseng TT et al (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 Suppl 1:S2. [PudMed:19278550]
[214] Wang Q et al (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4(10):e7646. [PudMed:19865481]
[215] Larsson P et al (2009) Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog. 5(6):e1000472. [PudMed:19521508]
[216] Champion MD et al (2009) Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog. 5(5):e1000459. [PudMed:19478886]
[217] Blondel CJ et al (2009) Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics. 0.6625. [PudMed:19653904]
[218] Yen YT et al (2008) Genome-wide in silico mapping of the secretome in pathogenic Yersinia pestis KIM. FEMS Microbiol Lett . 279(1):56-63. [PudMed:18070074]
[219] Butchar JP et al (2008) Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion. PLoS One. 3(8):e2924. [PudMed:18698339]
[220] Smith MG et al (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5):601-14. [PudMed:17344419]
[221] Chambers CE et al (2006) Identification of potential CepR regulated genes using a cep box motif-based search of the Burkholderia cenocepacia genome. BMC Microbiol. 0.322222222. [PudMed:17187664]
[222] Glass MB et al (2006) Burkholderia oklahomensis sp. nov., a Burkholderia pseudomallei-like species formerly known as the Oklahoma strain of Pseudomonas pseudomallei. Int J Syst Evol Microbiol. 6(Pt 9):2171-6. [PudMed:16957116]
[223] Lewenza S et al (2005) Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res. 15(2):321-9. [PudMed:15687295]
[224] Das S et al (2003) Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol. 3(3):287-300. [PudMed:12954091]
[225] Perna NT et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 409(6819):529-33. [PudMed:11206551]
[1] Gao R et al (2015) Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated Burkholderia glumae strain PG1. Appl Environ Microbiol. pii: AEM.01043-15. [PudMed:26362987]
[2] Trantas EA et al (2015) Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol. 0.813194444. [PudMed:26300874]
[3] Sapountzis P et al (2015) The Enterobacterium Trabulsiella odontotermitis Presents Novel Adaptations Related to Its Association with Fungus-Growing Termites. Appl Environ Microbiol. 81(19):6577-88. [PudMed:26162887]
[4] Quibod IL et al (2015) Rice-Infecting Pseudomonas Genomes Are Highly Accessorized and Harbor Multiple Putative Virulence Mechanisms to Cause Sheath Brown Rot. PLoS One. 10(9):e0139256. [PudMed:26422147]
[5] Martinez-Garcia PM et al (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci. 10:10. [PudMed:25685259]
[6] Behar A et al (2015) Whole genome analysis to detect potential vaccine-induced changes on Shigella sonnei genome. Vaccine. pii: S0264-410X(15)00550-2. [PudMed:25936664]
[7] Siddiqui F et al (2015) Molecular detection identified a Type Six Secretion System in Campylobacter jejuni from various sources but not from human cases. J Appl Microbiol. doi: 10.1111/jam.12748. [PudMed:25580664]
[8] Pang M et al (2015) Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep. 7.036805556. [PudMed:26014286]
[9] Lin LC et al (2015) Draft Genome Sequence of Vibrio owensii GRA50-12, Isolated from Green Algae in the Intertidal Zone of Eastern Taiwan. Genome Announc. 3(1). [PudMed:25593265]
[10] Nandi T et al (2015) Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Res. 25(1):129-41. [PudMed:25236617]
[11] Liu C et al (2015) Genome analysis and in vivo virulence of porcine extraintestinal pathogenic Escherichia coli strain PCN033. BMC Genomics. 16(1):717. [PudMed:26391348]
[12] Richards VP et al (2015) Genome Based Phylogeny and Comparative Genomic Analysis of Intra-Mammary Pathogenic Escherichia coli. PLoS One. 10(3):e0119799. [PudMed:25807497]
[13] Borges V et al (2015) Helicobacter pullorum isolated from fresh chicken meat - antibiotic resistance and genomic traits of an emerging foodborne pathogen. Appl Environ Microbiol. pii: AEM.02394-15. [PudMed:26386065]
[14] Desilets M et al (2015) Genome-based Definition of an Inflammatory Bowel Disease-associated Adherent-Invasive Escherichia coli Pathovar. Inflamm Bowel Dis. . [PudMed:26444104]
[15] Chieng S et al (2015) Transcriptome analysis of Burkholderia pseudomallei T6SS identifies Hcp1 as a potential serodiagnostic marker. Microb Pathog. 79:47-56. [PudMed:25616255]
[16] Kang H et al (2015) Characterization and Genomic Analysis of Quinolone-Resistant Delftia sp. 670 Isolated from a Patient Who Died from Severe Pneumonia. Curr Microbiol. . [PudMed:25935202]
[17] Martinez-Garcia PM et al (2015) Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle. PLoS One. 10(8):e0136101. [PudMed:26313942]
[18] Osterman J et al (2015) Genomic features separating ten strains of Neorhizobium galegae with different symbiotic phenotypes. BMC Genomics. 0.908333333. [PudMed:25933608]
[19] Torres D et al (2015) Genome Sequence of Bradyrhizobium japonicum E109, One of the Most Agronomically Used Nitrogen-Fixing Rhizobacteria in Argentina. Genome Announc. 3(1). [PudMed:25700406]
[20] Suzuki M et al (2015) Genome Sequence of a Carbapenem-Resistant Strain of Ralstonia mannitolilytica. Genome Announc. 3(3). [PudMed:25953190]
[21] Gardiner DM et al (2014) Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems. PLoS One. 9(1):e84995. [PudMed:24416331]
[22] Wright MS et al (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):e00963-13. [PudMed:24449752]
[23] Ohtsubo Y et al (2014) Complete Genome Sequence of Pseudomonas aeruginosa MTB-1, Isolated from a Microbial Community Enriched by the Technical Formulation of Hexachlorocyclohexane. Genome Announc. 2(1). [PudMed:24459257]
[24] Jousset A et al (2014) Full-Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas protegens CHA0. Genome Announc. 2(2). [PudMed:24762936]
[25] Medrano EG et al (2014) Complete Genome Sequence of a Klebsiella pneumoniae Strain Isolated from a Known Cotton Insect Boll Vector. Genome Announc. 2(4). [PudMed:25146146]
[26] Darby A et al (2014) Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals. PLoS One. 9(7):e100542. [PudMed:25057966]
[27] Li H et al (2014) Evolution of carbapenem-resistant Acinetobacter baumannii through whole genome sequencing and comparative genomic analysis. Antimicrob Agents Chemother. 59(2):1168-76. [PudMed:25487793]
[28] Gopinath G et al (2014) Whole-Genome Sequences of Six Salmonella enterica Serovar Bovismorbificans Isolates Associated with a 2011 Multistate Hummus-Borne Outbreak. Genome Announc. 6;2(2). [PudMed:24604659]
[29] Kenzaka T et al (2014) Draft Genome Sequences of Amoeba-Resistant Aeromonas spp. Isolated from Aquatic Environments. Genome Announc. 2(5). [PudMed:25359918]
[30] Okada K et al (2014) Complete Genome Sequence of Bordetella bronchiseptica S798, an Isolate from a Pig with Atrophic Rhinitis. Genome Announc. 2(3). [PudMed:24831150]
[31] Rudder S et al (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics. 15(1):268. [PudMed:24708309]
[32] Lee JH et al (2014) Draft genome sequence of Xanthomonas axonopodis pv. glycines 8ra possessing transcription activator-like effectors used for genetic engineering. J Biotechnol. 179C:15-16. [PudMed:24657734]
[33] Weller-Stuart T et al (2014) Draft Genome Sequences of the Onion Center Rot Pathogen Pantoea ananatis PA4 and Maize Brown Stalk Rot Pathogen P. ananatis BD442. Genome Announc. 2(4). [PudMed:25103759]
[34] Liu F et al (2014) Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genomics. 15(1):1163. [PudMed:25534766]
[35] Zuleta LF et al (2014) The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics. 15(1):535. [PudMed:24972629]
[36] Ugarte-Ruiz M et al (2014) Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates. Zoonoses Public Health. doi: 10.1111/zph.12176. [PudMed:25496466]
[37] Dudnik A et al (2014) Genome and Transcriptome Sequences of Pseudomonas syringae pv. syringae B301D-R. Genome Announc. 2(2). [PudMed:24723725]
[38] Shen Z et al (2014) Draft genome sequences of six enterohepatic helicobacter species isolated from humans and one from rhesus macaques. Genome Announc. 2(5). [PudMed:25212613]
[39] Gopinath G et al (2014) Draft Genome Sequences of Nine Salmonella enterica Serovar Bovismorbificans Isolates from Various Sources. Genome Announc. 2(2). [PudMed:24604660]
[40] Kwong WK et al (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A. 111(31):11509-14. [PudMed:25053814]
[41] Mohd Suhaimi NS et al (2014) Genome Sequence of Kosakonia radicincitans UMEnt01/12, a Bacterium Associated with Bacterial Wilt Diseased Banana Plant. FEMS Microbiol Lett. 358(1):11-3. [PudMed:25047976]
[42] Wang S et al (2014) Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics. 15(1):440. [PudMed:24906389]
[43] Pedron J et al (2014) Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics. 15(1):283. [PudMed:24735398]
[44] Rydzewski K et al (2014) Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol. 14(1):169. [PudMed:24961323]
[45] Adamek M et al (2014) Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: A genome sequencing and gene expression approach. Microb Pathog. 67-68:20-30. [PudMed:24530922]
[46] Ushijima B et al (2014) Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol. 80(7):2102-9. [PudMed:24463971]
[47] Sasaki H et al (2014) Draft Genome Sequence of the Rodent Opportunistic Pathogen Pasteurella pneumotropica ATCC 35149T. Genome Announc. 2(4). [PudMed:25103762]
[48] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[49] Bishop AH et al (2014) Identification of Genes Required for Soil Survival in Burkholderia thailandensis by Transposon-Directed Insertion Site Sequencing. Curr Microbiol. 68(6):693-701. [PudMed:24488501]
[50] Adam Z et al (2014) Draft Genome Sequence of Pantoea ananatis Strain LMG 2665T, a Bacterial Pathogen of Pineapple Fruitlets. Genome Announc. 2(3). [PudMed:24855311]
[51] Thapa SP et al (2013) Comparative genomics of Japanese Erwinia pyrifoliae strain Ejp617 with closely related erwinias. Genome. 56(2):83-90. [PudMed:23517317]
[52] Dong TG et al (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A . 110(7):2623-8. [PudMed:23362380]
[53] Redondo-Nieto M et al (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics. 14:54. [PudMed:23350846]
[54] Guardiola-Avila I et al (2013) Draft Genome Sequence of Vibrio mimicus Strain CAIM 602T. Genome Announc. 1(2):e0008413. [PudMed:23516211]
[55] Hornung C et al (2013) The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One. 8(2):e55045. [PudMed:23405110]
[56] Smits TH et al (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol. 36(7):449-56. [PudMed:23726521]
[57] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[58] Zhang JX et al (2013) Genome Sequence of the Banana Pathogen Dickeya zeae Strain MS1, Which Causes Bacterial Soft Rot. Genome Announc. 1(3). [PudMed:23766402]
[59] Desai PT et al (2013) Evolutionary Genomics of Salmonella enterica Subspecies. MBio. 4(2):e00198-13. [PudMed:23462113]
[60] Sarris PF et al (2013) Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots. PLoS One. 8(3):e59366. [PudMed:23555661]
[61] Grigoryeva TV et al (2013) Draft Genome of the Nitrogen-Fixing Bacterium Pseudomonas stutzeri Strain KOS6 Isolated from Industrial Hydrocarbon Sludge. Genome Announc. 1(1). [PudMed:23405317]
[62] Darrasse A et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics. 14(1):761. [PudMed:24195767]
[63] Gao X et al (2013) Genomic study of polyhydroxyalkanoates producing Aeromonas hydrophila 4AK4. Appl Microbiol Biotechnol. 97(20):9099-109. [PudMed:24000047]
[64] Vandroemme J et al (2013) Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics. 14(1):829. [PudMed:24274055]
[65] Fu Y et al (2013) Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host Microbe. 14(6):652-63. [PudMed:24331463]
[66] Carruthers MD et al (2013) Draft Genome Sequence of the Clinical Isolate Acinetobacter nosocomialis Strain M2. Genome Announc. 1(6). [PudMed:24201195]
[67] Hayward MR et al (2013) Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 0.836805556. [PudMed:23725633]
[68] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[69] Dias GM et al (2012) Genome sequence of the marine bacterium Vibrio campbellii DS40M4, isolated from open ocean water. J Bacteriol. 194(4):904. [PudMed:22275102]
[70] Joseph S et al (2012) Comparative analysis of genome sequences covering the seven cronobacter species. PLoS One. 7(11):e49455. [PudMed:23166675]
[71] Amaral GR et al (2012) Genome sequence of the bacterioplanktonic, mixotrophic Vibrio campbellii strain PEL22A, isolated in the Abrolhos Bank. J Bacteriol. 194(10):2759-60. [PudMed:22535939]
[72] Nykyri J et al (2012) Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11):e1003013. [PudMed:23133391]
[73] Goto T et al (2012) Complete genome sequence of Helicobacter cinaedi strain PAGU611, isolated in a case of human bacteremia. J Bacteriol. 194(14):3744-5. [PudMed:22740670]
[74] Mandlik A et al (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe. 10(2):165-74. [PudMed:21843873]
[75] Thompson CC et al (2011) Genome sequence of the human pathogen Vibrio cholerae Amazonia. J Bacteriol. 193(20):5877-8. [PudMed:21952545]
[76] Pedrosa FO et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet. 7(5):e1002064. [PudMed:21589895]
[77] Roy PH et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 5(1):e8842. [PudMed:20107499]
[78] Chaudhuri RR et al (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One. 5(1):e8801. [PudMed:20098708]
[79] Miquel S et al (2010) Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82. PLoS One. 5(9). [PudMed:20862302]
[80] Penz T et al (2010) The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" encodes an afp-like prophage possibly used for protein secretion. Virulence. 1(6):541-5. [PudMed:21178499]
[81] Kucerova E1, Clifton SW, Xia XQ, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 5(3):e9556. [PudMed:20221447]
[82] Yang JC et al (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One. 4(7):e6085. [PudMed:19568419]
[83] Wang Q et al (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4(10):e7646. [PudMed:19865481]
[84] Champion MD et al (2009) Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog. 5(5):e1000459. [PudMed:19478886]
[85] Smith MG et al (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5):601-14. [PudMed:17344419]
[86] Perna NT et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 409(6819):529-33. [PudMed:11206551]
[1] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[2] Tang JY, Bullen NP, Ahmad S, Whitney JC (2018) Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem. 293(5):1504-1514. [PudMed:29237732]
[3] Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD (2018) Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell. 175(5):1380-1392.e14. [PudMed:30343895]
[4] Nguyen VS et al (2015) Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody. Acta Crystallogr F Struct Biol Commun. 71(Pt 3):266-71. [PudMed:25760699]
[5] Nunes-Alves C (2015) Structural biology: Hand in hand structure and function of T6SSs. Nat Rev Microbiol. 13(4):186-7. [PudMed:25749451]
[6] Gerc AJ et al (2015) Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly. Cell Rep. 12(12):2131-42. [PudMed:26387948]
[7] Durand E et al (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature. 523(7562):555-60. [PudMed:26200339]
[8] Lim YT et al (2015) Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei. Sci Rep. 5.927083333. [PudMed:25648885]
[9] Kudryashev M et al (2015) Structure of the Type VI Secretion System Contractile Sheath. Cell. 160(5):952-62. [PudMed:25723169]
[10] Clemens DL et al (2015) Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell. 160(5):940-51. [PudMed:25723168]
[11] Nguyen VS et al (2015) Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody. PLoS One. 10(3):e0122187. [PudMed:25811612]
[12] Wang RY et al (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods. 12(4):335-338. [PudMed:25707029]
[13] Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci. 5-Oct. [PudMed:26370934]
[14] Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD (2015) An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell. 163(3):607-19. [PudMed:26456113]
[15] Diniz JA et al (2015) Intra-species Competition in Serratia marcescens is Mediated by Type VI Secretion Rhs Effectors and a Conserved Effector-Associated Accessory Protein. J Bacteriol. pii: JB.00199-15. [PudMed:25939831]
[16] Ge P et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. doi: 10.1038/nsmb.2995. [PudMed:25822993]
[17] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[18] Zhang J et al (2014) Crystallization and preliminary X-ray study of TsiV3 from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 3):335-8. [PudMed:24598921]
[19] Forster A et al (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem. 289(47):33032-43. [PudMed:25305017]
[20] Brunet YR et al (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15(3):315-21. [PudMed:24488256]
[21] Chang JH et al (2014) Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol. 53(1):32-7. [PudMed:25471186]
[22] Chang YW et al (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods. 11(7):737-9. [PudMed:24813625]
[23] Zoued A et al (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta. 1843(8):1664-73. [PudMed:24681160]
[24] Kube S et al (2014) Structure of the VipA/B Type VI Secretion Complex Suggests a Contraction-State-Specific Recycling Mechanism. Cell Rep. 16(1):94-104. [PudMed:24953649]
[25] Lu D et al (2014) Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol Microbiol. 92(5):1092-112. [PudMed:24724564]
[26] Yang X et al (2014) Molecular mechanism for self-protection against the type VI secretion system in Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 70(Pt 4):1094-103. [PudMed:24699653]
[27] Hu H et al (2014) Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallogr D Biol Crystallogr. 70(Pt 8):2175-2185. [PudMed:25084336]
[28] Hu W et al (2014) A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding. PLoS One. 9(11):e110810. [PudMed:25401506]
[29] Zhang J et al (2014) Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett. 588(10):1891-8. [PudMed:24751834]
[30] Jeong JH et al (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 9):1260-3. [PudMed:25195905]
[31] Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem. 288(8):5928-39. [PudMed:23288853]
[32] Lu D et al (2013) Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 5):524-7. [PudMed:23695568]
[33] Bebeacua C et al (2013) Visualizing a Complete Siphoviridae Member by Single-Particle Electron Microscopy: the Structure of Lactococcal Phage TP901-1. J Virol. 87(2):1061-8. [PudMed:23135714]
[34] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[35] Benz J et al (2013) Structural Insights into the Effector - Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS One. 8(6):e67362. [PudMed:23826277]
[36] Coulthurst SJ (2013) The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 164(6):640-54. [PudMed:23542428]
[37] Robb CS et al (2013) Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 6):607-10. [PudMed:23722835]
[38] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[39] Zoued A et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the Type VI secretion system. J Biol Chem. 288(38):27031-41. [PudMed:23921384]
[40] Shneider MM et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350-3. [PudMed:23925114]
[41] Dong C et al (2013) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J. 454(1):59-68. [PudMed:23730712]
[42] Brunet YR et al (2013) Imaging Type VI Secretion-Mediated Bacterial Killing. Cell Rep. 3(1):36-41. [PudMed:23291094]
[43] Broms JE et al (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol. 13(1):96. [PudMed:23642157]
[44] Heymann JB et al (2013) Three-dimensional structure of the toxin-delivery particle antifeeding prophage of Serratia entomophila. J Biol Chem. 288(35):25276-84. [PudMed:23857636]
[45] Lossi NS et al (2013) The HsiB1C1 (TssB/TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath-like structure. J Biol Chem. 288(11):7536-48. [PudMed:23341461]
[46] Ho BT et al (2013) A View to a Kill: The Bacterial Type VI Secretion System. Cell Host Microbe. 15(1):9-21. [PudMed:24332978]
[47] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[48] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[49] Whitney JC et al (2013) Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem. 288(37):26616-24. [PudMed:23878199]
[50] Wang T et al (2013) Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein. Acta Crystallogr D Biol Crystallogr. 69(Pt 10):1889-1900. [PudMed:24100309]
[51] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[52] Li L et al (2013) Structural Insights on the Bacteriolytic and Self-protection Mechanism of Muramidase Effector Tse3 in Pseudomonas aeruginosa. J Biol Chem. 288(42):30607-13. [PudMed:24025333]
[53] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[54] Cascales E et al (2012) Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci. 367(1592):1102-11. [PudMed:22411981]
[55] Basler M et al (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 483(7388):182-6. [PudMed:22367545]
[56] Zou T et al (2012) Crystal structure of Pseudomonas aeruginosa Tsi2 reveals a stably folded superhelical antitoxin. J Mol Biol. 417(4):351-61. [PudMed:22310046]
[57] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[58] Robb CS et al (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol. 419(5):277-83. [PudMed:22504227]
[59] Leiman PG et al (2012) Contractile tail machines of bacteriophages. Adv Exp Med Biol. 726:93-114. [PudMed:22297511]
[60] English G et al (2012) New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol. 86(4):921-36. [PudMed:22957938]
[61] Shang G et al (2012) Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function. Biochem J. 448(2):201-11. [PudMed:22931054]
[62] Aschtgen MS et al (2012) The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. Microbiologyopen. 1(1):71-82. [PudMed:22950014]
[63] Benz J et al (2012) Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS One. 7(7):e40453. [PudMed:22792331]
[64] Zhang H et al (2012) Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS Lett. 586(19):3193-9. [PudMed:22750141]
[65] Chou S et al (2012) Structure of a Peptidoglycan Amidase Effector Targeted to Gram-Negative Bacteria by the Type VI Secretion System. Cell Rep. 1(6):656-64. [PudMed:22813741]
[66] Kefala K et al (2012) Purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal fragment of the MvfR protein from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 68(Pt 6):695-7. [PudMed:22684073]
[67] Li M et al (2012) Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathog. 8(4):e1002613. [PudMed:22511866]
[68] Lossi NS et al (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol. 86(2):437-56. [PudMed:22906320]
[69] Durand E et al (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae Type VI secretion system. J Biol Chem. 287(45):38190-9. [PudMed:22898822]
[70] Durand E et al (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem. 287(17):14157-68. [PudMed:22371492]
[71] Rao VA et al (2011) The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system. Acta Crystallogr D Biol Crystallogr. 67(Pt 12):1065-72. [PudMed:22120744]
[72] Felisberto-Rodrigues C et al (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7(11):e1002386. [PudMed:22102820]
[73] Navarro MV et al (2011) Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol. 9(2):e1000588. [PudMed:21304926]
[74] Veesler D et al (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev. 75(3):423-33. [PudMed:21885679]
[75] Lossi NS et al (2011) Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology. 157(Pt 12):3292-305. [PudMed:21873404]
[76] Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact. 24(7):751-7. [PudMed:21361789]
[77] Osipiuk J et al (2011) Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa. J Struct Funct Genomics. 12(1):21-6. [PudMed:21476004]
[78] Bonemann G et al (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol. 76(4):815-21. [PudMed:20444095]
[79] Robb CS et al (2010) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of intracellular growth locus E (IglE) protein from Francisella tularensis subsp. novicida. Acta Crystallogr Sect F Struct Biol Cryst Commun. 66(Pt 12):1596-8. [PudMed:21139203]
[80] Jobichen C et al (2010) Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda. PLoS One. 5(9):e12910. [PudMed:20886112]
[81] Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A. 106(11):4154-9. [PudMed:19251641]
[82] Filloux A (2009) The type VI secretion system: a tubular story. EMBO J. 28(4):309-10. [PudMed:19225443]
[83] Broms JE et al (2009) A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis. J Bacteriol. 191(8):2431-46. [PudMed:19201795]
[84] Pell LG et al (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A. 106(11):4160-5. [PudMed:19251647]
[85] Ballister ER et al (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A. 105(10):3733-8. [PudMed:18310321]
[86] Forouhar F et al (2007) Functional insights from structural genomics. J Struct Funct Genomics. 8(2-3):37-44. [PudMed:17588214]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[3] Wang N, Han N, Tian R, Chen J, Gao X, Wu Z, Liu Y, Huang L. (2021) Role of the Type VI Secretion System in the Pathogenicity of Pseudomonas syringae pv. actinidiae, the Causative Agent of Kiwifruit Bacterial Canker.. Front Microbiol. 12:627785. [PudMed:33679650]
[4] Montenegro Benavides NA, Alvarez B A, Arrieta-Ortiz ML, Rodriguez-R LM, Botero D, Tabima JF, Castiblanco L, Trujillo C, Restrepo S, Bernal A. (2021) The type VI secretion system of Xanthomonas phaseoli pv. manihotis is involved in virulence and in vitro motility.. BMC Microbiol. 21(1):14. [PudMed:33407123]
[5] Dur��n D, Bernal P, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Mart��n M. (2021) Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the rhizosphere microbiome.. Sci Rep. 11(1):5772. [PudMed:33707614]
[6] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[7] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[8] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[9] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[10] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[11] Zhu PC, Li YM, Yang X, Zou HF, Zhu XL, Niu XN, Xu LH, Jiang W, Huang S, Tang JL, He YQ. (2020) Type VI secretion system is not required for virulence on rice but for inter-bacterial competition in Xanthomonas oryzae pv. oryzicola.. Res Microbiol. 171(2):64-73. [PudMed:31676435]
[12] Soria-Bustos J, Ares MA, G��mez-Aldapa CA, Gonz��lez-Y-Merchand JA, Gir��n JA, De la Cruz MA. (2020) Two Type VI Secretion Systems of Enterobacter cloacae Are Required for Bacterial Competition, Cell Adherence, and Intestinal Colonization.. Front Microbiol. 11:560488. [PudMed:33072020]
[13] Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK. (2020) Molecular characterization of megaplasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards.. Sci Rep. 10(1):12514. [PudMed:32719325]
[14] Song H, Kang Y, Qian A, Shan X, Li Y, Zhang L, Zhang H, Sun W. (2020) Inactivation of the T6SS inner membrane protein DotU results in severe attenuation and decreased pathogenicity of Aeromonas veronii TH0426.. BMC Microbiol. 20(1):76. [PudMed:32245412]
[15] Kochanowsky RM, Bradshaw C, Forlastro I, Stock SP. (2020) Xenorhabdus bovienii strain jolietti uses a type 6 secretion system to kill closely related Xenorhabdus strains.. FEMS Microbiol Ecol. 96(8). [PudMed:32558899]
[16] Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. (2020) In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes.. Mol Plant Microbe Interact. 33(2):349-363. [PudMed:31609645]
[17] Hu L, Wang C, Lu W, Lu H, Chen H, Tan C. (2020) BaeSR activates type VI secretion system expression in porcine extra-intestinal pathogenic Escherichia coli to enhance bacterial resistance to zinc stress.. Microb Pathog. 147:104357. [PudMed:32603765]
[18] Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. (2020) tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system.. Mol Plant Pathol. 21(8):1042-1054. [PudMed:32608174]
[19] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[20] Guillemette R, Ushijima B, Jalan M, Hse CC, Azam F. (2020) Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus.. PLoS One. 15(1):e0227864. [PudMed:31990915]
[21] Choi Y, Kim N, Mannaa M, Kim H, Park J, Jung H, Han G, Lee HH, Seo YS. (2020) Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice.. Plant Pathol J. 36(3):289-296. [PudMed:32547344]
[22] Vacheron J, P��chy-Tarr M, Brochet S, Heiman CM, Stojiljkovic M, Maurhofer M, Keel C. (2019) T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens.. ISME J. 13(5):1318-1329. [PudMed:30683920]
[23] Guckes KR, Cecere AG, Wasilko NP, Williams AL, Bultman KM, Mandel MJ, Miyashiro T. (2019) Incompatibility of Vibrio fischeri Strains during Symbiosis Establishment Depends on Two Functionally Redundant hcp Genes.. J Bacteriol. 201(19). [PudMed:31331977]
[24] Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. (2019) The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization.. Front Microbiol. 2.405555556. [PudMed:31921044]
[25] Szwedziak P, Pilhofer M. (2019) Bidirectional contraction of a type six secretion system.. Nat Commun. 10(1):1565. [PudMed:30952865]
[26] Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. (2019) Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp.. Appl Environ Microbiol. 85(2). [PudMed:30413477]
[27] Tekedar HC, Abdelhamed H, Kumru S, Blom J, Karsi A, Lawrence ML. (2019) Comparative Genomics of Aeromonas hydrophila Secretion Systems and Mutational Analysis of hcp1 and vgrG1 Genes From T6SS.. Front Microbiol. 2.608333333. [PudMed:30687246]
[28] Biswanath Jana, Chaya M Fridman, Eran Bosis, Dor Salomon (2019) A Modular Effector With a DNase Domain and a Marker for T6SS Substrates. Nat Commun. 10(1):3595. [PudMed:31399579]
[29] Di Venanzio G, Moon KH, Weber BS, Lopez J, Ly PM, Potter RF, Dantas G, Feldman MF. (2019) Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination.. Proc Natl Acad Sci U S A. 116(4):1378-1383. [PudMed:30626645]
[30] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[31] Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. (2019) Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition.. Microbiologyopen. NA. [PudMed:30628184]
[32] Salinero-Lanzarote A, Pacheco-Moreno A, Domingo-Serrano L, Dur��n D, Ormeo-Orrillo E, Mart��nez-Romero E, Albareda M, Palacios JM, Rey L. (2019) The Type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis.. FEMS Microbiol Ecol. 95(5). [PudMed:30977796]
[33] Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y, Zheng Y, Hu L, Li P, Chen H, Tan C. (2019) Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli.. Virulence. 10(1):118-132. [PudMed:30676217]
[34] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[35] Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. (2019) A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae.. Mol Microbiol. 111(6):1493-1509. [PudMed:30825339]
[36] Li P, Xu D, Ma T, Wang D, Li W, He J, Ran T, Wang W. (2018) Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism.. Biochem J. 475(13):2209-2224. [PudMed:29858276]
[37] Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS, Mandel MJ, Miyashiro T, Septer AN. (2018) Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host.. Proc Natl Acad Sci U S A. 115(36):E8528-E8537. [PudMed:30127013]
[38] Nannan Wang, Jin Liu, Maoda Pang, Yafeng Wu, Furqan Awan, Mark R Liles, Chengping Lu, Yongjie Liu (2018) Diverse Roles of Hcp Family Proteins in the Environmental Fitness and Pathogenicity of Aeromonas Hydrophila Chinese Epidemic Strain NJ-35. Appl Microbiol Biotechnol. 102(16):7083-7095. [PudMed:29862449]
[39] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[40] Maroniche GA, Diaz PR, Borrajo MP, Valverde CF, Creus CM. (2018) Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization.. FEMS Microbiol Ecol. 94(12). [PudMed:30299474]
[41] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[42] Wang M, Cao H, Wang Q, Xu T, Guo X, Liu B. (2018) The Roles of Two Type VI Secretion Systems in Cronobacter sakazakii ATCC 12868.. Front Microbiol. 2.110416667. [PudMed:30405562]
[43] Ledvina HE, Kelly KA, Eshraghi A, Plemel RL, Peterson SB, Lee B, Steele S, Adler M, Kawula TH, Merz AJ, Skerrett SJ, Celli J, Mougous JD (2018) A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe. 24(2):285-295.e8. [PudMed:30057173]
[44] Li P, Kinch LN, Ray A, Dalia AB, Cong Q, Nunan LM, Camilli A, Grishin NV, Salomon D, Orth K. (2017) Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires.. Appl Environ Microbiol. 83(13). [PudMed:28432099]
[45] Brms JE, Meyer L, Sjstedt A. (2017) A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control Type VI system-mediated secretion.. Virulence. 8(6):821-847. [PudMed:27830989]
[46] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[47] Lazzaro M, Feldman MF, Garc��a V��scovi E. (2017) A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.. mBio. 8(4). [PudMed:28830939]
[48] Tian Y, Zhao Y, Shi L, Cui Z, Hu B, Zhao Y. (2017) Type VI Secretion Systems of Erwinia amylovora Contribute to Bacterial Competition, Virulence, and Exopolysaccharide Production.. Phytopathology. 107(6):654-661. [PudMed:28421913]
[49] Anderson MC, Vonaesch P, Saffarian A, Marteyn BS, Sansonetti PJ. (2017) Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy.. Cell Host Microbe. 21(6):769-776. [PudMed:28618272]
[50] Ann Ray, Nika Schwartz, Marcela de Souza Santos, Junmei Zhang, Kim Orth, Dor Salomon (2017) Type VI Secretion System MIX-effectors Carry Both Antibacterial and Anti-Eukaryotic Activities. EMBO Rep.. 18(11):1978-1990. [PudMed:28912123]
[51] Jiale Ma, Zihao Pan, Jinhu Huang, Min Sun, Chengping Lu, Huochun Yao (2017) The Hcp Proteins Fused With Diverse Extended-Toxin Domains Represent a Novel Pattern of Antibacterial Effectors in Type VI Secretion Systems. Virulence. 8(7):1189-1202. [PudMed:28060574]
[52] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[53] Huang Y, Du P, Zhao M, Liu W, Du Y, Diao B, Li J, Kan B, Liang W. (2017) Functional Characterization and Conditional Regulation of the Type VI Secretion System in Vibrio fluvialis.. Front Microbiol. 0.7. [PudMed:28424671]
[54] de Campos SB, Lardi M, Gandolfi A, Eberl L, Pessi G. (2017) Mutations in Two Paraburkholderia phymatum Type VI Secretion Systems Cause Reduced Fitness in Interbacterial Competition.. Front Microbiol. 2.050694444. [PudMed:29312183]
[55] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[56] Tang L, Yue S, Li GY, Li J, Wang XR, Li SF, Mo ZL. (2016) Expression, secretion and bactericidal activity of type VI secretion system in Vibrio anguillarum.. Arch Microbiol. 198(8):751-60. [PudMed:27172981]
[57] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[58] Church SR, Lux T, Baker-Austin C, Buddington SP, Michell SL. (2016) Vibrio vulnificus Type 6 Secretion System 1 Contains Anti-Bacterial Properties.. PLoS One. 11(10):e0165500. [PudMed:27798649]
[59] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[60] Peng Y, Wang X, Shou J, Zong B, Zhang Y, Tan J, Chen J, Hu L, Zhu Y, Chen H, Tan C. (2016) Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system.. Sci Rep. 6:26816. [PudMed:27229766]
[61] Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD (2016) Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe. 20(5):573-583. [PudMed:27832588]
[62] Nguyen VS et al (2015) Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody. Acta Crystallogr F Struct Biol Commun. 71(Pt 3):266-71. [PudMed:25760699]
[63] Borgeaud S et al (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63-7. [PudMed:25554784]
[64] Li J et al (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. doi: 10.1111/1462-2920.12794. [PudMed:25640659]
[65] Durand E et al (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature. 523(7562):555-60. [PudMed:26200339]
[66] Lim YT et al (2015) Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei. Sci Rep. 5.927083333. [PudMed:25648885]
[67] Kudryashev M et al (2015) Structure of the Type VI Secretion System Contractile Sheath. Cell. 160(5):952-62. [PudMed:25723169]
[68] Clemens DL et al (2015) Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell. 160(5):940-51. [PudMed:25723168]
[69] Nguyen VS et al (2015) Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody. PLoS One. 10(3):e0122187. [PudMed:25811612]
[70] Wang RY et al (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods. 12(4):335-338. [PudMed:25707029]
[71] Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci. 5-Oct. [PudMed:26370934]
[72] Li J et al (2015) Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 43(1):175-80. [PudMed:25541077]
[73] Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-015-2323-z. [PudMed:25630538]
[74] Ge P et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. doi: 10.1038/nsmb.2995. [PudMed:25822993]
[75] Yu Y et al (2015) VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages. Front Microbiol. 0.366666667. [PudMed:25784905]
[76] Pezoa D et al (2014) Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res. 45(1):2. [PudMed:24405577]
[77] Law HT et al (2014) IglC and PdpA Are Important for Promoting Francisella Invasion and Intracellular Growth in Epithelial Cells. PLoS One. 9(8):e104881. [PudMed:25115488]
[78] Yap KP et al (2014) Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics. 15(1):1007. [PudMed:25412680]
[79] Wang S et al (2014) DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli. Front Microbiol. 0.616666667. [PudMed:25426107]
[80] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[81] Shyntum D et al (2014) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact. doi:http://dx.doi.org/10.1094/MPMI-07-14-0219-R. [PudMed:25411959]
[82] Wright MS et al (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):e00963-13. [PudMed:24449752]
[83] Ye L et al (2014) Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens. PLoS One. 9(11):e110038. [PudMed:25369289]
[84] Sarris PF et al (2014) A Phage Tail-Derived Element with Wide Distribution among Both Prokaryotic Domains: A Comparative Genomic and Phylogenetic Study. Genome Biol Evol. 6(7):1739-1747. [PudMed:25015235]
[85] Forster A et al (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem. 289(47):33032-43. [PudMed:25305017]
[86] Eijkelkamp BA et al (2014) Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 15(1):1020. [PudMed:25422040]
[87] Darby A et al (2014) Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals. PLoS One. 9(7):e100542. [PudMed:25057966]
[88] Gueguen E et al (2014) Transcriptional Frameshifting Rescues Citrobacter rodentium Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted tssM Gene. PLoS Genet. 10(12):e1004869. [PudMed:25474156]
[89] Chang JH et al (2014) Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol. 53(1):32-7. [PudMed:25471186]
[90] Hachani A et al (2014) The VgrG proteins are "A la carte" delivery systems for bacterial type VI effectors. J Biol Chem. 289(25):17872-17884. [PudMed:24794869]
[91] Zoued A et al (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta. 1843(8):1664-73. [PudMed:24681160]
[92] Kube S et al (2014) Structure of the VipA/B Type VI Secretion Complex Suggests a Contraction-State-Specific Recycling Mechanism. Cell Rep. 16(1):94-104. [PudMed:24953649]
[93] Shao Y et al (2014) Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol. 92(5):921-30. [PudMed:24698180]
[94] Lin JS et al (2014) Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLoS Pathog. 10(3):e1003991. [PudMed:24626341]
[95] Bielecki P et al (2014) In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles. MBio. 5(4). [PudMed:25096872]
[96] Rudder S et al (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics. 15(1):268. [PudMed:24708309]
[97] Uda A et al (2014) Role of Pathogenicity Determinant Protein C (PdpC) in Determining the Virulence of the Francisella tularensis Subspecies tularensis SCHU. PLoS One. 9(2):e89075. [PudMed:24558472]
[98] Kakar KU et al (2014) Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol. 30(2):469-78. [PudMed:23990042]
[99] Klaponski N et al (2014) The requirement for the LysR-type regulator PtrA for Pseudomonas chlororaphis PA23 biocontrol revealed through proteomic and phenotypic analysis. BMC Microbiol. 0.648611111. [PudMed:24739259]
[100] Ugarte-Ruiz M et al (2014) Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates. Zoonoses Public Health. doi: 10.1111/zph.12176. [PudMed:25496466]
[101] Sarkar A et al (2014) Transcriptional Profiling of Nitrogen Fixation and the Role of NifA in the Diazotrophic Endophyte Azoarcus sp. Strain BH72. PLoS One. 9(2):e86527. [PudMed:24516534]
[102] Nguyen J et al (2014) Lipidation of the FPI Protein IglE contributes to Francisella tularensis subsp. novicida Intramacrophage Replication and Virulence. Pathog Dis. 72(1):10-8. [PudMed:24616435]
[103] Zhu Ge X et al (2014) Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains. PLoS One. 9(11):e112048. [PudMed:25397580]
[104] Hopf V et al (2014) BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun. 82(5):2006-15. [PudMed:24595140]
[105] Kumari H et al (2014) LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics. 96:328-42. [PudMed:24291602]
[106] Shao S et al (2014) Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: Propose a novel species as Edwardsiella anguillarum sp. nov . Syst Appl Microbiol. 38(1):36-47. [PudMed:25466920]
[107] Zhang L et al (2014) TssB is essential for virulence and required for Type VI secretion system in Ralstonia solanacearum. Microb Pathog. 74C:1-7. [PudMed:24972114]
[108] Peano C et al (2014) Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis. PLoS One. 9(3):e93009. [PudMed:24671187]
[109] Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion exported protein required for multinucleated giant cell formation and virulence. Infect Immun. 82(4):1445-52. [PudMed:24452686]
[110] Shyntum DY et al (2014) Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics. 15(1):163. [PudMed:24571088]
[111] Jeong JH et al (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 9):1260-3. [PudMed:25195905]
[112] English G et al (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG sub-complex. Biochem J. 461(2):291-304. [PudMed:24779861]
[113] Toesca IJ et al (2014) The Type VI Secretion System Spike Protein VgrG5 Mediates Membrane Fusion during Intercellular Spread by Pseudomallei Group Burkholderia Species. Infect Immun. 82(4):1436-44. [PudMed:24421040]
[114] Song C et al (2014) The Rsm regulon of plant growth-promoting Pseudomonas fluorescens SS101: role of small RNAs in regulation of lipopeptide biosynthesis. Microb Biotechnol. 8(2):296-310. [PudMed:25488342]
[115] Singha H et al (2014) Optimization and validation of indirect ELISA using truncated TssB protein for the serodiagnosis of glanders amongst equines. ScientificWorldJournal. 2014:469407. [PudMed:24672321]
[116] Sun K et al (2014) Screening for inhibition of the Vibrio cholerae VipA-VipB interaction identifies small molecule compounds active against type VI secretion. Antimicrob Agents Chemother. 58(7):4123-4130. [PudMed:24798289]
[117] Jones CJ et al (2014) ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa. PLoS Pathog. 10(3):e1003984. [PudMed:24603766]
[118] Steele S et al (2014) A method for functional trans-complementation of intracellular Francisella tularensis. PLoS One. 9(2):e88194. [PudMed:24505427]
[119] Schumacher J et al (2014) Differential secretome analysis of Pseudomonas syringae pv tomato using gel-free MS proteomics. Front Plant Sci. 0.376388889. [PudMed:25071788]
[120] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[121] Russell AB et al (2014) A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host Microbe. 16(2):227-36. [PudMed:25070807]
[122] Lindgren M et al (2014) Identification of Mechanisms for Attenuation of the FSC043 Mutant of Francisella tularensis SCHU S4. Infect Immun. 82(9):3622-35. [PudMed:24935978]
[123] van Delden C et al (2013) Involvement of Fe uptake systems and AmpC beta-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 57(5):2095-102. [PudMed:23422914]
[124] Grim CJ et al (2013) Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 0.8375. [PudMed:23724777]
[125] Barret M et al (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep. 5(1):117-26. [PudMed:23757140]
[126] Filiatrault MJ et al (2013) Pseudomonas aeruginosa PA1006, Which Plays a Role in Molybdenum Homeostasis, Is Required for Nitrate Utilization, Biofilm Formation, and Virulence. PLoS One. 8(2):e55594. [PudMed:23409004]
[127] Blondel CJ et al (2013) The Type VI Secretion System encoded in SPI-19 is required for Salmonella Gallinarum survival within infected macrophages. Infect Immun. 81(4):1207-20. [PudMed:23357385]
[128] Zhang L et al (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One. 8(4):e61625. [PudMed:23637868]
[129] Mann RA et al (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS One. 8(2):e55644. [PudMed:23409014]
[130] Gueguen E et al (2013) Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator. PLoS One. 8(6):e66615. [PudMed:23840509]
[131] Redondo-Nieto M et al (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics. 14:54. [PudMed:23350846]
[132] Bondarev V et al (2013) The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol. 15(7):2095-113. [PudMed:23601235]
[133] Duan J et al (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One. 8(3):e58640. [PudMed:23516524]
[134] Sha J et al (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology. 159(Pt 6):1120-35. [PudMed:23519162]
[135] Lindgren M et al (2013) The Francisella tularensis LVS DeltapdpC mutant exhibits a unique phenotype during intracellular infection. BMC Microbiol. 13(1):20. [PudMed:23356941]
[136] Grad YH et al (2013) Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. MBio. 4(1):e00452-12. [PudMed:23341549]
[137] Coulthurst SJ (2013) The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 164(6):640-54. [PudMed:23542428]
[138] Robb CS et al (2013) Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 6):607-10. [PudMed:23722835]
[139] Kapitein N et al (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol. 87(5):1013-28. [PudMed:23289512]
[140] Arvizu-Gomez JL et al (2013) Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: physiology of phytopathogenic bacteria. BMC Microbiol. 0.597916667. [PudMed:23587016]
[141] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[142] Zoued A et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the Type VI secretion system. J Biol Chem. 288(38):27031-41. [PudMed:23921384]
[143] Freeman BC et al (2013) Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in their epiphytic fitness and osmotolerance. J Bacteriol. 195(20):4742-52. [PudMed:23955010]
[144] Liu WY et al (2013) Comparative Genome Analysis of Enterobacter cloacae. PLoS One. 8(9):e74487. [PudMed:24069314]
[145] Shneider MM et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350-3. [PudMed:23925114]
[146] Horton RE et al (2013) Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One. 8(5):e63394. [PudMed:23704903]
[147] Sugawara M et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 14(2):R17. [PudMed:23425606]
[148] Casabona MG et al (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics. 13(16):2419-23. [PudMed:23744604]
[149] Bartonickova L et al (2013) Hcp and VgrG1 are secreted components of the Helicobacter hepaticus type VI secretion system and VgrG1 increases the bacterial colitogenic potential. Cell Microbiol. 15(6):992-1011. [PudMed:23278999]
[150] Long ME et al (2013) Disruption of Francisella tularensis Schu S4 iglI, iglJ, and pdpC genes results in attenuation for growth in human macrophages and in vivo virulence in mice, and reveals a unique phenotype for pdpC. Infect Immun. 81(3):850-61. [PudMed:23275090]
[151] Smits TH et al (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol. 36(7):449-56. [PudMed:23726521]
[152] Broms JE et al (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol. 13(1):96. [PudMed:23642157]
[153] Miyata ST et al (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol. 62(Pt 5):663-76. [PudMed:23429693]
[154] Lin JS et al (2013) Systematic Dissection of the Agrobacterium Type VI Secretion System Reveals Machinery and Secreted Components for Subcomplex Formation. PLoS One. 8(7):e67647. [PudMed:23861778]
[155] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[156] Lossi NS et al (2013) The HsiB1C1 (TssB/TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath-like structure. J Biol Chem. 288(11):7536-48. [PudMed:23341461]
[157] Wang Y et al (2013) Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogen Edwardsiella tarda. FEMS Microbiol Lett. 343(2):145-55. [PudMed:23551118]
[158] Ho BT et al (2013) A View to a Kill: The Bacterial Type VI Secretion System. Cell Host Microbe. 15(1):9-21. [PudMed:24332978]
[159] Ma J et al (2013) Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. Infect Genet Evol. 20:454-64. [PudMed:24120694]
[160] Wenren LM et al (2013) Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export. MBio. 4(4). [PudMed:23882014]
[161] Desai PT et al (2013) Evolutionary Genomics of Salmonella enterica Subspecies. MBio. 4(2):e00198-13. [PudMed:23462113]
[162] Lindgren M et al (2013) Importance of PdpC, IglC, IglI, and IglG for modulation of a host cell death pathway induced by Francisella tularensis LVS. Infect Immun. 81(6):2076-84. [PudMed:23529623]
[163] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[164] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[165] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[166] Khan A et al (2013) Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards. World J Microbiol Biotechnol. 29(11):2033-44. [PudMed:23653265]
[167] Robertson GT et al (2013) IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of Type A Francisella tularensis. Infect Immun. 81(11):4026-40. [PudMed:23959721]
[168] Fory PA et al (2013) Comparative analysis of two emerging rice seed bacterial pathogens. Phytopathology. 104(5):436-44. [PudMed:24261408]
[169] Bleumink-Pluym NM et al (2013) Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity. PLoS Pathog. 9(5):e1003393. [PudMed:23737749]
[170] Rosenzweig JA et al (2013) Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems. Front Cell Infect Microbiol. 0.173611111. [PudMed:24199174]
[171] Campbell AG et al (2013) Multiple single-cell genomes provide insight into functions of uncultured Deltaproteobacteria in the human oral cavity. PLoS One. 8(3):e59361. [PudMed:23555659]
[172] Franca FL et al (2013) Genotypic and phenotypic characterisation of enteroaggregative Escherichia coli from children in Rio de Janeiro, Brazil. PLoS One. 8(7):e69971. [PudMed:23936127]
[173] Jones C et al (2013) Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System. PLoS One. 8(11):e81132. [PudMed:24260549]
[174] Zhang XY et al (2013) Dissection of the TssB-TssC Interface during Type VI Secretion Sheath Complex Formation. PLoS One. 8(11):e81074. [PudMed:24282569]
[175] Jones C et al (2013) An rhs-encoding gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol. 196(4):800-10. [PudMed:24317402]
[176] Carruthers MD et al (2013) Draft Genome Sequence of the Clinical Isolate Acinetobacter nosocomialis Strain M2. Genome Announc. 1(6). [PudMed:24201195]
[177] Hao B et al (2013) Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol. 97(6):2575-85. [PudMed:22940804]
[178] Hayward MR et al (2013) Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 0.836805556. [PudMed:23725633]
[179] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[180] Basler M et al (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 483(7388):182-6. [PudMed:22367545]
[181] Zhou Y et al (2012) Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun. 80(3):1243-51. [PudMed:22184413]
[182] Basler M et al (2012) Type 6 secretion dynamics within and between bacterial cells. Science. 337(6096):815. [PudMed:22767897]
[183] Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
[184] Robb CS et al (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol. 419(5):277-83. [PudMed:22504227]
[185] Liu H et al (2012) Investigation of the roles of T6SS genes in motility, biofilm formation, and extracellular protease Asp production in Vibrio alginolyticus with modified Gateway-compatible plasmids. Lett Appl Microbiol. 55(1):73-81. [PudMed:22563695]
[186] Broms JE et al (2012) Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection. PLoS One. 7(11):e50473. [PudMed:23185631]
[187] Nykyri J et al (2012) Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11):e1003013. [PudMed:23133391]
[188] Broms JE et al (2012) DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity. PLoS One. 7(4):e34639. [PudMed:22514651]
[189] Ma L et al (2012) Expression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in Vibrio parahaemolyticus. Scientific World Journal. 2012:982140. [PudMed:22924031]
[190] Ibrahim M et al (2012) Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PLoS One. 7(11):e49657. [PudMed:23166741]
[191] Kefala K et al (2012) Purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal fragment of the MvfR protein from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 68(Pt 6):695-7. [PudMed:22684073]
[192] Lossi NS et al (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol. 86(2):437-56. [PudMed:22906320]
[193] Hebert L et al (2012) Genomic characterization of the Taylorella genus. PLoS One. 7(1):e29953. [PudMed:22235352]
[194] Durand E et al (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae Type VI secretion system. J Biol Chem. 287(45):38190-9. [PudMed:22898822]
[195] Ma LS et al (2012) IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem. 287(19):15610-21. [PudMed:22393043]
[196] Durand E et al (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem. 287(17):14157-68. [PudMed:22371492]
[197] Stauff DL, Bassler BL. (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.. J Bacteriol. 193(15):3871-8. [PudMed:21622734]
[198] de Bruin OM et al (2011) The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiology. 157(Pt 12):3483-91. [PudMed:21980115]
[199] Podladchikova O et al (2011) Yersinia pestis autoagglutination factor is a component of the type six secretion system. Int J Med Microbiol. 301(7):562-9. [PudMed:21784704]
[200] Rao VA et al (2011) The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system. Acta Crystallogr D Biol Crystallogr. 67(Pt 12):1065-72. [PudMed:22120744]
[201] Felisberto-Rodrigues C et al (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7(11):e1002386. [PudMed:22102820]
[202] Lossi NS et al (2011) Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology. 157(Pt 12):3292-305. [PudMed:21873404]
[203] de Pace F et al (2011) Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology. 157(Pt 10):2954-62. [PudMed:21778203]
[204] Zhang L et al (2011) Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol. 193(19):5510-3. [PudMed:21784934]
[205] Franco AA et al (2011) Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 77(10):3255-67. [PudMed:21421789]
[206] Broms JE et al (2011) IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun. 79(9):3683-96. [PudMed:21690239]
[207] Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact. 24(7):751-7. [PudMed:21361789]
[208] Wu X et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. 35(2):299-323. [PudMed:20796030]
[209] Pietrosiuk A et al (2011) Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem. 286(34):30010-21. [PudMed:21733841]
[210] Roy PH et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 5(1):e8842. [PudMed:20107499]
[211] Aschtgen MS et al (2010) Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else. Virulence. 1(6):535-40. [PudMed:21178498]
[212] Konovalova A et al (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev. 34(2):89-106. [PudMed:19895646]
[213] Aschtgen MS et al (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol. 75(4):886-99. [PudMed:20487285]
[214] Chaudhuri RR et al (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One. 5(1):e8801. [PudMed:20098708]
[215] Aubert D et al (2010) BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB. J Biol Chem. 285(46):35988-98. [PudMed:20729192]
[216] Robb CS et al (2010) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of intracellular growth locus E (IglE) protein from Francisella tularensis subsp. novicida. Acta Crystallogr Sect F Struct Biol Cryst Commun. 66(Pt 12):1596-8. [PudMed:21139203]
[217] Hassan KA et al (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 12(4):899-915. [PudMed:20089046]
[218] Kucerova E1, Clifton SW, Xia XQ, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 5(3):e9556. [PudMed:20221447]
[219] Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A. 106(11):4154-9. [PudMed:19251641]
[220] Yang JC et al (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One. 4(7):e6085. [PudMed:19568419]
[221] Wehrly TD et al (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol. 11(7):1128-50. [PudMed:19388904]
[222] Tseng TT et al (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 Suppl 1:S2. [PudMed:19278550]
[223] Wang Q et al (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4(10):e7646. [PudMed:19865481]
[224] Bonemann G et al (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28(4):315-25. [PudMed:19131969]
[225] Filloux A (2009) The type VI secretion system: a tubular story. EMBO J. 28(4):309-10. [PudMed:19225443]
[226] Carranza P et al (2009) Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen. Proteomics. 9(13):3564-79. [PudMed:19609963]
[227] Schmerk CL et al (2009) A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology. 155(Pt 5):1498-504. [PudMed:19372155]
[228] Schmerk CL et al (2009) Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology. 155(Pt 5):1489-97. [PudMed:19372153]
[229] Broms JE et al (2009) A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis. J Bacteriol. 191(8):2431-46. [PudMed:19201795]
[230] Ma LS et al (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol. 191(13):4316-29. [PudMed:19395482]
[231] Pell LG et al (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A. 106(11):4160-5. [PudMed:19251647]
[232] Yen YT et al (2008) Genome-wide in silico mapping of the secretome in pathogenic Yersinia pestis KIM. FEMS Microbiol Lett . 279(1):56-63. [PudMed:18070074]
[233] Aschtgen MS et al (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol. 190(22):7523-31. [PudMed:18805985]
[234] Pieper R et al (2008) Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics. 8(7):1442-58. [PudMed:18383009]
[235] de Berardinis V et al (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol. 0.2875. [PudMed:18319726]
[236] Nemoto M et al (2008) ORF334 in Vibrio phage KVP40 plays the role of gp27 in T4 phage to form a heterohexameric complex. J Bacteriol. 190(10):3606-12. [PudMed:18326574]
[237] de Bruin OM et al (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 7:01. [PudMed:17233889]
[238] Santic M et al (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol. 9(10):2391-403. [PudMed:17517064]
[239] Gerlach RG et al (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 297(6):401-15. [PudMed:17482513]
[240] Forouhar F et al (2007) Functional insights from structural genomics. J Struct Funct Genomics. 8(2-3):37-44. [PudMed:17588214]
[241] Economou A et al (2006) Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol. 62(2):308-19. [PudMed:17020575]
[242] Pilatz S et al (2006) Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 74(6):3576-86. [PudMed:16714590]
[243] Hanson PI et al (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol. 6(7):519-29. [PudMed:16072036]
[244] Santic M et al (2005) The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 7(7):969-79. [PudMed:15953029]
[245] Schlieker C et al (2005) ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem. 386(11):1115-27. [PudMed:16307477]
[246] Parsons DA et al (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun. 73(7):4338-45. [PudMed:15972528]
[247] Das S et al (2003) Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol. 3(3):287-300. [PudMed:12954091]
[248] Das S et al (2002) Involvement of in vivo induced icmF gene of Vibrio cholerae in motility, adherence to epithelial cells, and conjugation frequency. Biochem Biophys Res Commun. 295(4):922-8. [PudMed:12127983]
[1] Wang Z, Huang X, Jan M, Kong D, Pan J, Zhang X. (2021) The global regulator Hfq exhibits far more extensive and intensive regulation than Crc in Pseudomonas protegens H78.. Mol Plant Pathol. NA. [PudMed:33963656]
[2] Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. (2021) Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida.. Front Microbiol. 12:643498. [PudMed:33776977]
[3] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[4] Cai R, Gao F, Pan J, Hao X, Yu Z, Qu Y, Li J, Wang D, Wang Y, Shen X, Liu X, Yang Y. (2021) The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis.. Microbiol Res. 249:126787. [PudMed:33991717]
[5] Kretsch AM, Morgan GL, Acken KA, Barr SA, Li B. (2021) Pseudomonas Virulence Factor Pathway Synthesizes Autoinducers That Regulate the Secretome of a Pathogen.. ACS Chem Biol. 16(3):501-509. [PudMed:33595276]
[6] Jiao H, Li F, Wang T, Yam JKH, Yang L, Liang H. (2021) The Pyocin Regulator PrtR Regulates Virulence Expression of Pseudomonas aeruginosa by Modulation of Gac/Rsm System and c-di-GMP Signaling Pathway.. Infect Immun. 89(2). [PudMed:33168590]
[7] Antar A, Lee MA, Yoo Y, Cho MH, Lee SW. (2020) PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae.. Pathogens. 9(11). [PudMed:33212951]
[8] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[9] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[10] Hersch SJ, Watanabe N, Stietz MS, Manera K, Kamal F, Burkinshaw B, Lam L, Pun A, Li M, Savchenko A, Dong TG. (2020) Envelope stress responses defend against type six secretion system attacks independently of immunity proteins.. Nat Microbiol. 5(5):706-714. [PudMed:32094588]
[11] Brewer LK, Huang W, Hackert BJ, Kane MA, Oglesby AG. (2020) Static Growth Promotes PrrF and 2-Alkyl-4(1H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa.. J Bacteriol. 202(24). [PudMed:33020221]
[12] Ahmad S, Tsang KK, Sachar K, Quentin D, Tashin TM, Bullen NP, Raunser S, McArthur AG, Prehna G, Whitney JC. (2020) Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones.. Elife. 9. [PudMed:33320089]
[13] Wang Z, Wang T, Cui R, Zhang Z, Chen K, Li M, Hua Y, Gu H, Xu L, Wang Y, Yang Y, Shen X. (2020) HpaR, the Repressor of Aromatic Compound Metabolism, Positively Regulates the Expression of T6SS4 to Resist Oxidative Stress in Yersinia pseudotuberculosis.. Front Microbiol. 0.947916667. [PudMed:32362886]
[14] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[15] Chien CF, Liu CY, Lu YY, Sung YH, Chen KY, Lin NC. (2020) HSI-II Gene Cluster of Pseudomonas syringae pv. tomato DC3000 Encodes a Functional Type VI Secretion System Required for Interbacterial Competition.. Front Microbiol. 1.234722222. [PudMed:32582082]
[16] Knittel V, Sadana P, Seekircher S, Stolle AS, Krner B, Volk M, Jeffries CM, Svergun DI, Heroven AK, Scrima A, Dersch P. (2020) RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression.. PLoS Pathog. 16(9):e1008552. [PudMed:32966346]
[17] Guckes KR, Cecere AG, Williams AL, McNeil AE, Miyashiro T. (2020) The Bacterial Enhancer Binding Protein VasH Promotes Expression of a Type VI Secretion System in Vibrio fischeri during Symbiosis.. J Bacteriol. 202(7). [PudMed:31964698]
[18] Qiu Y, Hu L, Yang W, Yin Z, Zhou D, Yang H, Zhang Y. (2020) The type VI secretion system 2 of Vibrio parahaemolyticus is regulated by QsvR.. Microb Pathog. 149:104579. [PudMed:33091577]
[19] Zhang W, Xie R, Zhang XD, Lee LTO, Zhang H, Yang M, Peng B, Zheng J. (2020) Organism dual RNA-seq reveals the importance of BarA/UvrY in Vibrio parahaemolyticus virulence.. FASEB J. 34(6):7561-7577. [PudMed:32281204]
[20] Bellieny-Rabelo D, Nkomo NP, Shyntum DY, Moleleki LN. (2020) Horizontally Acquired Quorum-Sensing Regulators Recruited by the PhoP Regulatory Network Expand the Host Adaptation Repertoire in the Phytopathogen Pectobacterium brasiliense.. mSystems. 5(1). [PudMed:31992632]
[21] Yin K, Zhang J, Ma J, Jin P, Ma Y, Zhang Y, Liu X, Wang Q. (2020) MviN mediates the regulation of environmental osmotic pressure on esrB to control the virulence in the marine fish pathogen Edwardsiella piscicida.. Microbiol Res. 239:126528. [PudMed:32622286]
[22] Hu L, Wang C, Lu W, Lu H, Chen H, Tan C. (2020) BaeSR activates type VI secretion system expression in porcine extra-intestinal pathogenic Escherichia coli to enhance bacterial resistance to zinc stress.. Microb Pathog. 147:104357. [PudMed:32603765]
[23] Brunet YR, Bernard CS, Cascales E. (2020) Fur-Dam Regulatory Interplay at an Internal Promoter of the Enteroaggregative Escherichia coli Type VI Secretion sci1 Gene Cluster.. J Bacteriol. 202(10). [PudMed:32152218]
[24] Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. (2020) Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae.. BMC Genomics. 21(1):296. [PudMed:32272893]
[25] Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. (2020) tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system.. Mol Plant Pathol. 21(8):1042-1054. [PudMed:32608174]
[26] Seibt H, Aung KM, Ishikawa T, Sjstrm A, Gullberg M, Atkinson GC, Wai SN, Shingler V. (2020) Elevated levels of VCA0117 (VasH) in response to external signals activate the type VI secretion system of Vibrio cholerae O1 El Tor A1552.. Environ Microbiol. 22(10):4409-4423. [PudMed:32592280]
[27] Guillemette R, Ushijima B, Jalan M, Hse CC, Azam F. (2020) Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus.. PLoS One. 15(1):e0227864. [PudMed:31990915]
[28] Kaiyu Yin, Yue Peng, Moamer A H Ahmed, Jiabao Ma 1, Rongjing Xu 2, Yuanxing Zhang 3, Yue Ma 4, Qiyao Wang (2020) PepA Binds to and Negatively Regulates esrB to Control Virulence in the Fish Pathogen Edwardsiella Piscicida. Microbiol Res. 232:126349. [PudMed:31816594]
[29] Joshi A, Mahmoud SA, Kim SK, Ogdahl JL, Lee VT, Chien P, Yildiz FH. (2020) c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae.. PLoS Genet. 16(6):e1008897. [PudMed:32589664]
[30] Caro F, Caro JA, Place NM, Mekalanos JJ. (2020) Transcriptional Silencing by TsrA in the Evolution of Pathogenic Vibrio cholerae Biotypes.. mBio. 11(6). [PudMed:33234688]
[31] Xiaobing Yang, Yunhong Song, Qingyun Dai, Hongyun Zhang, Li Song, Zhuo Wang, Junfeng Pan, Yao Wang (2019) The Stringent Response Factor, RelA, Positively Regulates T6SS4 Expression Through the RovM/RovA Pathway in Yersinia Pseudotuberculosis. Microbiol Res. 220:32-41. [PudMed:30744817]
[32] Lisa C Metzger, Noémie Matthey, Candice Stoudmann, Esther J Collas, Melanie Blokesch (2019) Ecological Implications of Gene Regulation by TfoX and TfoY Among Diverse Vibrio Species. Environ Microbiol. 21(7):2231-2247. [PudMed:30761714]
[33] Nicole M Bzdyl, Nichollas E Scott, Isobel H Norville, Andrew E Scott, Timothy Atkins, Stanley Pang, Derek S Sarovich, Geoffrey Coombs, Timothy J J Inglis, Charlene M Kahler, Mitali Sarkar-Tyson (2019) Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia Pseudomallei. Infect Immun. 87(10):e00528-19. [PudMed:31331957]
[34] T G Sana , R Lomas, M R Gimenez, A Laubier, C Soscia, C Chauvet, A Conesa, R Voulhoux, B Ize, S Bleves (2019) Differential Modulation of Quorum Sensing Signaling Through QslA in Pseudomonas Aeruginosa Strains PAO1 and PA14. J Bacteriol. 201(21):e00362-19. [PudMed:31405911]
[35] Pei-Fang Hsieh, Yi-Rou Lu, Tzu-Lung Lin, Li-Yin Lai, Jin-Town Wang (2019) Klebsiella Pneumoniae Type VI Secretion System Contributes to Bacterial Competition, Cell Invasion, Type-1 Fimbriae Expression, and In Vivo Colonization. J Infect Dis. 219(4):637-647. [PudMed:30202982]
[36] Rotem Ben-Yaakov, Dor Salomon (2019) The Regulatory Network of Vibrio Parahaemolyticus Type VI Secretion System 1. Environ Microbiol. 21(7):2248-2260. [PudMed:30882997]
[37] Zhengfei Yi, Dong Wang, Suhua Xin, Dongliang Zhou, Tao Li, Mingxing Tian, Jingjing Qi, Chan Ding, Shaohui Wang, Shengqing Yu (2019) The CpxR Regulates Type VI Secretion System 2 Expression and Facilitates the Interbacterial Competition Activity and Virulence of Avian Pathogenic Escherichia Coli. Vet Res. 50(1):40. [PudMed:31126325]
[38] Lifan Wei, Haoxian Qiao, Bing Liu, Kaiyu Yin, Qin Liu, Yuanxing Zhang, Yue Ma, Qiyao Wang (2019) MarTrack: A Versatile Toolbox of Mariner Transposon Derivatives Used for Functional Genetic Analysis of Bacterial Genomes. Microbiol Res. 228:126306. [PudMed:31422233]
[39] Yuying Han, Tietao Wang, Gukui Chen, Qinqin Pu, Qiong Liu, Yani Zhang, Linghui Xu, Min Wu, Haihua Liang (2019) A Pseudomonas Aeruginosa Type VI Secretion System Regulated by CueR Facilitates Copper Acquisition. PLoS Pathog. 15(12):e1008198. [PudMed:31790504]
[40] Ronan R McCarthy, Manda Yu, Kira Eilers, Yi-Chieh Wang, Erh-Min Lai, Alain Filloux (2019) Cyclic di-GMP Inactivates T6SS and T4SS Activity in Agrobacterium Tumefaciens. Mol Microbiol. 112(2):632-648. [PudMed:31102484]
[41] Josh S Sharp , Arne Rietsch, Simon L Dove (2019) RNase E Promotes Expression of Type III Secretion System Genes in Pseudomonas Aeruginosa. J Bacteriol. 201(22):e00336-19. [PudMed:31481542]
[42] Shaohui Wang, Denghui Yang, Xiaojun Wu, Zhengfei Yi, Yang Wang, Suhua Xin, Dong Wang, Mingxing Tian, Tao Li, Jingjing Qi, Chan Ding, Shengqing Yu (2019) The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the clpV Promoter in Salmonella enterica Serovar Typhimurium. Infect Immun. 87(10):e00562-19. [PudMed:31383745]
[43] Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. (2019) A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae.. Mol Microbiol. 111(6):1493-1509. [PudMed:30825339]
[44] Yuzhou Wang, Ye Li, Jianli Wang, Xiaoyuan Wang (2018) FleQ Regulates Both the Type VI Secretion System and Flagella in Pseudomonas Putida. Biotechnol Appl Biochem. 65(3):419-427. [PudMed:28968917]
[45] Jer-Sheng Lin, Panayiota Pissaridou, Hsin-Hui Wu, Ming-Daw Tsai, Alain Filloux, Erh-Min Lai (2018) TagF-mediated Repression of Bacterial Type VI Secretion Systems Involves a Direct Interaction With the Cytoplasmic Protein Fha. J Biol Chem. 293(23):8829-8842. [PudMed:29599293]
[46] Romero M, Silistre H, Lovelock L, Wright VJ, Chan KG, Hong KW, Williams P, Cámara M, Heeb S. (2018) Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN. Nucleic Acids Res. 46(13):6823-6840. [PudMed:29718466]
[47] Ethel Bayer-Santos, Lídia Dos Passos Lima, Lucas de Moraes Ceseti, Camila Yuri Ratagami, Eliane Silva de Santana, Aline Maria da Silva, Chuck Shaker Farah, Cristina Elisa Alvarez-Martinez (2018) Xanthomonas Citri T6SS Mediates Resistance to Dictyostelium Predation and Is Regulated by an ECF σ Factor and Cognate Ser/Thr Kinase. Environ Microbiol. 20(4):1562-1575. [PudMed:29488354]
[48] Liliana Losada, April A Shea, David DeShazer (2018) A MarR Family Transcriptional Regulator and Subinhibitory Antibiotics Regulate Type VI Secretion Gene Clusters in Burkholderia Pseudomallei. Microbiology. 164(9):1196-1211. [PudMed:30052173]
[49] Li P, Xu D, Ma T, Wang D, Li W, He J, Ran T, Wang W. (2018) Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism.. Biochem J. 475(13):2209-2224. [PudMed:29858276]
[50] Corbitt J, Yeo JS, Davis CI, LeRoux M, Wiggins PA. (2018) Type VI Secretion System Dynamics Reveals a Novel Secretion Mechanism in Pseudomonas aeruginosa.. J Bacteriol. 200(11). [PudMed:29555704]
[51] Chourashi R, Das S, Dhar D, Okamoto K, Mukhopadhyay AK, Chatterjee NS. (2018) Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.. Microbiology (Reading). 164(5):751-763. [PudMed:29633936]
[52] Kaiyu Yin, Yunpeng Guan, Ruiqing Ma, Lifan Wei, Bing Liu, Xiaohong Liu, Xiangshan Zhou, Yue Ma, Yuanxing Zhang, Matthew K Waldor, Qiyao Wang (2018) Critical Role for a Promoter Discriminator in RpoS Control of Virulence in Edwardsiella Piscicida. PLoS Pathog. 14(8):e1007272. [PudMed:30169545]
[53] Irina Debnath, Anne M Stringer, Sara N Smith, Emily Bae, Harry L T Mobley, Joseph T Wade, Melanie M Pearson (2018) MrpJ Directly Regulates Proteus Mirabilis Virulence Factors, Including Fimbriae and Type VI Secretion, During Urinary Tract Infection. Infect Immun. 86(10):e00388-18. [PudMed:30082479]
[54] Zhen Yang, Xuetong Wang, Wensheng Xu, Mian Zhou, Yuanxing Zhang, Yue Ma, Qiyao Wang (2018) Phosphorylation of PppA at Threonine 253 Controls T6SS2 Expression and Bacterial Killing Capacity in the Marine Pathogen Vibrio Alginolyticus. Microbiol Res. 209:70-78. [PudMed:29580623]
[55] Xiating Gao, Xuetong Wang, Qiaoqiao Mao, Rongjing Xu, Xiaohui Zhou, Yue Ma, Qin Liu, Yuanxing Zhang, Qiyao Wang (2018) VqsA, a Novel LysR-Type Transcriptional Regulator, Coordinates Quorum Sensing (QS) and Is Controlled by QS To Regulate Virulence in the Pathogen Vibrio Alginolyticus. Appl Environ Microbiol. 84(12):e00444-18. [PudMed:29625990]
[56] Zhen Yang, Xiaohui Zhou , Yue Ma, Mian Zhou, Matthew K Waldor, Yuanxing Zhang, Qiyao Wang (2018) Serine/threonine Kinase PpkA Coordinates the Interplay Between T6SS2 Activation and Quorum Sensing in the Marine Pathogen Vibrio Alginolyticus. Environ Microbiol. 20(2):903-919. [PudMed:29314504]
[57] Adam Ostrowski, Francesca R Cianfanelli, Michael Porter, Giuseppina Mariano, Julien Peltier, Jun Jie Wong, Jason R Swedlow, Matthias Trost, Sarah J Coulthurst (2018) Killing With Proficiency: Integrated Post-Translational Regulation of an Offensive Type VI Secretion System. PLoS Pathog. 14(7):e1007230. [PudMed:30052683]
[58] Jask��lska M, Stutzmann S, Stoudmann C, Blokesch M. (2018) QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae.. Nucleic Acids Res. 46(20):10619-10634. [PudMed:30102403]
[59] Wang C, Pu T, Lou W, Wang Y, Gao Z, Hu B, Fan J. (2018) Hfq, a RNA Chaperone, Contributes to Virulence by Regulating Plant Cell Wall-Degrading Enzyme Production, Type VI Secretion System Expression, Bacterial Competition, and Suppressing Host Defense Response in Pectobacterium carotovorum.. Mol Plant Microbe Interact. 31(11):1166-1178. [PudMed:30198820]
[60] Shao X, Zhang X, Zhang Y, Zhu M, Yang P, Yuan J, Xie Y, Zhou T, Wang W, Chen S, Liang H, Deng X. (2018) RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1.. J Bacteriol. 200(16). [PudMed:29760208]
[61] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[62] Pan J, Zhao M, Huang Y, Li J, Liu X, Ren Z, Kan B, Liang W. (2018) Integration Host Factor Modulates the Expression and Function of T6SS2 in Vibrio fluvialis.. Front Microbiol. 1.043055556. [PudMed:29867866]
[63] Wang T, Chen K, Gao F, Kang Y, Chaudhry MT, Wang Z, Wang Y, Shen X. (2017) ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis.. J Microbiol. 55(6):448-456. [PudMed:28281200]
[64] Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM, Wettstadt S, Filloux A (2017) RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 114(29):7707-7712. [PudMed:28673999]
[65] Yiquan Zhang, He Gao, George Osei-Adjei, Ying Zhang, Wenhui Yang, Huiying Yang, Zhe Yin, Xinxiang Huang, Dongsheng Zhou (2017) Transcriptional Regulation of the Type VI Secretion System 1 Genes by Quorum Sensing and ToxR in Vibrio parahaemolyticus. Front Microbiol. 1.725694444. [PudMed:29085350]
[66] Meiru Si, Chao Zhao, Brianne Burkinshaw, Bing Zhang, Dawei Wei, Yao Wang, Tao G Dong, Xihui Shen (2017) Manganese Scavenging and Oxidative Stress Response Mediated by Type VI Secretion System in Burkholderia thailandensis. Proc Natl Acad Sci U S A. 114(11):E2233-E2242. [PudMed:28242693]
[67] Lingyu Zhang, George Osei-Adjei, Ying Zhang, He Gao, Wenhui Yang, Dongsheng Zhou, Xinxiang Huang, Huiying Yang, Yiquan Zhang (2017) CalR Is Required for the Expression of T6SS2 and the Adhesion of Vibrio Parahaemolyticus to HeLa Cells. Arch Microbiol. 199(6):931-938. [PudMed:28378143]
[68] Nicolle L Barbieri, Jessica A Vande Vorde, Alison R Baker, Fabiana Horn, Ganwu Li, Catherine M Logue, Lisa K Nolan (2017) FNR Regulates the Expression of Important Virulence Factors Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Front Cell Infect Microbiol. 0.475694444. [PudMed:28690981]
[69] Meiru Si, Yao Wang, Bing Zhang, Chao Zhao, Yiwen Kang, Haonan Bai, Dawei Wei, Lingfang Zhu, Lei Zhang, Tao G Dong, Xihui Shen (2017) The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep. 20(4):949-959. [PudMed:28746878]
[70] Clayton W Hall, Li Zhang, Thien-Fah Mah (2017) PA3225 Is a Transcriptional Repressor of Antibiotic Resistance Mechanisms in Pseudomonas Aeruginosa. Antimicrob Agents Chemother. 61(8):e02114-16. [PudMed:28584154]
[71] Wan B, Zhang Q, Ni J, Li S, Wen D, Li J, Xiao H, He P, Ou HY, Tao J, Teng Q, Lu J, Wu W, Yao YF (2017) Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog. 13(3):e1006246. [PudMed:28288207]
[72] Lazzaro M, Feldman MF, Garc��a V��scovi E. (2017) A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.. mBio. 8(4). [PudMed:28830939]
[73] Jennifer Chua, Jeffrey L Senft, Stephen J Lockett, Paul J Brett, Mary N Burtnick, David DeShazer, Arthur M Friedlander (2016) pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infect Immun. 85(1):e00586-16. [PudMed:27799332]
[74] Rogers A, Townsley L, Gallego-Hernandez AL, Beyhan S, Kwuan L, Yildiz FH. (2016) The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio cholerae.. J Bacteriol. 198(6):973-85. [PudMed:26755629]
[75] Charlotte Majerczyk, Emily Schneider, E Peter Greenberg (2016) Quorum Sensing Control of Type VI Secretion Factors Restricts the Proliferation of Quorum-Sensing Mutants. Elife. 5:e14712. [PudMed:27183270]
[76] Lisa C Metzger, Sandrine Stutzmann, Tiziana Scrignari, Charles Van der Henst, Noémie Matthey, Melanie Blokesch (2016) Independent Regulation of Type VI Secretion in Vibrio Cholerae by TfoX and TfoY. Cell Rep. 15(5):951-958. [PudMed:27117415]
[77] Stutzmann S, Blokesch M. (2016) Circulation of a Quorum-Sensing-Impaired Variant of Vibrio cholerae Strain C6706 Masks Important Phenotypes.. mSphere. 1(3). [PudMed:27303743]
[78] Cui S, Xiao J, Wang Q, Zhang Y. (2016) H-NS binding to evpB and evpC and repressing T6SS expression in fish pathogen Edwardsiella piscicida.. Arch Microbiol. 198(7):653-61. [PudMed:27125651]
[79] Townsley L, Sison Mangus MP, Mehic S, Yildiz FH. (2016) Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton.. Appl Environ Microbiol. 82(14):4441-52. [PudMed:27208110]
[80] Chen R, Weng Y, Zhu F, Jin Y, Liu C, Pan X, Xia B, Cheng Z, Jin S, Wu W. (2016) Polynucleotide Phosphorylase Regulates Multiple Virulence Factors and the Stabilities of Small RNAs RsmY/Z in Pseudomonas aeruginosa.. Front Microbiol. 0.463194444. [PudMed:26973625]
[81] Wang T et al (2015) Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog. 11(7):e1005020. [PudMed:26134274]
[82] Sabag-Daigle A et al (2015) Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Front Cell Infect Microbiol. 5:47. [PudMed:26075189]
[83] Brunet YR et al (2015) H-NS silencing of the SPI-6-encoded Type VI secretion system limits Salmonella enterica serovar Typhimurium interbacterial killing. Infect Immun. pii: IAI.00198-15. [PudMed:25916986]
[84] Cheng AT et al (2015) Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System. PLoS Pathog. 11(5):e1004933. [PudMed:26000450]
[85] Wong J et al (2015) Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. Cell Host Microbe. 18(1):38-48. [PudMed:26094804]
[86] Yunhong Song, Xiao Xiao, Changfu Li, Tietao Wang, Ruoxi Zhao, Weipeng Zhang, Lei Zhang, Yao Wang, Xihui Shen (2015) The Dual Transcriptional Regulator RovM Regulates the Expression of AR3- And T6SS4-dependent Acid Survival Systems in Response to Nutritional Status in Yersinia Pseudotuberculosis. Environ Microbiol. 17(11):4631-45. [PudMed:26234561]
[87] Weber BS et al (2015) A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci U S A. 112(30):9442-7. [PudMed:26170289]
[88] Guan J et al (2015) Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol. 53(9):633-42. [PudMed:26310305]
[89] Bode NJ et al (2015) Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun. pii: IAI.02978-14. [PudMed:25847961]
[90] Watve SS et al (2015) CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae. PLoS One. 10(9):e0138834. [PudMed:26401962]
[91] Salomon D et al (2015) Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog. 11(8):e1005128. [PudMed:26305100]
[92] Aragon IM et al (2015) Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. Environ Microbiol. doi: 10.1111/1462-2920.12856. [PudMed:25809128]
[93] Aragon IM et al (2014) New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi. FEMS Microbiol Lett. 356(2):184-92. [PudMed:24606017]
[94] Shao Y et al (2014) Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol. 92(5):921-30. [PudMed:24698180]
[95] Lin JS et al (2014) Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLoS Pathog. 10(3):e1003991. [PudMed:24626341]
[96] B��cker R, Heroven AK, Becker J, Dersch P, Wittmann C. (2014) The pyruvate-tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis.. J Biol Chem. 289(43):30114-32. [PudMed:25164818]
[97] Hopf V et al (2014) BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun. 82(5):2006-15. [PudMed:24595140]
[98] Kumari H et al (2014) LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics. 96:328-42. [PudMed:24291602]
[99] Sall KM et al (2014) A gacS Deletion in Pseudomonas aeruginosa Cystic Fibrosis Isolate CHA Shapes Its Virulence. PLoS One. 9(4):e95936. [PudMed:24780952]
[100] Chen Y et al (2014) Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon. BMC Microbiol. 14(1):206. [PudMed:25085508]
[101] Eijkelkamp BA et al (2013) H-NS Plays a Role in Expression of Acinetobacter baumannii Virulence Features. Infect Immun. 81(7):2574-83. [PudMed:23649094]
[102] Morin N et al (2013) Characterization of the AggR regulon in enteroaggregative Escherichia coli. Infect Immun. 81(1):122-32. [PudMed:23090962]
[103] Filiatrault MJ et al (2013) Pseudomonas aeruginosa PA1006, Which Plays a Role in Molybdenum Homeostasis, Is Required for Nitrate Utilization, Biofilm Formation, and Virulence. PLoS One. 8(2):e55594. [PudMed:23409004]
[104] Gueguen E et al (2013) Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator. PLoS One. 8(6):e66615. [PudMed:23840509]
[105] Wang D et al (2013) Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. Microbiologyopen. 2(3):505-24. [PudMed:23606419]
[106] Aubert DF et al (2013) The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol. 15(2):372-85. [PudMed:22830644]
[107] Burtnick MN et al (2013) Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc. PLoS One. 8(10):e76767. [PudMed:24146925]
[108] Marden JN et al (2013) An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 110(37):15055-60. [PudMed:23980177]
[109] Wei X et al (2013) Global control of GacA on secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol. 195(15):3387-400. [PudMed:23708134]
[110] Wang L et al (2013) Cell Density- and Quorum Sensing-Dependent Expression of Type VI Secretion System 2 in Vibrio parahaemolyticus. PLoS One. 8(8):e73363. [PudMed:23977385]
[111] Li K et al (2013) SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa. MBio. 4(6):e00419-13. [PudMed:24169572]
[112] Fritsch MJ et al (2013) Proteomic identification of novel secreted anti-bacterial toxins of the Serratia marcescens Type VI secretion system. Mol Cell Proteomics. 12(10):2735-2749. [PudMed:23842002]
[113] Ho BT et al (2013) Type 6 Secretion System-Mediated Immunity to Type 4 Secretion System-Mediated Gene Transfer. Science. 342(6155):250-253. [PudMed:24115441]
[114] Salomon D et al (2013) Vibrio parahaemolyticus Type VI Secretion System 1 Is Activated in Marine Conditions to Target Bacteria, and Is Differentially Regulated from System 2. PLoS One. 8(4):e61086. [PudMed:23613791]
[115] Sana TG et al (2013) Divergent Control of Two Type VI Secretion Systems by RpoN in Pseudomonas aeruginosa. PLoS One. 8(10):e76030. [PudMed:24204589]
[116] Lalaouna D et al (2012) Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA-dependent Rsm small RNAs. Appl Environ Microbiol. 78(6):1658-65. [PudMed:22247157]
[117] Casabona MG et al (2012) An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa. Environ Microbiol. 15(2):471-86. [PudMed:22765374]
[118] Lv Y et al (2012) Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda. Vet Microbiol. 157(1-2):190-9. [PudMed:22227416]
[119] Sheng L et al (2012) Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus. Arch Microbiol. 194(5):379-90. [PudMed:22173829]
[120] Wu CF et al (2012) Acid-Induced Type VI Secretion System Is Regulated by ExoR-ChvG/ChvI Signaling Cascade in Agrobacterium tumefaciens. PLoS Pathog. 8(9):e1002938. [PudMed:23028331]
[121] Sana TG et al (2012) The Second Type VI Secretion System of Pseudomonas aeruginosa Strain PAO1 Is Regulated by Quorum Sensing and Fur and Modulates Internalization in Epithelial Cells. J Biol Chem. 287(32):27095-105. [PudMed:22665491]
[122] Zhang W et al (2012) A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol. 15(2):557-69. [PudMed:23094603]
[123] Ma L et al (2012) Expression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in Vibrio parahaemolyticus. Scientific World Journal. 2012:982140. [PudMed:22924031]
[124] Dong TG et al (2012) Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Res. 40(16):7766-75. [PudMed:22723378]
[125] Sheng L et al (2012) Connecting type VI secretion, quorum sensing, and c-di-GMP production in fish pathogen Vibrio alginolyticus through phosphatase PppA. Vet Microbiol. 162(2-4):652-62. [PudMed:23021863]
[126] Olivares J et al (2012) Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol. 14(8):1968-81. [PudMed:22417660]
[127] Stauff DL, Bassler BL. (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.. J Bacteriol. 193(15):3871-8. [PudMed:21622734]
[128] Brunet YR, Bernard CS, Gavioli M, Lloub��s R, Cascales E. (2011) An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster.. PLoS Genet. 7(7):e1002205. [PudMed:21829382]
[129] Silverman JM et al (2011) Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol Microbiol. 82(5):1277-90. [PudMed:22017253]
[130] Moscoso JA et al (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol. 13(12):3128-38. [PudMed:21955777]
[131] Zhang W et al (2011) Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol. 193(5):351-63. [PudMed:21298257]
[132] Kitaoka M et al (2011) VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J Bacteriol. 193(23):6471-82. [PudMed:21949076]
[133] Zheng J et al (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One. 6(8):e23876. [PudMed:21909372]
[134] Chen Y et al (2011) Regulation of type VI secretion system during Burkholderia pseudomallei infection. Infect Immun. 79(8):3064-73. [PudMed:21670170]
[135] Rogge ML et al (2011) Regulation of the Edwardsiella ictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl Environ Microbiol. 77(13):4293-302. [PudMed:21551284]
[136] Burtnick MN et al (2011) The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 79(4):1512-25. [PudMed:21300775]
[137] Bernard CS et al (2011) Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins. J Bacteriol. 193(9):2158-67. [PudMed:21378190]
[138] Morin N et al (2010) Autoactivation of the AggR regulator of enteroaggregative Escherichia coli in vitro and in vivo. FEMS Immunol Med Microbiol. 58(3):344-55. [PudMed:20132305]
[139] Sun GW et al (2010) Identification of a regulatory cascade controlling Type III Secretion System 3 gene expression in Burkholderia pseudomallei. Mol Microbiol. 76(3):677-89. [PudMed:20345664]
[140] Records AR et al (2010) Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol. 192(14):3584-96. [PudMed:20472799]
[141] Zheng J et al (2010) Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci U S A. 107(49):21128-33. [PudMed:21084635]
[142] Bell BL et al (2010) Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect Immun. 78(5):2189-98. [PudMed:20231408]
[143] Hassan KA et al (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 12(4):899-915. [PudMed:20089046]
[144] Shanks J et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun. 77(4):1636-48. [PudMed:19168747]
[145] Khajanchi BK et al (2009) N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology. 155(Pt 11):3518-31. [PudMed:19729404]
[146] Lesic B et al (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology. 155(Pt 9):2845-55. [PudMed:19497948]
[147] Brencic A et al (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol. 72(3):612-32. [PudMed:19426209]
[148] Hsu F et al (2009) TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol. 72(5):1111-25. [PudMed:19400797]
[149] Wang X et al (2009) Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol. 27(3):469-77. [PudMed:19563898]
[150] Ishikawa T et al (2009) Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One. 4(8):e6734. [PudMed:19701456]
[151] O'Grady EP et al (2009) Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics. 0.722916667. [PudMed:19761612]
[152] Aubert DF et al (2008) A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia. Infect Immun. 76(5):1979-91. [PudMed:18316384]
[153] Brotcke A et al (2008) Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect Immun. 76(8):3473-80. [PudMed:18559431]
[154] Suarez G et al (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog. 44(4):344-61. [PudMed:18037263]
[155] Liu H et al (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 4(6):e1000093. [PudMed:18566662]
[156] Schell MA et al (2007) Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 64(6):1466-85. [PudMed:17555434]
[157] Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol. 9(7):797-803. [PudMed:17558395]
[158] de Bruin OM et al (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 7:01. [PudMed:17233889]
[159] Guina T et al (2007) MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J Bacteriol. 189(18):6580-6. [PudMed:17644593]
[160] Mohapatra NP et al (2007) Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun. 75(7):3305-14. [PudMed:17452468]
[161] Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 312(5779):1526-30. [PudMed:16763151]
[162] Dudley EG et al (2006) Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol. 61(5):1267-82. [PudMed:16925558]
[163] Pukatzki S et al (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A. 103(5):1528-33. [PudMed:16432199]
[164] Zheng J et al (2005) Regulation of a type III and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect Immun. 73(7):4127-37. [PudMed:15972502]
[165] Parsons DA et al (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun. 73(7):4338-45. [PudMed:15972528]
[166] Rao PS et al (2004) Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol. 53(2):573-86. [PudMed:15228535]
[167] Baron GS et al (1998) MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol. 29(1):247-59. [PudMed:9701818]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[3] Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. (2021) Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida.. Front Microbiol. 12:643498. [PudMed:33776977]
[4] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[5] Howard SA, Furniss RCD, Bonini D, Amin H, Paracuellos P, Zlotkin D, Costa TRD, Levy A, Mavridou DAI, Filloux A. (2021) The Breadth and Molecular Basis of Hcp-Driven Type VI Secretion System Effector Delivery.. mBio. NA. [PudMed:34061601]
[6] Liu Y, Wang J, Zhang Z, Wang F, Gong Y, Sheng DH, Li YZ. (2021) Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus.. Appl Environ Microbiol. 87(9). [PudMed:33608292]
[7] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[8] Wang S, Geng Z, Zhang H, She Z, Dong Y. (2021) The Pseudomonasaeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector.. FEBS J. NA. [PudMed:33838074]
[9] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[10] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[11] Liang X, Pei TT, Wang ZH, Xiong W, Wu LL, Xu P, Lin S, Dong TG. (2021) Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU.. Appl Environ Microbiol. 87(12):e0043521. [PudMed:33837015]
[12] Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. (2020) Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.. Nat Commun. 11(1):1865. [PudMed:32313027]
[13] Lopez J, Ly PM, Feldman MF. (2020) The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii.. mBio. 11(1). [PudMed:31937641]
[14] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[15] Wang T, Hu Z, Du X, Shi Y, Dang J, Lee M, Hesek D, Mobashery S, Wu M, Liang H. (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors.. Mol Microbiol. 114(2):308-321. [PudMed:32279364]
[16] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[17] Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, Matsuyama BY, Mesnage S, Patel A, de Souza RF, Guzzo CR, Bayer-Santos E. (2020) A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan.. Cell Rep. 31(12):107813. [PudMed:32579939]
[18] Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. (2020) In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes.. Mol Plant Microbe Interact. 33(2):349-363. [PudMed:31609645]
[19] Donato SL, Beck CM, Garza-S��nchez F, Jensen SJ, Ruhe ZC, Cunningham DA, Singleton I, Low DA, Hayes CS. (2020) The ��-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion.. Proc Natl Acad Sci U S A. NA. [PudMed:33323487]
[20] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[21] Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. (2020) Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system.. Vet Res. 51(1):71. [PudMed:32448355]
[22] Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. (2019) The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization.. Front Microbiol. 2.405555556. [PudMed:31921044]
[23] Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. (2019) Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters.. Genome Biol. 20(1):163. [PudMed:31405375]
[24] Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY, Moleleki LN. (2019) Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp.. Appl Environ Microbiol. 85(2). [PudMed:30413477]
[25] Wood TE, Howard SA, Frster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. (2019) The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology.. Cell Rep. 29(1):187-201. [PudMed:31577948]
[26] Giuseppina Mariano, Katharina Trunk, David J Williams, Laura Monlezun, Henrik Strahl, Samantha J Pitt, Sarah J Coulthurst (2019) A Family of Type VI Secretion System Effector Proteins That Form Ion-Selective Pores. Nat Commun. 10(1):5484. [PudMed:31792213]
[27] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[28] Spiewak HL, Shastri S, Zhang L, Schwager S, Eberl L, Vergunst AC, Thomas MS. (2019) Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition.. Microbiologyopen. NA. [PudMed:30628184]
[29] Berni B, Soscia C, Djermoun S, Ize B, Bleves S (2019) A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol. 1.2625. [PudMed:31231326]
[30] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[31] Tan J, Yang D, Wang Z, Zheng X, Zhang Y, Liu Q (2019) EvpP inhibits neutrophils recruitment via Jnk-caspy inflammasome signaling in vivo. Fish Shellfish Immunol. 92:851-860. [PudMed:31129187]
[32] Ahmad S, Wang B, Walker MD, Tran HR, Stogios PJ, Savchenko A, Grant RA, McArthur AG, Laub MT, Whitney JC (2019) An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 575(7784):674-678. [PudMed:31695193]
[33] Panayiota Pissaridou, Luke P Allsopp, Sarah Wettstadt, Sophie A Howard, Despoina A I Mavridou, Alain Filloux (2018) The Pseudomonas aeruginosa T6SS-VgrG1b Spike Is Topped by a PAAR Protein Eliciting DNA Damage to Bacterial Competitors. Proc Natl Acad Sci U S A. 115(49):12519-12524. [PudMed:30455305]
[34] Zhang L, Jiang Z, Fang S, Huang Y, Yang D, Wang Q, Zhang Y, Liu Q (2018) Systematic Identification of Intracellular-Translocated Candidate Effectors in Edwardsiella piscicida. Front Cell Infect Microbiol. 8:37. [PudMed:29503811]
[35] Zepeda-Rivera MA, Saak CC, Gibbs KA (2018) A Proposed Chaperone of the Bacterial Type VI Secretion System Functions To Constrain a Self-Identity Protein. J Bacteriol. 200(14). pii: e00688-17. [PudMed:29555703]
[36] Katharina Trunk, Julien Peltier, Yi-Chia Liu, Brian D Dill, Louise Walker, Neil A R Gow, Michael J R Stark, Janet Quinn, Henrik Strahl, Matthias Trost, Sarah J Coulthurst (2018) The Type VI Secretion System Deploys Antifungal Effectors Against Microbial Competitors. Nat Microbiol. 3(8):920-931. [PudMed:30038307]
[37] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[38] Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol. 3(5):632-640. [PudMed:29632369]
[39] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[40] Troselj V, Treuner-Lange A, Søgaard-Andersen L, Wall D (2018) Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium. mBio. 9(1). pii: e01645-17. [PudMed:29437919]
[41] Tang JY, Bullen NP, Ahmad S, Whitney JC (2018) Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem. 293(5):1504-1514. [PudMed:29237732]
[42] Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB, Powell D, Harper M#, Boyce JD (2018) Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. Infect Immun. 86(8). pii: e00297-18. [PudMed:29735524]
[43] Ledvina HE, Kelly KA, Eshraghi A, Plemel RL, Peterson SB, Lee B, Steele S, Adler M, Kawula TH, Merz AJ, Skerrett SJ, Celli J, Mougous JD (2018) A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe. 24(2):285-295.e8. [PudMed:30057173]
[44] Gong Y, Zhang Z, Liu Y, Zhou XW, Anwar MN, Li ZS, Hu W1, Li YZ (2018) A nuclease-toxin and immunity system for kin discrimination in Myxococcus xanthus. Environ Microbiol. 20(7):2552-2567. [PudMed:29806725]
[45] Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD (2018) Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell. 175(5):1380-1392.e14. [PudMed:30343895]
[46] Lingyu Zhang, George Osei-Adjei, Ying Zhang, He Gao, Wenhui Yang, Dongsheng Zhou, Xinxiang Huang, Huiying Yang, Yiquan Zhang (2017) CalR Is Required for the Expression of T6SS2 and the Adhesion of Vibrio Parahaemolyticus to HeLa Cells. Arch Microbiol. 199(6):931-938. [PudMed:28378143]
[47] Lin J, Zhang W, Cheng J, Yang X, Zhu K, Wang Y, Wei G, Qian PY, Luo ZQ, Shen X (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun. 28;8:14888. [PudMed:28348410]
[48] Wan B, Zhang Q, Ni J, Li S, Wen D, Li J, Xiao H, He P, Ou HY, Tao J, Teng Q, Lu J, Wu W, Yao YF (2017) Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog. 13(3):e1006246. [PudMed:28288207]
[49] Alteri CJ, Himpsl SD, Zhu K, Hershey HL, Musili N, Miller JE, Mobley HLT. (2017) Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.. PLoS Pathog. 13(11):e1006729. [PudMed:29155899]
[50] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[51] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[52] Ho BT, Fu Y, Dong TG, Mekalanos JJ (2017) Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci U S A. 114(35):9427-9432. [PudMed:28808000]
[53] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[54] Chen H, Yang D, Han F, Tan J, Zhang L, Xiao J, Zhang Y, Liu Q (2017) The Bacterial T6SS Effector EvpP Prevents NLRP3 Inflammasome Activation by Inhibiting the Ca2+ -Dependent MAPK-Jnk Pathway. Cell Host Microbe. 21(1):47-58. [PudMed:28081443]
[55] Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H (2017) PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. (1):345-360. [PudMed:27871130]
[56] Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE (2016) Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci U S A. 113(13):3627-32. [PudMed:26951680]
[57] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[58] Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L (2016) A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol. 99(6):1099-118. [PudMed:26714038]
[59] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[60] Daniel F Aubert, Hao Xu, Jieling Yang, Xuyan Shi, Wenqing Gao, Lin Li, Fabiana Bisaro, She Chen, Miguel A Valvano, Feng Shao (2016) A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe. 19(5):664-74. [PudMed:27133449]
[61] Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM (2016) Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A. 113(34):E5044-51. [PudMed:27503894]
[62] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[63] Jiang F, Wang X, Wang B, Chen L, Zhao Z, Waterfield NR, Yang G, Jin Q (2016) The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep. 16(6):1502-1509. [PudMed:27477276]
[64] Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD (2016) Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe. 20(5):573-583. [PudMed:27832588]
[65] Wang T et al (2015) Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog. 11(7):e1005020. [PudMed:26134274]
[66] Spencer C et al (2015) Biochemical Characterization of a Pseudomonas aeruginosa Phospholipase D. Biochemistry. 54(5):1208-18. [PudMed:25565226]
[67] Sana TG et al (2015) Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. MBio. 6(3):e00712. [PudMed:26037124]
[68] Altindis E et al (2015) Secretome Analysis of Vibrio cholerae Type VI Secretion System Reveals a New Effector-Immunity Pair. MBio. pii: e00075-15. [PudMed:25759499]
[69] Ruiz FM et al (2015) Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System. PLoS One. 10(6):e0129691. [PudMed:26079269]
[70] Wang N et al (2015) Protective efficacy of recombinant hemolysin co-regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio). Fish Shellfish Immunol. 46(2):297-304. [PudMed:26093203]
[71] Borgeaud S et al (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63-7. [PudMed:25554784]
[72] Liang X et al (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A. 112(29):9106-11. [PudMed:26150500]
[73] Li J et al (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. doi: 10.1111/1462-2920.12794. [PudMed:25640659]
[74] Lim YT et al (2015) Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei. Sci Rep. 5.927083333. [PudMed:25648885]
[75] Unterweger D et al (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J. 34(16):2198-210. [PudMed:26194724]
[76] Ryu CM (2015) Against friend and foe: Type 6 effectors in plant-associated bacteria. J Microbiol. 53(3):201-8. [PudMed:25732741]
[77] Alcoforado Diniz J et al (2015) Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cell Microbiol. doi: 10.1111/cmi.12532. [PudMed:26432982]
[78] Chieng S et al (2015) Transcriptome analysis of Burkholderia pseudomallei T6SS identifies Hcp1 as a potential serodiagnostic marker. Microb Pathog. 79:47-56. [PudMed:25616255]
[79] Salomon D et al (2015) Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog. 11(8):e1005128. [PudMed:26305100]
[80] Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD (2015) An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell. 163(3):607-19. [PudMed:26456113]
[81] Diniz JA et al (2015) Intra-species Competition in Serratia marcescens is Mediated by Type VI Secretion Rhs Effectors and a Conserved Effector-Associated Accessory Protein. J Bacteriol. pii: JB.00199-15. [PudMed:25939831]
[82] Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PudMed:24551044]
[83] Decoin V et al (2014) A Type VI Secretion System Is Involved in Pseudomonas fluorescens Bacterial Competition. PLoS One. 9(2):e89411. [PudMed:24551247]
[84] Zhang J et al (2014) Crystallization and preliminary X-ray study of TsiV3 from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 3):335-8. [PudMed:24598921]
[85] Jiang F et al (2014) A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host Microbe. 15(5):600-10. [PudMed:24832454]
[86] Kapitein N et al (2014) Type VI Secretion System Helps Find a Niche. Cell Host Microbe. 16(1):5-6. [PudMed:25011102]
[87] Russell AB et al (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 12(2):137-48. [PudMed:24384601]
[88] Brunet YR et al (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15(3):315-21. [PudMed:24488256]
[89] Hachani A et al (2014) The VgrG proteins are "A la carte" delivery systems for bacterial type VI effectors. J Biol Chem. 289(25):17872-17884. [PudMed:24794869]
[90] Lu D et al (2014) Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol Microbiol. 92(5):1092-112. [PudMed:24724564]
[91] Lin JS et al (2014) Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLoS Pathog. 10(3):e1003991. [PudMed:24626341]
[92] Egan F et al (2014) Tle Distribution and Diversity in Metagenomic Datasets Reveals Niche Specialisation. Environ Microbiol Rep. 7(2):194-203. [PudMed:25345349]
[93] Cava F et al (2014) Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr Opin Microbiol. 18C:46-53. [PudMed:24607990]
[94] Yang X et al (2014) Molecular mechanism for self-protection against the type VI secretion system in Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 70(Pt 4):1094-103. [PudMed:24699653]
[95] Castro-Gomes T et al (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol. 52(4):350-3. [PudMed:24535738]
[96] Hopf V et al (2014) BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun. 82(5):2006-15. [PudMed:24595140]
[97] Hu H et al (2014) Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallogr D Biol Crystallogr. 70(Pt 8):2175-2185. [PudMed:25084336]
[98] Whitney JC et al (2014) Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol. 92(3):529-42. [PudMed:24589350]
[99] Lu D et al (2014) The structural basis of the Tle4-Tli4 complex reveals the self-protection mechanism of H2-T6SS in Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr. 70(Pt 12):3233-43. [PudMed:25478841]
[100] Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion exported protein required for multinucleated giant cell formation and virulence. Infect Immun. 82(4):1445-52. [PudMed:24452686]
[101] Hu W et al (2014) A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding. PLoS One. 9(11):e110810. [PudMed:25401506]
[102] Ma LS et al (2014) Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta. Cell Host Microbe. 16(1):94-104. [PudMed:24981331]
[103] Zhang J et al (2014) Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett. 588(10):1891-8. [PudMed:24751834]
[104] English G et al (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG sub-complex. Biochem J. 461(2):291-304. [PudMed:24779861]
[105] Toesca IJ et al (2014) The Type VI Secretion System Spike Protein VgrG5 Mediates Membrane Fusion during Intercellular Spread by Pseudomallei Group Burkholderia Species. Infect Immun. 82(4):1436-44. [PudMed:24421040]
[106] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[107] Chou S et al (2014) Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature. 518(7537):98-101. [PudMed:25470067]
[108] Durand E et al (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol. 22(9):498-507. [PudMed:25042941]
[109] Russell AB et al (2014) A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host Microbe. 16(2):227-36. [PudMed:25070807]
[110] Zhang J et al (2014) A new target for the old regulator: H-NS suppress T6SS secretory protein EvpP, the major virulence factor in the fish pathogen Edwardsiella tarda. Lett Appl Microbiol. 59(5):557-564. [PudMed:25131176]
[111] Bleves S et al (2014) The target cell genus does not matter. Trends Microbiol. 22(6):304-6. [PudMed:24836109]
[112] Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem. 288(8):5928-39. [PudMed:23288853]
[113] Lu D et al (2013) Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 5):524-7. [PudMed:23695568]
[114] Dong TG et al (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A . 110(7):2623-8. [PudMed:23362380]
[115] Blondel CJ et al (2013) The Type VI Secretion System encoded in SPI-19 is required for Salmonella Gallinarum survival within infected macrophages. Infect Immun. 81(4):1207-20. [PudMed:23357385]
[116] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[117] Benz J et al (2013) Structural Insights into the Effector - Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS One. 8(6):e67362. [PudMed:23826277]
[118] Hogan DA et al (2013) Bacterial type 6 secreted phospholipases play family feud. Cell Host Microbe. 13(5):507-8. [PudMed:23684302]
[119] Sha J et al (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology. 159(Pt 6):1120-35. [PudMed:23519162]
[120] Coulthurst SJ (2013) The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 164(6):640-54. [PudMed:23542428]
[121] Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PudMed:23290191]
[122] Ciprandi A et al (2013) Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies. Curr Microbiol. 67(1):100-6. [PudMed:23455494]
[123] Dong C et al (2013) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J. 454(1):59-68. [PudMed:23730712]
[124] Braun V et al (2013) Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett. 345(1):13-21. [PudMed:23701660]
[125] Basler M et al (2013) Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions. Cell. 152(4):884-94. [PudMed:23415234]
[126] Brunet YR et al (2013) Imaging Type VI Secretion-Mediated Bacterial Killing. Cell Rep. 3(1):36-41. [PudMed:23291094]
[127] Lin JS et al (2013) Systematic Dissection of the Agrobacterium Type VI Secretion System Reveals Machinery and Secreted Components for Subcomplex Formation. PLoS One. 8(7):e67647. [PudMed:23861778]
[128] Brooks TM et al (2013) Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 is Inhibited by the Antitoxin TsaB. J Biol Chem. 288(11):7618-25. [PudMed:23341465]
[129] Wang Y et al (2013) Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogen Edwardsiella tarda. FEMS Microbiol Lett. 343(2):145-55. [PudMed:23551118]
[130] Suanyuk N et al (2013) Mortality and pathology of hybrid catfish, Clarias macrocephalus (Gunther) X Clarias gariepinus (Burchell), associated with Edwardsiella ictaluri infection in southern Thailand. J Fish Dis. 37(4):385-395. [PudMed:23763374]
[131] Wenren LM et al (2013) Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export. MBio. 4(4). [PudMed:23882014]
[132] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[133] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[134] Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PudMed:24307403]
[135] Russell AB et al (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature. 496(7446):508-12. [PudMed:23552891]
[136] Whitney JC et al (2013) Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem. 288(37):26616-24. [PudMed:23878199]
[137] Fritsch MJ et al (2013) Proteomic identification of novel secreted anti-bacterial toxins of the Serratia marcescens Type VI secretion system. Mol Cell Proteomics. 12(10):2735-2749. [PudMed:23842002]
[138] Wang T et al (2013) Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein. Acta Crystallogr D Biol Crystallogr. 69(Pt 10):1889-1900. [PudMed:24100309]
[139] Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PudMed:23954347]
[140] Salomon D et al (2013) Vibrio parahaemolyticus Type VI Secretion System 1 Is Activated in Marine Conditions to Target Bacteria, and Is Differentially Regulated from System 2. PLoS One. 8(4):e61086. [PudMed:23613791]
[141] Li L et al (2013) Structural Insights on the Bacteriolytic and Self-protection Mechanism of Muramidase Effector Tse3 in Pseudomonas aeruginosa. J Biol Chem. 288(42):30607-13. [PudMed:24025333]
[142] Bleumink-Pluym NM et al (2013) Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity. PLoS Pathog. 9(5):e1003393. [PudMed:23737749]
[143] Rosenzweig JA et al (2013) Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems. Front Cell Infect Microbiol. 0.173611111. [PudMed:24199174]
[144] Jones C et al (2013) Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System. PLoS One. 8(11):e81132. [PudMed:24260549]
[145] Fu Y et al (2013) Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host Microbe. 14(6):652-63. [PudMed:24331463]
[146] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[147] Jones C et al (2013) An rhs-encoding gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol. 196(4):800-10. [PudMed:24317402]
[148] Miyata ST et al (2013) Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathog. 9(12):e1003752. [PudMed:24348240]
[149] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[150] He Y et al (2012) FliC, a flagellin protein, is essential for the growth and virulence of fish pathogen Edwardsiella tarda. PLoS One. 7(9):e45070. [PudMed:23024793]
[151] Zhou Y et al (2012) Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun. 80(3):1243-51. [PudMed:22184413]
[152] Yu Y et al (2012) VPA1045 and VPA1049 of Vibrio parahaemolyticus regulate translocation of Hcp2. Wei Sheng Wu Xue Bao. 52(8):954-61. [PudMed:23173431]
[153] Shidore T et al (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Environ Microbiol. 14(10):2775-87. [PudMed:22616609]
[154] Broms JE et al (2012) Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection. PLoS One. 7(11):e50473. [PudMed:23185631]
[155] Russell AB et al (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe. 11(5):538-49. [PudMed:22607806]
[156] English G et al (2012) New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol. 86(4):921-36. [PudMed:22957938]
[157] Ding J et al (2012) Structural Insights into the Pseudomonas aeruginosa Type VI Virulence Effector Tse1 Bacteriolysis and Self-protection Mechanisms. J Biol Chem. 287(32):26911-20. [PudMed:22700987]
[158] Benz J et al (2012) Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS One. 7(7):e40453. [PudMed:22792331]
[159] Haapalainen M et al (2012) Hcp2, a Secreted Protein of the Phytopathogen Pseudomonas syringae pv. Tomato DC3000, Is Required for Fitness for Competition against Bacteria and Yeasts. J Bacteriol. 194(18):4810-22. [PudMed:22753062]
[160] Zhang H et al (2012) Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS Lett. 586(19):3193-9. [PudMed:22750141]
[161] Chou S et al (2012) Structure of a Peptidoglycan Amidase Effector Targeted to Gram-Negative Bacteria by the Type VI Secretion System. Cell Rep. 1(6):656-64. [PudMed:22813741]
[162] Silverman JM et al (2012) Structure and Regulation of the Type VI Secretion System. Annu Rev Microbiol. 66:453-72. [PudMed:22746332]
[163] Kung VL et al (2012) An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci U S A. 109(4):1275-80. [PudMed:22232685]
[164] Durand E et al (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae Type VI secretion system. J Biol Chem. 287(45):38190-9. [PudMed:22898822]
[165] Murdoch SL et al (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol. 193(21):6057-69. [PudMed:21890705]
[166] Zhang W et al (2011) Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol. 193(5):351-63. [PudMed:21298257]
[167] Russell AB et al (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 475(7356):343-7. [PudMed:21776080]
[168] Broms JE et al (2011) IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun. 79(9):3683-96. [PudMed:21690239]
[169] Miyata ST et al (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun. 79(7):2941-9. [PudMed:21555399]
[170] Wang M et al (2011) Molecular characterization of a functional type VI secretion system in Salmonella enterica serovar Typhi. Curr Microbiol. 63(1):22-31. [PudMed:21487806]
[171] Kitaoka M et al (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol. 60(Pt 4):397-407. [PudMed:21252269]
[172] Barret M et al (2011) Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology. 157(Pt 6):1726-39. [PudMed:21474537]
[173] Osipiuk J et al (2011) Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa. J Struct Funct Genomics. 12(1):21-6. [PudMed:21476004]
[174] De Maayer P et al (2011) Comparative genomics of the Type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics. 0.9. [PudMed:22115407]
[175] Kampenusa I et al (2010) Distinguishable codon usage and amino acid composition patterns among substrates of leaderless secretory pathways from proteobacteria. Appl Microbiol Biotechnol. 86(1):285-93. [PudMed:20107986]
[176] Hood RD et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 7(1):25-37. [PudMed:20114026]
[177] Ma AT et al (2010) In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A. 107(9):4365-70. [PudMed:20150509]
[178] Suarez G et al (2010) Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. Microbiology. 156(Pt 12):3678-88. [PudMed:20798163]
[179] Suarez G et al (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol. 192(1):155-68. [PudMed:19880608]
[180] Jobichen C et al (2010) Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda. PLoS One. 5(9):e12910. [PudMed:20886112]
[181] Holland IB (2010) The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol Biol. 619:1-20. [PudMed:20419401]
[182] Chow J et al (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe. 7(4):265-76. [PudMed:20413095]
[183] Aoki SK et al (2010) A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature. 468(7322):439-42. [PudMed:21085179]
[184] Shanks J et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun. 77(4):1636-48. [PudMed:19168747]
[185] Pukatzki S et al (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol. 12(1):11-7. [PudMed:19162533]
[186] Galan JE (2009) Common themes in the design and function of bacterial effectors. Cell Host Microbe. 5(6):571-9. [PudMed:19527884]
[187] Mattinen L et al (2008) Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiology. 154(Pt 8):2387-96. [PudMed:18667571]
[188] Wu HY et al (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol. 190(8):2841-50. [PudMed:18263727]
[189] Suarez G et al (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog. 44(4):344-61. [PudMed:18037263]
[190] Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol. 9(7):797-803. [PudMed:17558395]
[191] Shalom G et al (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 153(Pt 8):2689-99. [PudMed:17660433]
[192] Gerlach RG et al (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 297(6):401-15. [PudMed:17482513]
[193] Zheng J et al (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol. 66(5):1192-206. [PudMed:17986187]
[194] Pukatzki S et al (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A. 104(39):15508-13. [PudMed:17873062]
[195] Cambronne ED et al (2006) Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic. 7(8):929-39. [PudMed:16734660]
[196] Dudley EG et al (2006) Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol. 61(5):1267-82. [PudMed:16925558]
[197] Bladergroen MR et al (2003) Infection-Blocking Genes of a Symbiotic Rhizobium leguminosarum Strain That Are Involved in Temperature-Dependent Protein Secretion. Mol Plant Microbe Interact. 16(1):53-64. [PudMed:12580282]
[198] Potvin E et al (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol. 5(12):1294-308. [PudMed:14641575]
[199] Williams SG et al (1996) Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun. 64(1):283-9. [PudMed:8557353]
[1] Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. (2021) Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili.. Elife. 10. [PudMed:34232858]
[2] Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. (2021) Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.. EMBO Rep. 22(6):e51857. [PudMed:33786997]
[3] Liu Y, Wang J, Zhang Z, Wang F, Gong Y, Sheng DH, Li YZ. (2021) Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus.. Appl Environ Microbiol. 87(9). [PudMed:33608292]
[4] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[5] Wang S, Geng Z, Zhang H, She Z, Dong Y. (2021) The Pseudomonasaeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector.. FEBS J. NA. [PudMed:33838074]
[6] Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. (2021) A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation.. Appl Environ Microbiol. 87(9). [PudMed:33608299]
[7] Jurnas D, Payelleville A, Roghanian M, Turnbull KJ, Givaudan A, Brillard J, Hauryliuk V, Cascales E. (2021) Photorhabdus antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA.. Nucleic Acids Res. NA. [PudMed:34255843]
[8] Liang X, Pei TT, Wang ZH, Xiong W, Wu LL, Xu P, Lin S, Dong TG. (2021) Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU.. Appl Environ Microbiol. 87(12):e0043521. [PudMed:33837015]
[9] Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. (2020) Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.. Nat Commun. 11(1):1865. [PudMed:32313027]
[10] Storey D, McNally A, strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B, Palacios L, Marshall H, Hobley L, Molina M, Cid VJ, Salminen TA, Bengoechea JA. (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent.. PLoS Pathog. 16(3):e1007969. [PudMed:32191774]
[11] Speare L, Smith S, Salvato F, Kleiner M, Septer AN. (2020) Environmental Viscosity Modulates Interbacterial Killing during Habitat Transition.. mBio. 11(1). [PudMed:32019799]
[12] Wang T, Hu Z, Du X, Shi Y, Dang J, Lee M, Hesek D, Mobashery S, Wu M, Liang H. (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors.. Mol Microbiol. 114(2):308-321. [PudMed:32279364]
[13] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. (2020) A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors.. Nat Commun. 11(1):1085. [PudMed:32109231]
[14] Sibinelli-Sousa S, Hespanhol JT, Nicastro GG, Matsuyama BY, Mesnage S, Patel A, de Souza RF, Guzzo CR, Bayer-Santos E. (2020) A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan.. Cell Rep. 31(12):107813. [PudMed:32579939]
[15] Donato SL, Beck CM, Garza-S��nchez F, Jensen SJ, Ruhe ZC, Cunningham DA, Singleton I, Low DA, Hayes CS. (2020) The ��-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion.. Proc Natl Acad Sci U S A. NA. [PudMed:33323487]
[16] Santos MNM, Cho ST, Wu CF, Chang CJ, Kuo CH, Lai EM. (2020) Redundancy and Specificity of Type VI Secretion vgrG Loci in Antibacterial Activity of Agrobacterium tumefaciens 1D1609 Strain.. Front Microbiol. 2.502777778. [PudMed:31993035]
[17] Ma S, Dong Y, Wang N, Liu J, Lu C, Liu Y. (2020) Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system.. Vet Res. 51(1):71. [PudMed:32448355]
[18] Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. (2019) Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters.. Genome Biol. 20(1):163. [PudMed:31405375]
[19] Wood TE, Howard SA, Frster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. (2019) The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology.. Cell Rep. 29(1):187-201. [PudMed:31577948]
[20] Giuseppina Mariano, Katharina Trunk, David J Williams, Laura Monlezun, Henrik Strahl, Samantha J Pitt, Sarah J Coulthurst (2019) A Family of Type VI Secretion System Effector Proteins That Form Ion-Selective Pores. Nat Commun. 10(1):5484. [PudMed:31792213]
[21] Biswanath Jana, Chaya M Fridman, Eran Bosis, Dor Salomon (2019) A Modular Effector With a DNase Domain and a Marker for T6SS Substrates. Nat Commun. 10(1):3595. [PudMed:31399579]
[22] Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM, Peterson SB, Borenstein E, Mougous JD. (2019) Human gut bacteria contain acquired interbacterial defence systems.. Nature. 575(7781):224-228. [PudMed:31666699]
[23] Berni B, Soscia C, Djermoun S, Ize B, Bleves S (2019) A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol. 1.2625. [PudMed:31231326]
[24] Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. (2019) Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness.. Mol Plant Microbe Interact. 32(8):961-971. [PudMed:30830835]
[25] Ahmad S, Wang B, Walker MD, Tran HR, Stogios PJ, Savchenko A, Grant RA, McArthur AG, Laub MT, Whitney JC (2019) An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 575(7784):674-678. [PudMed:31695193]
[26] Panayiota Pissaridou, Luke P Allsopp, Sarah Wettstadt, Sophie A Howard, Despoina A I Mavridou, Alain Filloux (2018) The Pseudomonas aeruginosa T6SS-VgrG1b Spike Is Topped by a PAAR Protein Eliciting DNA Damage to Bacterial Competitors. Proc Natl Acad Sci U S A. 115(49):12519-12524. [PudMed:30455305]
[27] Zhen Yang, Xiaohui Zhou , Yue Ma, Mian Zhou, Matthew K Waldor, Yuanxing Zhang, Qiyao Wang (2018) Serine/threonine Kinase PpkA Coordinates the Interplay Between T6SS2 Activation and Quorum Sensing in the Marine Pathogen Vibrio Alginolyticus. Environ Microbiol. 20(2):903-919. [PudMed:29314504]
[28] Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts.. Proc Natl Acad Sci U S A. 115(16):E3779-E3787. [PudMed:29610339]
[29] Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol. 3(5):632-640. [PudMed:29632369]
[30] Jiale Ma, Min Sun, Zihao Pan, Chengping Lu, Huochun Yao (2018) Diverse Toxic Effectors Are Harbored by vgrG Islands for Interbacterial Antagonism in Type VI Secretion System. Biochim Biophys Acta Gen Subj. 1862(7):1635-1643. [PudMed:29674124]
[31] Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PudMed:29593238]
[32] Troselj V, Treuner-Lange A, Søgaard-Andersen L, Wall D (2018) Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium. mBio. 9(1). pii: e01645-17. [PudMed:29437919]
[33] Tang JY, Bullen NP, Ahmad S, Whitney JC (2018) Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem. 293(5):1504-1514. [PudMed:29237732]
[34] Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB, Powell D, Harper M#, Boyce JD (2018) Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. Infect Immun. 86(8). pii: e00297-18. [PudMed:29735524]
[35] Gong Y, Zhang Z, Liu Y, Zhou XW, Anwar MN, Li ZS, Hu W1, Li YZ (2018) A nuclease-toxin and immunity system for kin discrimination in Myxococcus xanthus. Environ Microbiol. 20(7):2552-2567. [PudMed:29806725]
[36] Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD (2018) Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell. 175(5):1380-1392.e14. [PudMed:30343895]
[37] Alteri CJ, Himpsl SD, Zhu K, Hershey HL, Musili N, Miller JE, Mobley HLT. (2017) Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.. PLoS Pathog. 13(11):e1006729. [PudMed:29155899]
[38] Bernal P, Allsopp LP, Filloux A, Llamas MA. (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens.. ISME J. 11(4):972-987. [PudMed:28045455]
[39] Jiale Ma, Zihao Pan, Jinhu Huang, Min Sun, Chengping Lu, Huochun Yao (2017) The Hcp Proteins Fused With Diverse Extended-Toxin Domains Represent a Novel Pattern of Antibacterial Effectors in Type VI Secretion Systems. Virulence. 8(7):1189-1202. [PudMed:28060574]
[40] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[41] Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. (2017) Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286.. Front Cell Infect Microbiol. 0.598611111. [PudMed:29085808]
[42] Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H (2017) PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. (1):345-360. [PudMed:27871130]
[43] Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE (2016) Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci U S A. 113(13):3627-32. [PudMed:26951680]
[44] Wexler AG, Bao Y, Whitney JC, Bobay LM, Xavier JB, Schofield WB, Barry NA, Russell AB, Tran BQ, Goo YA, Goodlett DR, Ochman H, Mougous JD, Goodman AL. (2016) Human symbionts inject and neutralize antibacterial toxins to persist in the gut.. Proc Natl Acad Sci U S A. 113(13):3639-44. [PudMed:26957597]
[45] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[46] Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L (2016) A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol. 99(6):1099-118. [PudMed:26714038]
[47] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[48] Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM (2016) Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A. 113(34):E5044-51. [PudMed:27503894]
[49] Jiang F, Wang X, Wang B, Chen L, Zhao Z, Waterfield NR, Yang G, Jin Q (2016) The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep. 16(6):1502-1509. [PudMed:27477276]
[50] Liang X et al (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A. 112(29):9106-11. [PudMed:26150500]
[51] Salomon D et al (2015) Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog. 11(8):e1005128. [PudMed:26305100]
[52] Diniz JA et al (2015) Intra-species Competition in Serratia marcescens is Mediated by Type VI Secretion Rhs Effectors and a Conserved Effector-Associated Accessory Protein. J Bacteriol. pii: JB.00199-15. [PudMed:25939831]
[53] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[1] Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. (2021) Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis.. Cell Rep. 35(2):108957. [PudMed:33852869]
[2] Bernal P, Furniss RCD, Fecht S, Leung RCY, Spiga L, Mavridou DAI, Filloux A. (2021) A novel stabilization mechanism for the type VI secretion system sheath.. Proc Natl Acad Sci U S A. 118(7). [PudMed:33558227]
[3] Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties.. Nat Commun. 12(1):423. [PudMed:33462232]
[4] Ahmad S, Tsang KK, Sachar K, Quentin D, Tashin TM, Bullen NP, Raunser S, McArthur AG, Prehna G, Whitney JC. (2020) Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones.. Elife. 9. [PudMed:33320089]
[5] Alam A, Golovliov I, Javed E, Kumar R, d��n J, Sjstedt A. (2020) Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence.. PLoS Pathog. 16(4):e1008466. [PudMed:32275693]
[6] Szwedziak P, Pilhofer M. (2019) Bidirectional contraction of a type six secretion system.. Nat Commun. 10(1):1565. [PudMed:30952865]
[7] Li L, Wang YN, Jia HB, Wang P, Dong JF, Deng J, Lu FM, Zou QH. (2019) The type VI secretion system protein AsaA in Acinetobacter baumannii is a periplasmic protein physically interacting with TssM and required for T6SS assembly.. Sci Rep. 9(1):9438. [PudMed:31263148]
[8] Yuying Han, Tietao Wang, Gukui Chen, Qinqin Pu, Qiong Liu, Yani Zhang, Linghui Xu, Min Wu, Haihua Liang (2019) A Pseudomonas Aeruginosa Type VI Secretion System Regulated by CueR Facilitates Copper Acquisition. PLoS Pathog. 15(12):e1008198. [PudMed:31790504]
[9] Berni B, Soscia C, Djermoun S, Ize B, Bleves S (2019) A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol. 1.2625. [PudMed:31231326]
[10] Santin YG, Camy CE, Zoued A, Doan T, Aschtgen MS, Cascales E. (2019) Role and Recruitment of the TagL Peptidoglycan-Binding Protein during Type VI Secretion System Biogenesis.. J Bacteriol. 201(12). [PudMed:30910811]
[11] Santin YG, Doan T, Lebrun R, Espinosa L, Journet L, Cascales E (2018) In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol. 3(11):1304-1313. [PudMed:30275513]
[12] Zepeda-Rivera MA, Saak CC, Gibbs KA (2018) A Proposed Chaperone of the Bacterial Type VI Secretion System Functions To Constrain a Self-Identity Protein. J Bacteriol. 200(14). pii: e00688-17. [PudMed:29555703]
[13] Mariano G, Monlezun L, Coulthurst SJ. (2018) Dual Role for DsbA in Attacking and Targeted Bacterial Cells during Type VI Secretion System-Mediated Competition.. Cell Rep. 22(3):774-785. [PudMed:29346773]
[14] Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol. 3(5):632-640. [PudMed:29632369]
[15] Byun B, Mahasenan KV, Dik DA, Marous DR, Speri E, Kumarasiri M, Fisher JF, Hermoso JA, Mobashery S. (2018) Mechanism of the Escherichia coli MltE lytic transglycosylase, the cell-wall-penetrating enzyme for Type VI secretion system assembly.. Sci Rep. 8(1):4110. [PudMed:29515200]
[16] Santin YG, Cascales E. (2017) Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system.. EMBO Rep. 18(1):138-149. [PudMed:27920034]
[17] Meiru Si, Chao Zhao, Brianne Burkinshaw, Bing Zhang, Dawei Wei, Yao Wang, Tao G Dong, Xihui Shen (2017) Manganese Scavenging and Oxidative Stress Response Mediated by Type VI Secretion System in Burkholderia thailandensis. Proc Natl Acad Sci U S A. 114(11):E2233-E2242. [PudMed:28242693]
[18] Meiru Si, Yao Wang, Bing Zhang, Chao Zhao, Yiwen Kang, Haonan Bai, Dawei Wei, Lingfang Zhu, Lei Zhang, Tao G Dong, Xihui Shen (2017) The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep. 20(4):949-959. [PudMed:28746878]
[19] Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
[20] Ma J, Sun M, Dong W, Pan Z, Lu C, Yao H (2017) PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. (1):345-360. [PudMed:27871130]
[21] Qin A, Zhang Y, Clark ME, Moore EA, Rabideau MM, Moreau GB, Mann BJ. (2016) Components of the type six secretion system are substrates of Francisella tularensis Schu S4 DsbA-like FipB protein.. Virulence. 7(8):882-894. [PudMed:27028889]
[22] Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. (2016) Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis.. mBio. 7(5). [PudMed:27729508]
[23] P��rinet S, Jeukens J, Kukavica-Ibrulj I, Ouellet MM, Charette SJ, Levesque RC. (2016) Molybdate transporter ModABC is important for Pseudomonas aeruginosa chronic lung infection.. BMC Res Notes. 9:23. [PudMed:26758577]
[24] Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PudMed:27352036]
[25] Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PudMed:27313214]
[26] Liang X et al (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A. 112(29):9106-11. [PudMed:26150500]
[27] Unterweger D et al (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J. 34(16):2198-210. [PudMed:26194724]
[28] Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD (2015) An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell. 163(3):607-19. [PudMed:26456113]
[29] Pederick VG, Eijkelkamp BA, Ween MP, Begg SL, Paton JC, McDevitt CA. (2014) Acquisition and role of molybdate in Pseudomonas aeruginosa.. Appl Environ Microbiol. 80(21):6843-52. [PudMed:25172858]
[30] Miyata ST et al (2013) Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathog. 9(12):e1003752. [PudMed:24348240]
[31] Aschtgen MS et al (2012) The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. Microbiologyopen. 1(1):71-82. [PudMed:22950014]
[32] Lossi NS et al (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol. 86(2):437-56. [PudMed:22906320]
[33] Aschtgen MS et al (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol. 75(4):886-99. [PudMed:20487285]
[1] Crisan CV, Nichols HL, Wiesenfeld S, Steinbach G, Yunker PJ, Hammer BK. (2021) Glucose confers protection to Escherichia coli against contactkilling by Vibrio cholerae.. Sci Rep. 11(1):2935. [PudMed:33536444]
[2] Myint SL, Zlatkov N, Aung KM, Toh E, Sjstrm A, Nadeem A, Duperthuy M, Uhlin BE, Wai SN. (2021) Ecotin and LamB in Escherichia coli influence the susceptibility to Type VI secretion-mediated interbacterial competition and killing by Vibrio cholerae.. Biochim Biophys Acta Gen Subj. 1865(7):129912. [PudMed:33892013]
[3] Hersch SJ, Watanabe N, Stietz MS, Manera K, Kamal F, Burkinshaw B, Lam L, Pun A, Li M, Savchenko A, Dong TG. (2020) Envelope stress responses defend against type six secretion system attacks independently of immunity proteins.. Nat Microbiol. 5(5):706-714. [PudMed:32094588]
[4] Kamal F, Liang X, Manera K, Pei TT, Kim H, Lam LG, Pun A, Hersch SJ, Dong TG. (2020) Differential Cellular Response to Translocated Toxic Effectors and Physical Penetration by the Type VI Secretion System.. Cell Rep. 31(11):107766. [PudMed:32553162]
[5] Lin HH, Yu M, Sriramoju MK, Hsu SD, Liu CT, Lai EM. (2020) A High-Throughput Interbacterial Competition Screen Identifies ClpAP in Enhancing Recipient Susceptibility to Type VI Secretion System-Mediated Attack by Agrobacterium tumefaciens.. Front Microbiol. 2.553472222. [PudMed:32117077]
[6] Mariano G, Monlezun L, Coulthurst SJ. (2018) Dual Role for DsbA in Attacking and Targeted Bacterial Cells during Type VI Secretion System-Mediated Competition.. Cell Rep. 22(3):774-785. [PudMed:29346773]
[1] Trampari E et al (2015) Bacterial Rotary Export ATPases Are Allosterically Regulated by the Nucleotide Second Messenger Cyclic-di-GMP. J Biol Chem. 290(40):24470-83. [PudMed:26265469]
[2] Trantas EA et al (2015) Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol. 0.813194444. [PudMed:26300874]
[3] Sapountzis P et al (2015) The Enterobacterium Trabulsiella odontotermitis Presents Novel Adaptations Related to Its Association with Fungus-Growing Termites. Appl Environ Microbiol. 81(19):6577-88. [PudMed:26162887]
[4] Spencer C et al (2015) Biochemical Characterization of a Pseudomonas aeruginosa Phospholipase D. Biochemistry. 54(5):1208-18. [PudMed:25565226]
[5] Jones CL et al (2015) Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii With Enhanced Virulence. Clin Infect Dis. pii: civ225. [PudMed:25824815]
[6] Sabag-Daigle A et al (2015) Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Front Cell Infect Microbiol. 5:47. [PudMed:26075189]
[7] LeRoux M et al (2015) Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. Elife. doi: 10.7554/eLife.05701. [PudMed:25643398]
[8] S Massier et al (2015) Involvement of type VI secretion systems in virulence of adherent-invasive Escherichia coli isolated from patients with Crohn's disease. J Crohns Colitis. 9 Suppl 1:S67-8. [PudMed:25718291]
[9] Grube M et al (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9(2):412-24. [PudMed:25072413]
[10] Raveh-Sadka T et al (2015) Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. Elife. 4. [PudMed:25735037]
[11] Ceuleneer MD et al (2015) Role of the Bacterial Type VI Secretion System in the Modulation of Mammalian Host Cell Immunity. Curr Med Chem. 22(14):1734-44. [PudMed:25882545]
[12] Martinez-Garcia PM et al (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci. 10:10. [PudMed:25685259]
[13] Collins AJ et al (2015) Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Front Microbiol. 0.335416667. [PudMed:25755651]
[14] Wang R et al (2015) The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol. 0.35. [PudMed:25798132]
[15] Cheng AT et al (2015) Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System. PLoS Pathog. 11(5):e1004933. [PudMed:26000450]
[16] Costa TR et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 13(6):343-359. [PudMed:25978706]
[17] Burroughs AM et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Biol Direct. 10(1):21. [PudMed:25976611]
[18] Dolores JS et al (2015) Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol. 95(4):590-604. [PudMed:25427654]
[19] Pang M et al (2015) Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep. 7.036805556. [PudMed:26014286]
[20] Cui Y et al (2015) Epidemic clones, oceanic gene pools and eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol Biol Evol. pii: msv009. [PudMed:25605790]
[21] Borgeaud S et al (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63-7. [PudMed:25554784]
[22] Saraswati S et al (2015) Aging and the human gut microbiota-from correlation to causality. Front Microbiol. 0.738888889. [PudMed:25628610]
[23] Li P et al (2015) Comparative Genome Analyses of Serratia marcescens FS14 Reveals Its High Antagonistic Potential. PLoS One. 10(4):e0123061. [PudMed:25856195]
[24] Liu L et al (2015) The type VI secretion system modulates flagellar gene expression and secretion in Citrobacter freundii and contributes to the adhesion and cytotoxicity to host cells. Infect Immun. pii: IAI.03071-14. [PudMed:25870231]
[25] Nandi T et al (2015) Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Res. 25(1):129-41. [PudMed:25236617]
[26] Li J et al (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. doi: 10.1111/1462-2920.12794. [PudMed:25640659]
[27] Langridge GC et al (2015) Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc Natl Acad Sci U S A. 112(3):863-8. [PudMed:25535353]
[28] Wilson MM et al (2015) Analysis of the Outer Membrane Proteome and Secretome of Bacteroides fragilis Reveals a Multiplicity of Secretion Mechanisms. PLoS One. 10(2):e0117732. [PudMed:25658944]
[29] Podeur G et al (2015) Development of a real-time PCR method coupled with a selective pre-enrichment step for quantification of Morganella morganii and Morganella psychrotolerans in fish products. Int J Food Microbiol. 203:55-62. [PudMed:25791250]
[30] Guan J et al (2015) Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol. 53(9):633-42. [PudMed:26310305]
[31] Choudhury JD et al (2015) The Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile Is a New Strain of Pseudoalteromonas agarivorans Containing Abundant and Diverse Virulence-Related Genes. Mar Biotechnol (NY). doi:10.1007/s10126-015-9627-y. [PudMed:25837832]
[32] Kernell Burke A et al (2015) OpaR Controls a Network of Downstream Transcription Factors in Vibrio parahaemolyticus BB22OP. PLoS One. 10(4):e0121863. [PudMed:25901572]
[33] Avican K et al (2015) Reprogramming of Yersinia from virulent to persistent mode revealed by complex in vivo RNA-seq analysis. PLoS Pathog. 11(1):e1004600. [PudMed:25590628]
[34] LeRoux M et al (2015) Bacterial danger sensing. J Mol Biol. pii: S0022-2836(15)00541-0. [PudMed:26434507]
[35] Martinez-Garica PM et al (2015) T346Hunter: A Novel Web-Based Tool for the Prediction of Type III, Type IV and Type VI Secretion Systems in Bacterial Genomes. PLoS One. 10(4):e0119317. [PudMed:25867189]
[36] Richards VP et al (2015) Genome Based Phylogeny and Comparative Genomic Analysis of Intra-Mammary Pathogenic Escherichia coli. PLoS One. 10(3):e0119799. [PudMed:25807497]
[37] Wang RY et al (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods. 12(4):335-338. [PudMed:25707029]
[38] Lee SJ et al (2015) Crystal structure of YwpF from Staphylococcus aureus reveals its architecture comprised of a beta-barrel core domain resembling type VI secretion system proteins and a two-helix pair. Proteins. 83(4):781-8. [PudMed:25663006]
[39] Desilets M et al (2015) Genome-based Definition of an Inflammatory Bowel Disease-associated Adherent-Invasive Escherichia coli Pathovar. Inflamm Bowel Dis. . [PudMed:26444104]
[40] Dong TG et al (2015) Generation of reactive oxygen species by lethal attacks from competing microbes. Proc Natl Acad Sci U S A. 112(7):2181-6. [PudMed:25646446]
[41] Balsanelli E et al (2015) Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere. Environ Microbiol. doi: 10.1111/1462-2920.12887. [PudMed:25923055]
[42] Chieng S et al (2015) Transcriptome analysis of Burkholderia pseudomallei T6SS identifies Hcp1 as a potential serodiagnostic marker. Microb Pathog. 79:47-56. [PudMed:25616255]
[43] Bode NJ et al (2015) Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun. pii: IAI.02978-14. [PudMed:25847961]
[44] Lyons NA et al (2015) On the evolution of bacterial multicellularity. Curr Opin Microbiol. 24C:21-28. [PudMed:25597443]
[45] Kang H et al (2015) Characterization and Genomic Analysis of Quinolone-Resistant Delftia sp. 670 Isolated from a Patient Who Died from Severe Pneumonia. Curr Microbiol. . [PudMed:25935202]
[46] Nelson MS et al (2015) Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci. 0.590972222. [PudMed:26191069]
[47] Li J et al (2015) Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 43(1):175-80. [PudMed:25541077]
[48] Seo YS et al (2015) Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. BMC Genomics. 0.909027778. [PudMed:25943361]
[49] Aragon IM et al (2015) Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. Environ Microbiol. doi: 10.1111/1462-2920.12856. [PudMed:25809128]
[50] Jamet A et al (2015) New Players in the Toxin Field: Polymorphic Toxin Systems in Bacteria. MBio. 6(3). [PudMed:25944858]
[51] Ponnusamy D et al (2015) High-throughput signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun. pii: IAI.02913-14. [PudMed:25754198]
[52] Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-015-2323-z. [PudMed:25630538]
[53] Ge P et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. doi: 10.1038/nsmb.2995. [PudMed:25822993]
[54] Osterman J et al (2015) Genomic features separating ten strains of Neorhizobium galegae with different symbiotic phenotypes. BMC Genomics. 0.908333333. [PudMed:25933608]
[55] Hasan NA et al (2015) Nontoxigenic Vibrio cholerae Non-O1/O139 Isolate from a Case of Human Gastroenteritis in the U.S. Gulf Coast. J Clin Microbiol. 53(1):9-14. [PudMed:25339398]
[56] Almblad H et al (2015) The cAMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by c-di-GMP. J Bacteriol. pii: JB.00193-15. [PudMed:25897033]
[57] Moule MG et al (2014) Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development. MBio. 5(1):e00926-13. [PudMed:24520057]
[58] Broberg M et al (2014) The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193. Appl Environ Microbiol. 80(6):1972-84. [PudMed:24441162]
[59] Bleves S et al (2014) HoPaCI-DB: host-Pseudomonas and Coxiella interaction database. Nucleic Acids Res. 42(1):D671-6. [PudMed:24137008]
[60] Burtnick MN et al (2014) Proteomic Analysis of the Burkholderia pseudomallei Type II Secretome Reveals Hydrolytic Enzymes, Novel Proteins and the Deubiquitinase TssM. Infect Immun. 82(8):3214-26. [PudMed:24866793]
[61] Pezoa D et al (2014) Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res. 45(1):2. [PudMed:24405577]
[62] Heckel BC et al (2014) Agrobacterium tumefaciens ExoR Controls Acid Response Genes and Impacts Exopolysaccharide Synthesis, Horizontal Gene Transfer and Virulence Gene Expression. J Bacteriol. 196(18):3221-33. [PudMed:24982308]
[63] Gardiner DM et al (2014) Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems. PLoS One. 9(1):e84995. [PudMed:24416331]
[64] Mahdavi A et al (2014) Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proc Natl Acad Sci U S A. 111(1):433-8. [PudMed:24347637]
[65] Ahmer BM (2014) In this issue of Gut Microbes. Gut Microbes. 5(1). [PudMed:24468723]
[66] Law HT et al (2014) IglC and PdpA Are Important for Promoting Francisella Invasion and Intracellular Growth in Epithelial Cells. PLoS One. 9(8):e104881. [PudMed:25115488]
[67] Dowling AJ et al (2014) An unbiased method for clustering bacterial effectors using host cellular phenotypes. Appl Environ Microbiol. 80(3):1185-96. [PudMed:24296505]
[68] Yap KP et al (2014) Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics. 15(1):1007. [PudMed:25412680]
[69] Skwor T et al (2014) Aeromonas hydrophila and Aeromonas veronii Predominate among Potentially Pathogenic Ciprofloxacin- and Tetracycline-Resistant Aeromonas Isolates from Lake Erie. Appl Environ Microbiol. 80(3):841-8. [PudMed:24242249]
[70] Tummler B et al (2014) Advances in understanding Pseudomonas. F1000Prime Rep. 6:09. [PudMed:24592321]
[71] Angus AA et al (2014) Plant-associated symbiotic burkholderia species lack hallmark strategies required in Mammalian pathogenesis. PLoS One. 9(1):e83779. [PudMed:24416172]
[72] Shikuma NJ et al (2014) Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science. 343(6170):529-33. [PudMed:24407482]
[73] McWhinnie RL et al (2014) Synthetic Promoters Functional in Francisella novicida and Escherichia coli. Appl Environ Microbiol. 80(1):226-34. [PudMed:24141126]
[74] Aragon IM et al (2014) New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi. FEMS Microbiol Lett. 356(2):184-92. [PudMed:24606017]
[75] Ramos PI et al (2014) Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics. 15(1):54. [PudMed:24450656]
[76] Wang S et al (2014) DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli. Front Microbiol. 0.616666667. [PudMed:25426107]
[77] Pearson JS et al (2014) Post-modern pathogens: surprising activities of translocated effectors from E. coli and Legionella. Curr Opin Microbiol. 23C:73-79. [PudMed:25461576]
[78] Abt MC et al (2014) Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol. 29C:16-22. [PudMed:24727150]
[79] Benz J et al (2014) Antibacterial effector/immunity systems: it's just the tip of the iceberg. Curr Opin Microbiol. 17C:1-10. [PudMed:24581686]
[80] Shyntum D et al (2014) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact. doi:http://dx.doi.org/10.1094/MPMI-07-14-0219-R. [PudMed:25411959]
[81] Wright MS et al (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):e00963-13. [PudMed:24449752]
[82] Whitaker WB et al (2014) Loss of Sigma Factor RpoN Increases Intestinal Colonization of Vibrio parahaemolyticus in an Adult Mouse Model. Infect Immun. 82(2):544-56. [PudMed:24478070]
[83] Beck CM et al (2014) CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria. Structure. 22(5):707-18. [PudMed:24657090]
[84] Jiang F et al (2014) A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host Microbe. 15(5):600-10. [PudMed:24832454]
[85] Grim CJ et al (2014) Functional Genomic Characterization of Virulence Factors from Necrotizing Fasciitis-Causing Strains of Aeromonas hydrophila. Appl Environ Microbiol. 80(14):4162-83. [PudMed:24795370]
[86] Kapitein N et al (2014) Type VI Secretion System Helps Find a Niche. Cell Host Microbe. 16(1):5-6. [PudMed:25011102]
[87] Duca D et al (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. UW4 that converts indole-3-acetonitrile to produce indole-3-acetic acid. Appl Environ Microbiol. 80(15):4640-9. [PudMed:24837382]
[88] Sarris PF et al (2014) A Phage Tail-Derived Element with Wide Distribution among Both Prokaryotic Domains: A Comparative Genomic and Phylogenetic Study. Genome Biol Evol. 6(7):1739-1747. [PudMed:25015235]
[89] Russell AB et al (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 12(2):137-48. [PudMed:24384601]
[90] Karlsen C et al (2014) Host specificity and clade dependent distribution of putative virulence genes in Moritella viscosa. Microb Pathog. 77C:53-65. [PudMed:25277600]
[91] Eijkelkamp BA et al (2014) Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 15(1):1020. [PudMed:25422040]
[92] Steinert M (2014) Pathogen intelligence. Front Cell Infect Microbiol. 4:08. [PudMed:24551600]
[93] Schmidt A et al (2014) Neutrophil elastase-mediated increase in airway temperature during inflammation. J Cyst Fibros. 13(6):623-31. [PudMed:24713593]
[94] Darby A et al (2014) Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals. PLoS One. 9(7):e100542. [PudMed:25057966]
[95] Raspoet R et al (2014) Microarray-based detection of Salmonella Enteritidis genes involved in chicken reproductive tract colonization. Appl Environ Microbiol. 80(24):7710-6. [PudMed:25281378]
[96] Li B et al (2014) Transcriptome analysis of Acidovorax avenae subsp. avenae cultivated in vivo and co-culture with Burkholderia seminalis. Sci Rep. 4.123611111. [PudMed:25027476]
[97] Hachani A et al (2014) The VgrG proteins are "A la carte" delivery systems for bacterial type VI effectors. J Biol Chem. 289(25):17872-17884. [PudMed:24794869]
[98] Chang YW et al (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods. 11(7):737-9. [PudMed:24813625]
[99] Memisevic V et al (2014) DBSecSys: a database of Burkholderia mallei secretion systems. BMC Bioinformatics. 0.794444444. [PudMed:25030112]
[100] Livny J et al (2014) Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Res. 42(19):12212-23. [PudMed:25262354]
[101] Kongrueng J et al (2014) Characterization of Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease in southern Thailand. J Fish Dis. doi: 10.1111/jfd.12308. [PudMed:25287127]
[102] Unterweger D et al (2014) The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun. 2.672916667. [PudMed:24686479]
[103] Bielecki P et al (2014) In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles. MBio. 5(4). [PudMed:25096872]
[104] Rudder S et al (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics. 15(1):268. [PudMed:24708309]
[105] Pegoraro G et al (2014) A high-content imaging assay for the quantification of the Burkholderia pseudomallei induced multinucleated giant cell (MNGC) phenotype in murine macrophages. BMC Microbiol. 14(1):98. [PudMed:24750902]
[106] Zhou H et al (2014) Population structural analysis of O1 El Tor Vibrio cholerae isolated in China among the seventh cholera pandemic on the basis of multilocus sequence typing and virulence gene profiles. Infect Genet Evol. 22:72-80. [PudMed:24448269]
[107] Fredlund J et al (2014) Cytoplasmic access by intracellular bacterial pathogens. Trends Microbiol. 22(3):128-137. [PudMed:24530174]
[108] Uda A et al (2014) Role of Pathogenicity Determinant Protein C (PdpC) in Determining the Virulence of the Francisella tularensis Subspecies tularensis SCHU. PLoS One. 9(2):e89075. [PudMed:24558472]
[109] Lee JH et al (2014) Draft genome sequence of Xanthomonas axonopodis pv. glycines 8ra possessing transcription activator-like effectors used for genetic engineering. J Biotechnol. 179C:15-16. [PudMed:24657734]
[110] Kakar KU et al (2014) Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol. 30(2):469-78. [PudMed:23990042]
[111] Ghequire MG et al (2014) Ribosomally-encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev. 38(4):523-68. [PudMed:24923764]
[112] Bocsanczy AM et al (2014) Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors. BMC Genomics. 15(1):280. [PudMed:24725348]
[113] Mora Y et al (2014) Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl Environ Microbiol. 80(18):5644-54. [PudMed:25002426]
[114] Richards AM et al (2014) Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol. 30(1):2-15. [PudMed:25052812]
[115] Liu H et al (2014) Protein Profiling Analyses of the Outer Membrane of Burkholderia cenocepacia Reveal a Niche-Specific Proteome. Microb Ecol. 69(1):75-83. [PudMed:25081413]
[116] Coyne MJ et al (2014) Evidence of Extensive DNA Transfer between Bacteroidales Species within the Human Gut. MBio. 5(3). [PudMed:24939888]
[117] Yang W et al (2014) An invasive and low virulent Edwardsiella tarda esrB mutant promising as live attenuated vaccine in aquaculture. Appl Microbiol Biotechnol. 99(4):1765-77. [PudMed:25431010]
[118] Klaponski N et al (2014) The requirement for the LysR-type regulator PtrA for Pseudomonas chlororaphis PA23 biocontrol revealed through proteomic and phenotypic analysis. BMC Microbiol. 0.648611111. [PudMed:24739259]
[119] Liu F et al (2014) Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genomics. 15(1):1163. [PudMed:25534766]
[120] Chen Z et al (2014) Cloning, purification, crystallization and preliminary X-ray studies of the putative type VI secretion immunity protein Tli5 (PA5088) from Pseudomonas aeruginosa. Acta Crystallogr F Struct Biol Commun. 70(Pt 7):903-5. [PudMed:25005085]
[121] Cava F et al (2014) Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr Opin Microbiol. 18C:46-53. [PudMed:24607990]
[122] Zuleta LF et al (2014) The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics. 15(1):535. [PudMed:24972629]
[123] Castro-Gomes T et al (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol. 52(4):350-3. [PudMed:24535738]
[124] Sarkar A et al (2014) Transcriptional Profiling of Nitrogen Fixation and the Role of NifA in the Diazotrophic Endophyte Azoarcus sp. Strain BH72. PLoS One. 9(2):e86527. [PudMed:24516534]
[125] Short FL et al (2014) Polybacterial human disease: the ills of social networking. Trends Microbiol. 22(9):508-16. [PudMed:24938173]
[126] Gopinath G et al (2014) Draft Genome Sequences of Nine Salmonella enterica Serovar Bovismorbificans Isolates from Various Sources. Genome Announc. 2(2). [PudMed:24604660]
[127] Bachmann NL et al (2014) Genome analysis and CRISPR typing of Salmonella enterica serovar Vircho. BMC Genomics. 0.895138889. [PudMed:24885207]
[128] Jaradat ZW et al (2014) Cronobacter, an opportunistic food borne pathogen; a review of its virulence and environmental adaptive traits. J Med Microbiol. 63(Pt 8):1023-1037. [PudMed:24878566]
[129] Xu H et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 513(7517):237-41. [PudMed:24919149]
[130] Kwong WK et al (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A. 111(31):11509-14. [PudMed:25053814]
[131] Moretti J et al (2014) Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr Opin Immunol. 26:100-10. [PudMed:24556406]
[132] Zhu Ge X et al (2014) Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains. PLoS One. 9(11):e112048. [PudMed:25397580]
[133] Vromman F et al (2014) Exploitation of host lipids by bacteria. Curr Opin Microbiol. 17:38-45. [PudMed:24581691]
[134] Chirakul S et al (2014) Characterization of BPSS1521 (bprD), a Regulator of Burkholderia pseudomallei Virulence Gene Expression in the Mouse Model. PLoS One. 9(8):e104313. [PudMed:25111708]
[135] Caly DL et al (2014) Communication, Cooperation, and Social Interactions: a Report from the Third Young Microbiologists Symposium on Microbe Signalling, Organisation, and Pathogenesis . J Bacteriol. 196(20):3527-33. [PudMed:25070739]
[136] Kumari H et al (2014) LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics. 96:328-42. [PudMed:24291602]
[137] Shao S et al (2014) Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: Propose a novel species as Edwardsiella anguillarum sp. nov . Syst Appl Microbiol. 38(1):36-47. [PudMed:25466920]
[138] Lery LM et al (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 12(1):41. [PudMed:24885329]
[139] Whitney JC et al (2014) Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol. 92(3):529-42. [PudMed:24589350]
[140] Wang S et al (2014) Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genomics. 15(1):440. [PudMed:24906389]
[141] Carvalho CL et al (2014) Tularaemia: a challenging zoonosis. Comp Immunol Microbiol Infect Dis. 37(2):85-96. [PudMed:24480622]
[142] Peano C et al (2014) Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis. PLoS One. 9(3):e93009. [PudMed:24671187]
[143] Alavi P et al (2014) Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics. 0.959722222. [PudMed:24939220]
[144] Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion exported protein required for multinucleated giant cell formation and virulence. Infect Immun. 82(4):1445-52. [PudMed:24452686]
[145] Hu W et al (2014) A Disordered Region in the EvpP Protein from the Type VI Secretion System of Edwardsiella tarda is Essential for EvpC Binding. PLoS One. 9(11):e110810. [PudMed:25401506]
[146] Patel H et al (2014) Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae. BMC Microbiol. 14(1):274. [PudMed:25394860]
[147] Sall KM et al (2014) A gacS Deletion in Pseudomonas aeruginosa Cystic Fibrosis Isolate CHA Shapes Its Virulence. PLoS One. 9(4):e95936. [PudMed:24780952]
[148] Kamath KS et al (2014) Proteomics of hosts and pathogens in cystic fibrosis. Proteomics Clin Appl. 9(1-2):134-46. [PudMed:25418359]
[149] Chang JH et al (2014) The ABCs and 123s of bacterial secretion systems in plant pathogenesis. Annu Rev Phytopathol. 52:317-45. [PudMed:24906130]
[150] Pedron J et al (2014) Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics. 15(1):283. [PudMed:24735398]
[151] Abby SS et al (2014) Bacteria in Ostreococcus tauri cultures - friends, foes or hitchhikers?. Front Microbiol. 0.559027778. [PudMed:25426102]
[152] Siqueira AF et al (2014) Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics. 0.916666667. [PudMed:24888481]
[153] Rydzewski K et al (2014) Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol. 14(1):169. [PudMed:24961323]
[154] Song C et al (2014) The Rsm regulon of plant growth-promoting Pseudomonas fluorescens SS101: role of small RNAs in regulation of lipopeptide biosynthesis. Microb Biotechnol. 8(2):296-310. [PudMed:25488342]
[155] Jitprasutwit S et al (2014) Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions. BMC Genomics. 15(1):787. [PudMed:25214426]
[156] Aravena-Roman M et al (2014) Distribution of 13 virulence genes among clinical and environmental Aeromonas spp. in Western Australia. Eur J Clin Microbiol Infect Dis. 33(11):1889-95. [PudMed:24859908]
[157] Salomon D et al (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A. 111(25):9271-6. [PudMed:24927539]
[158] Ushijima B et al (2014) Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol. 80(7):2102-9. [PudMed:24463971]
[159] De Maayer P et al (2014) Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics. 15(1):404. [PudMed:24884520]
[160] Castagnola A et al (2014) Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests. Insects. 5(1):139-166. [PudMed:24634779]
[161] Moscoso JA et al (2014) The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa . J Bacteriol. 196(23):4081-8. [PudMed:25225264]
[162] Chen Y et al (2014) Characterization and analysis of the Burkholderia pseudomallei BsaN virulence regulon. BMC Microbiol. 14(1):206. [PudMed:25085508]
[163] Jones CJ et al (2014) ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa. PLoS Pathog. 10(3):e1003984. [PudMed:24603766]
[164] Chou S et al (2014) Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature. 518(7537):98-101. [PudMed:25470067]
[165] Preeprem S et al (2014) Isolation and Characterization of Vibrio cholerae Isolates from Seafood in Hat Yai City, Songkhla, Thailand. Foodborne Pathog Dis. 11(11):881-6. [PudMed:25188839]
[166] Crnigoj M et al (2014) The Escherichia coli uropathogenic-specific-protein-associated immunity protein 3 (Imu3) has nucleic acid -binding activity. BMC Microbiol. 14:16. [PudMed:24472116]
[167] Puah SM et al (2014) Molecular characterization of putative virulence determinants in Burkholderia pseudomallei. ScientificWorldJournal. 2014:590803. [PudMed:25215325]
[168] Kado CI (2014) Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front Microbiol. 0.444444444. [PudMed:25147542]
[169] Kingry LC et al (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol. 4:35. [PudMed:24660164]
[170] Steele S et al (2014) A method for functional trans-complementation of intracellular Francisella tularensis. PLoS One. 9(2):e88194. [PudMed:24505427]
[171] Schumacher J et al (2014) Differential secretome analysis of Pseudomonas syringae pv tomato using gel-free MS proteomics. Front Plant Sci. 0.376388889. [PudMed:25071788]
[172] Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PudMed:24441165]
[173] Zhang J et al (2014) A new target for the old regulator: H-NS suppress T6SS secretory protein EvpP, the major virulence factor in the fish pathogen Edwardsiella tarda. Lett Appl Microbiol. 59(5):557-564. [PudMed:25131176]
[174] Ali S et al (2014) A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp.. J Theor Biol. 343:193-8. [PudMed:24513137]
[175] Lindgren M et al (2014) Identification of Mechanisms for Attenuation of the FSC043 Mutant of Francisella tularensis SCHU S4. Infect Immun. 82(9):3622-35. [PudMed:24935978]
[176] Koskiniemi S et al (2014) Selection of Orphan Rhs Toxin Expression in Evolved Salmonella enterica Serovar Typhimurium. PLoS Genet. 10(3):e1004255. [PudMed:24675981]
[177] Ma J et al (2014) Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infect Immun. 82(9):3867-79. [PudMed:24980972]
[178] Bishop AH et al (2014) Identification of Genes Required for Soil Survival in Burkholderia thailandensis by Transposon-Directed Insertion Site Sequencing. Curr Microbiol. 68(6):693-701. [PudMed:24488501]
[179] Adam Z et al (2014) Draft Genome Sequence of Pantoea ananatis Strain LMG 2665T, a Bacterial Pathogen of Pineapple Fruitlets. Genome Announc. 2(3). [PudMed:24855311]
[180] Nibali L et al (2014) Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases. J Oral Microbiol. 6. [PudMed:24578801]
[181] Pradhan S et al (2013) Vibrio cholerae Classical Biotype Is Converted to the Viable Non-Culturable State when Cultured with the El Tor Biotype. PLoS One. 8(1):e53504. [PudMed:23326443]
[182] Ruhe ZC et al (2013) Bacterial contact-dependent growth inhibition. Trends Microbiol. 21(5):230-7. [PudMed:23473845]
[183] van Delden C et al (2013) Involvement of Fe uptake systems and AmpC beta-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 57(5):2095-102. [PudMed:23422914]
[184] Morin N et al (2013) Characterization of the AggR regulon in enteroaggregative Escherichia coli. Infect Immun. 81(1):122-32. [PudMed:23090962]
[185] Ruhe ZC et al (2013) Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. MBio. 4(4). [PudMed:23882017]
[186] Filloux A (2013) Microbiology: a weapon for bacterial warfare. Nature. 500(7462):284-5. [PudMed:23925115]
[187] Grim CJ et al (2013) Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 0.8375. [PudMed:23724777]
[188] Barret M et al (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep. 5(1):117-26. [PudMed:23757140]
[189] Pezoa D et al (2013) The Type VI Secretion System Encoded in SPI-6 Plays a Role in Gastrointestinal Colonization and Systemic Spread of Salmonella enterica serovar Typhimurium in the Chicken. PLoS One. 8(5):e63917. [PudMed:23691117]
[190] Kaakoush NO et al (2013) The Secretome of Helicobacter Trogontum. Helicobacter. 18(4):316-20. [PudMed:23406293]
[191] Filiatrault MJ et al (2013) Pseudomonas aeruginosa PA1006, Which Plays a Role in Molybdenum Homeostasis, Is Required for Nitrate Utilization, Biofilm Formation, and Virulence. PLoS One. 8(2):e55594. [PudMed:23409004]
[192] Tashiro Y et al (2013) Interspecies Interaction between Pseudomonas aeruginosa and Other Microorganisms. Microbes Environ. 28(1):13-24. [PudMed:23363620]
[193] Dong TG et al (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A . 110(7):2623-8. [PudMed:23362380]
[194] Blondel CJ et al (2013) The Type VI Secretion System encoded in SPI-19 is required for Salmonella Gallinarum survival within infected macrophages. Infect Immun. 81(4):1207-20. [PudMed:23357385]
[195] Erken M et al (2013) The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. Microb Ecol. 65(4):860-8. [PudMed:23354181]
[196] Marchler-Bauer A et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41(D1):D348-52. [PudMed:23197659]
[197] Cattoir V et al (2013) Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. MBio. 3(6):e00410-12. [PudMed:23143799]
[198] Bebeacua C et al (2013) Visualizing a Complete Siphoviridae Member by Single-Particle Electron Microscopy: the Structure of Lactococcal Phage TP901-1. J Virol. 87(2):1061-8. [PudMed:23135714]
[199] Lu C et al (2013) Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure. 21(9):1707-17. [PudMed:23954505]
[200] Kaakoush NO et al (2013) Do Type VI Secretion Systems Translocate More Than Proteins?. Helicobacter. 18(3):242-3. [PudMed:23305101]
[201] Zhang L et al (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One. 8(4):e61625. [PudMed:23637868]
[202] Mann RA et al (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS One. 8(2):e55644. [PudMed:23409014]
[203] Filloux A (2013) The rise of the Type VI secretion system. F1000Prime Rep. 5:52. [PudMed:24381728]
[204] Wang D et al (2013) Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. Microbiologyopen. 2(3):505-24. [PudMed:23606419]
[205] Marin MA et al (2013) Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis. 7(2):e2049. [PudMed:23459673]
[206] Celli J et al (2013) Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med. 3(4):a010314. [PudMed:23545572]
[207] McCaig WD et al (2013) Production of Outer Membrane Vesicles and Outer Membrane Tubes by Francisella novicida. J Bacteriol. 195(6):1120-32. [PudMed:23264574]
[208] Hogan DA et al (2013) Bacterial type 6 secreted phospholipases play family feud. Cell Host Microbe. 13(5):507-8. [PudMed:23684302]
[209] Alavi P et al (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405(T.). Front Plant Sci. 0.264583333. [PudMed:23717321]
[210] Kidarsa TA et al (2013) Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS . Environ Microbiol. 15(3):716-35. [PudMed:23297839]
[211] Grad YH et al (2013) Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. MBio. 4(1):e00452-12. [PudMed:23341549]
[212] Marden JN et al (2013) An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 110(37):15055-60. [PudMed:23980177]
[213] Kamada N et al (2013) Role of the gut microbiota in immunity and inflammatory disease . Nat Rev Immunol. 13(5):321-35. [PudMed:23618829]
[214] Wei X et al (2013) Global control of GacA on secondary metabolism, primary metabolism, secretion systems, and motility in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol. 195(15):3387-400. [PudMed:23708134]
[215] Hornung C et al (2013) The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One. 8(2):e55045. [PudMed:23405110]
[216] Mitter B et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants . Front Plant Sci. 0.25. [PudMed:23641251]
[217] Liu WY et al (2013) Comparative Genome Analysis of Enterobacter cloacae. PLoS One. 8(9):e74487. [PudMed:24069314]
[218] Ciprandi A et al (2013) Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies. Curr Microbiol. 67(1):100-6. [PudMed:23455494]
[219] Horton RE et al (2013) Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One. 8(5):e63394. [PudMed:23704903]
[220] Baron C (2013) A novel strategy to target bacterial virulence. Future Microbiol. 8(1):1-3. [PudMed:23252486]
[221] Sugawara M et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 14(2):R17. [PudMed:23425606]
[222] Braun V et al (2013) Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett. 345(1):13-21. [PudMed:23701660]
[223] Casabona MG et al (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics. 13(16):2419-23. [PudMed:23744604]
[224] Basler M et al (2013) Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions. Cell. 152(4):884-94. [PudMed:23415234]
[225] Khodai-Kalaki M et al (2013) Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem. 288(42):30473-84. [PudMed:24014026]
[226] Bartonickova L et al (2013) Hcp and VgrG1 are secreted components of the Helicobacter hepaticus type VI secretion system and VgrG1 increases the bacterial colitogenic potential. Cell Microbiol. 15(6):992-1011. [PudMed:23278999]
[227] Frangipani E et al (2013) The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ Microbiol. 16(3):676-88. [PudMed:23796404]
[228] Smits TH et al (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol. 36(7):449-56. [PudMed:23726521]
[229] Chaand M et al (2013) Vibrio cholerae VttR(A) and VttR(B) regulatory influences extend beyond the type 3 secretion system genomic island. J Bacteriol. 195(10):2424-36. [PudMed:23524608]
[230] Miyata ST et al (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol. 62(Pt 5):663-76. [PudMed:23429693]
[231] Wang L et al (2013) AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. Int J Food Microbiol. 160(3):245-51. [PudMed:23290231]
[232] Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PudMed:23894309]
[233] Heymann JB et al (2013) Three-dimensional structure of the toxin-delivery particle antifeeding prophage of Serratia entomophila. J Biol Chem. 288(35):25276-84. [PudMed:23857636]
[234] Johnson CN (2013) Fitness factors in vibrios: a mini-review. Microb Ecol. 65(4):826-51. [PudMed:23306394]
[235] Afroz A et al (2013) Plant-bacterium interactions analyzed by proteomics. Front Plant Sci. 4:21. [PudMed:23424014]
[236] Koiv V et al (2013) Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae. PLoS One. 8(1):e54248. [PudMed:23372695]
[237] Brooks TM et al (2013) Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 is Inhibited by the Antitoxin TsaB. J Biol Chem. 288(11):7618-25. [PudMed:23341465]
[238] Wang Y et al (2013) Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogen Edwardsiella tarda. FEMS Microbiol Lett. 343(2):145-55. [PudMed:23551118]
[239] Weber BS et al (2013) Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter. PLoS One. 8(1):e55142. [PudMed:23365692]
[240] Xu S et al (2013) FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis. Environ Microbiol. 16(4):1090-104. [PudMed:23957589]
[241] Suanyuk N et al (2013) Mortality and pathology of hybrid catfish, Clarias macrocephalus (Gunther) X Clarias gariepinus (Burchell), associated with Edwardsiella ictaluri infection in southern Thailand. J Fish Dis. 37(4):385-395. [PudMed:23763374]
[242] Li K et al (2013) SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa. MBio. 4(6):e00419-13. [PudMed:24169572]
[243] Carruthers MD et al (2013) Acinetobacter baumannii Utilizes a Type VI Secretion System for Bacterial Competition. PLoS One. 8(3):e59388. [PudMed:23527179]
[244] Ciofu O et al (2013) P. aeruginosa in the paranasal sinuses and transplanted lungs have similar adaptive mutations as isolates from chronically infected CF lungs. J Cyst Fibros. 12(6):729-36. [PudMed:23478131]
[245] Desai PT et al (2013) Evolutionary Genomics of Salmonella enterica Subspecies. MBio. 4(2):e00198-13. [PudMed:23462113]
[246] Zhang H et al (2013) Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS One. 8(9):e73782. [PudMed:24023903]
[247] Effantin G et al (2013) Cryo-electron microscopy three-dimensional structure of the jumbo phage RSL1 infecting the phytopathogen Ralstonia solanacearum. Structure. 21(2):298-305. [PudMed:23394943]
[248] Sarris PF et al (2013) Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots. PLoS One. 8(3):e59366. [PudMed:23555661]
[249] Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PudMed:24039579]
[250] Hachani A et al (2013) A Visual Assay to Monitor T6SS-mediated Bacterial Competition. J Vis Exp. (73):e50103. [PudMed:23542679]
[251] Ho BT et al (2013) Type 6 Secretion System-Mediated Immunity to Type 4 Secretion System-Mediated Gene Transfer. Science. 342(6155):250-253. [PudMed:24115441]
[252] Khan A et al (2013) Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards. World J Microbiol Biotechnol. 29(11):2033-44. [PudMed:23653265]
[253] Varivarn K et al (2013) Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol. 13(1):92. [PudMed:23622502]
[254] Robertson GT et al (2013) IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of Type A Francisella tularensis. Infect Immun. 81(11):4026-40. [PudMed:23959721]
[255] Bullman S et al (2013) Genomic investigation into strain heterogeneity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus. PLoS One. 8(8):e71515. [PudMed:24023611]
[256] Memisevic V et al (2013) Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions. Mol Cell Proteomics. 12(11):3036-51. [PudMed:23800426]
[257] Darrasse A et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics. 14(1):761. [PudMed:24195767]
[258] Rosenzweig JA et al (2013) Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems. Front Cell Infect Microbiol. 0.173611111. [PudMed:24199174]
[259] Koskiniemi S et al (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A. 110(17):7032-7. [PudMed:23572593]
[260] Das C et al (2013) Understanding the sequential activation of Type III and Type VI Secretion Systems in Salmonella typhimurium using Boolean modeling. Gut Pathog. 5(1):28. [PudMed:24079299]
[261] Nykyri J et al (2013) Role and Regulation of the Flp/Tad Pilus in the Virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS One. 8(9):e73718. [PudMed:24040039]
[262] Franca FL et al (2013) Genotypic and phenotypic characterisation of enteroaggregative Escherichia coli from children in Rio de Janeiro, Brazil. PLoS One. 8(7):e69971. [PudMed:23936127]
[263] Salavati A et al (2013) Proteomic insights into intra- and intercellular plant-bacteria symbiotic association during root nodule formation. Front Plant Sci. 4:28. [PudMed:23443347]
[264] Vandroemme J et al (2013) Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics. 14(1):829. [PudMed:24274055]
[265] Fu Y et al (2013) Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host Microbe. 14(6):652-63. [PudMed:24331463]
[266] Srikannathasan V et al (2013) Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468-82. [PudMed:24311588]
[267] Hao B et al (2013) Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol. 97(6):2575-85. [PudMed:22940804]
[268] Hayward MR et al (2013) Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 0.836805556. [PudMed:23725633]
[269] Singh AP et al (2013) Evolutionary Analysis of Burkholderia pseudomallei Identifies Putative Novel Virulence Genes, Including a Microbial Regulator of Host Cell Autophagy. J Bacteriol. 195(24):5487-98. [PudMed:24097950]
[270] Miyata ST et al (2013) Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathog. 9(12):e1003752. [PudMed:24348240]
[271] Pukatzki S et al (2013) Vibrio cholerae as a predator: lessons from evolutionary principles. Front Microbiol. 0.433333333. [PudMed:24368907]
[272] Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PudMed:23754720]
[273] Ceccarelli D et al (2013) Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol. 0.192361111. [PudMed:24377090]
[274] Kaur J et al (2012) Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol Res. 167(4):199-210. [PudMed:21945101]
[275] He Y et al (2012) FliC, a flagellin protein, is essential for the growth and virulence of fish pathogen Edwardsiella tarda. PLoS One. 7(9):e45070. [PudMed:23024793]
[276] Nikolakakis K et al (2012) The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol Microbiol. 84(3):516-29. [PudMed:22435733]
[277] Gavrilin MA et al (2012) Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J Immunol. 188(7):3469-77. [PudMed:22368275]
[278] Zou T et al (2012) Crystal structure of Pseudomonas aeruginosa Tsi2 reveals a stably folded superhelical antitoxin. J Mol Biol. 417(4):351-61. [PudMed:22310046]
[279] Dalbey RE et al (2012) Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. FEMS Microbiol Rev. 36(6):1023-45. [PudMed:22250915]
[280] Iraola G et al (2012) Reduced set of virulence genes allows high accuracy prediction of bacterial pathogenicity in humans. PLoS One. 7(8):e42144. [PudMed:22916122]
[281] Joseph S et al (2012) Comparative analysis of genome sequences covering the seven cronobacter species. PLoS One. 7(11):e49455. [PudMed:23166675]
[282] Basler M et al (2012) Type 6 secretion dynamics within and between bacterial cells. Science. 337(6096):815. [PudMed:22767897]
[283] Hodges K et al (2012) Interspecies communication in the gut, from bacterial delivery to host-cell response. J Physiol. 590(Pt 3):433-40. [PudMed:22106176]
[284] Rosales-Reyes R et al (2012) The Type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol. 14(2):255-73. [PudMed:22023353]
[285] Flannagan RS et al (2012) Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42. Cell Microbiol. 14(2):239-54. [PudMed:22023324]
[286] Reen FJ et al (2012) Respiratory pathogens adopt a chronic lifestyle in response to bile. PLoS One. 7(9):e45978. [PudMed:23049911]
[287] Pilatova M et al (2012) Burkholderia thailandensis is virulent in Drosophila melanogaster. PLoS One. 7(11):e49745. [PudMed:23209596]
[288] Kido H et al (2012) Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure. Biochim Biophys Acta. 1824(1):186-94. [PudMed:21801859]
[289] Coggan KA et al (2012) Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol. 14(2):47-70. [PudMed:22354680]
[290] Leroux M et al (2012) Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc Natl Acad Sci U S A. 109(48):19804-9. [PudMed:23150540]
[291] Unterweger D et al (2012) Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One. 7(10):e48320. [PudMed:23110230]
[292] Kamada N et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 336(6086):1325-9. [PudMed:22582016]
[293] Fisher NA et al (2012) The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis. BMC Microbiol. 0.58125. [PudMed:22892068]
[294] Kung VL et al (2012) An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci U S A. 109(4):1275-80. [PudMed:22232685]
[295] Ibrahim M et al (2012) Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PLoS One. 7(11):e49657. [PudMed:23166741]
[296] Black M et al (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel). 3(1):138-66. [PudMed:24704847]
[297] McConnell MJ et al (2012) Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 37(2):130-55. [PudMed:22568581]
[298] Zhang D et al (2012) Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct. 7:18. [PudMed:22731697]
[299] Mulder DT et al (2012) Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect Immun. 80(6):1996-2007. [PudMed:22493086]
[300] Filloux A (2011) Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front Microbiol. 0.190972222. [PudMed:21811488]
[301] Silby MW et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev. 35(4):652-80. [PudMed:21361996]
[302] Mikkelsen H et al (2011) The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One. 6(12):e29113. [PudMed:22216178]
[303] Mandlik A et al (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe. 10(2):165-74. [PudMed:21843873]
[304] Yamaguchi Y et al (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet. 45:61-79. [PudMed:22060041]
[305] Opota O et al (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog. 7(9):e1002259. [PudMed:21980286]
[306] Leung KY et al (2011) Type VI secretion regulation: crosstalk and intracellular communication. Curr Opin Microbiol. 14(1):9-15. [PudMed:20971679]
[307] Moscoso JA et al (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol. 13(12):3128-38. [PudMed:21955777]
[308] Poole SJ et al (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet. 7(8):e1002217. [PudMed:21829394]
[309] O'Brien HE et al (2011) Next-generation genomics of Pseudomonas syringae. Curr Opin Microbiol. 14(1):24-30. [PudMed:21233007]
[310] Weber B et al (2011) The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum. Microbiology. 157(Pt 12):3324-39. [PudMed:21948044]
[311] Ballal SA et al (2011) Host and gut microbiota symbiotic factors: lessons from inflammatory bowel disease and successful symbionts. Cell Microbiol. 13(4):508-17. [PudMed:21314883]
[312] Tree JJ et al (2011) Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157:H7. Mol Microbiol. 80(5):1349-65. [PudMed:21492263]
[313] Burtnick MN et al (2011) The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 79(4):1512-25. [PudMed:21300775]
[314] O'Grady EP et al (2011) Burkholderia cenocepacia Differential Gene Expression during Host-Pathogen Interactions and Adaptation to the Host Environment. Front Cell Infect Microbiol. 1:15. [PudMed:22919581]
[315] Fookes M et al (2011) Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog. 7(8):e1002191. [PudMed:21876672]
[316] Mutschler H et al (2011) A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9(3):e1001033. [PudMed:21445328]
[317] Yamaguchi Y et al (2011) Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Nat Rev Microbiol. 9(11):779-90. [PudMed:21927020]
[318] Mikkelsen H et al (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol. 13(7):1666-81. [PudMed:21554516]
[319] Wu X et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. 35(2):299-323. [PudMed:20796030]
[320] Broms JE et al (2010) The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front Microbiol. 0.136111111. [PudMed:21687753]
[321] Miyata ST et al (2010) The Vibrio Cholerae Type VI Secretion System: Evaluating its Role in the Human Disease Cholera. Front Microbiol. 0.122916667. [PudMed:21607085]
[322] Asare R et al (2010) Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol. 0.142361111. [PudMed:21687747]
[323] Roy PH et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 5(1):e8842. [PudMed:20107499]
[324] Hood RD et al (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 7(1):25-37. [PudMed:20114026]
[325] Ma AT et al (2010) In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A. 107(9):4365-70. [PudMed:20150509]
[326] Suarez G et al (2010) Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. Microbiology. 156(Pt 12):3678-88. [PudMed:20798163]
[327] Guindon S et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307-21. [PudMed:20525638]
[328] Burtnick MN et al (2010) Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun. 78(1):88-99. [PudMed:19884331]
[329] Blondel CJ et al (2010) Contribution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS One. 5(7):e11724. [PudMed:20661437]
[330] Asare R et al (2010) Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by Francisella tularensis. Environ Microbiol. 12(9):2559-86. [PudMed:20482590]
[331] Konovalova A et al (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev. 34(2):89-106. [PudMed:19895646]
[332] Tan KS et al (2010) Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. J Immunol. 184(9):5160-71. [PudMed:20335533]
[333] de Pace F et al (2010) The type VI secretion system plays a role in type 1 fimbria expression and pathogenesis of an avian pathogenic Escherichia coli strain. Infect Immun. 78(12):4990-8. [PudMed:20855516]
[334] Suarez G et al (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol. 192(1):155-68. [PudMed:19880608]
[335] MacIntyre DL et al (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A. 107(45):19520-4. [PudMed:20974937]
[336] Schwarz S et al (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6(8):e1001068. [PudMed:20865170]
[337] Bordi C et al (2010) Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol. 76(6):1427-43. [PudMed:20398205]
[338] Chow J et al (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe. 7(4):265-76. [PudMed:20413095]
[339] Chao G et al (2010) Distribution of genes encoding four pathogenicity islands (VPaIs), T6SS, biofilm, and type I pilus in food and clinical strains of Vibrio parahaemolyticus in China. Foodborne Pathog Dis. 7(6):649-58. [PudMed:20132020]
[340] Kucerova E1, Clifton SW, Xia XQ, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 5(3):e9556. [PudMed:20221447]
[341] Shrivastava S et al (2010) INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms. J Biosci. 35(3):351-64. [PudMed:20826944]
[342] Dowling AJ et al (2010) Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243. PLoS One. 5(12):e15693. [PudMed:21203527]
[343] Aoki SK et al (2010) A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature. 468(7322):439-42. [PudMed:21085179]
[344] Filloux A (2010) Secretion signal and protein targeting in bacteria: a biological puzzle. J Bacteriol. 192(15):3847-9. [PudMed:20525826]
[345] Shanks J et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun. 77(4):1636-48. [PudMed:19168747]
[346] Desvaux M et al (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 17(4):139-45. [PudMed:19299134]
[347] Ma AT et al (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe. 5(3):234-43. [PudMed:19286133]
[348] Barker JR et al (2009) The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol. 74(6):1459-70. [PudMed:20054881]
[349] Mueller RS et al (2009) Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol. 191(11):3504-16. [PudMed:19329638]
[350] Byrd MS et al (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol. 73(4):622-38. [PudMed:19659934]
[351] Ueda A et al (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog. 5(6):e1000483. [PudMed:19543378]
[352] Starkey M et al (2009) Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc. 4(2):117-24. [PudMed:19180083]
[353] Schmeisser C et al (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol. 75(12):4035-45. [PudMed:19376903]
[354] Wehrly TD et al (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol. 11(7):1128-50. [PudMed:19388904]
[355] Syed KA et al (2009) The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol. 191(21):6555-70. [PudMed:19717600]
[356] Tseng TT et al (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 Suppl 1:S2. [PudMed:19278550]
[357] Wang Q et al (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4(10):e7646. [PudMed:19865481]
[358] Lazar Adler NR et al (2009) The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease?. FEMS Microbiol Rev. 33(6):1079-99. [PudMed:19732156]
[359] Larsson P et al (2009) Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog. 5(6):e1000472. [PudMed:19521508]
[360] Carranza P et al (2009) Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen. Proteomics. 9(13):3564-79. [PudMed:19609963]
[361] Burdette DL et al (2009) Not without cause: Vibrio parahaemolyticus induces acute autophagy and cell death. Autophagy. 5(1):100-2. [PudMed:19011375]
[362] Weber B et al (2009) Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol. 11(12):3018-28. [PudMed:19624706]
[363] Schmerk CL et al (2009) A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology. 155(Pt 5):1498-504. [PudMed:19372155]
[364] Wang X et al (2009) Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol. 27(3):469-77. [PudMed:19563898]
[365] Schmerk CL et al (2009) Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology. 155(Pt 5):1489-97. [PudMed:19372153]
[366] Robinson JB et al (2009) Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog. 47(5):243-51. [PudMed:19716410]
[367] Weng M et al (2009) Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli. Biochim Biophys Acta. 1794(11):1566-72. [PudMed:19631297]
[368] O'Grady EP et al (2009) Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics. 0.722916667. [PudMed:19761612]
[369] Haneda T et al (2009) Genome-wide identification of novel genomic islands that contribute to Salmonella virulence in mouse systemic infection. FEMS Microbiol Lett. 297(2):241-9. [PudMed:19583791]
[370] Ray K et al (2009) Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol. 7(5):333-40. [PudMed:19369949]
[371] Waterfield NR et al (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci U S A. 105(41):15967-72. [PudMed:18838673]
[372] Boyd EF et al (2008) Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol. 0.409722222. [PudMed:18590559]
[373] Yuan ZC et al (2008) Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol. 190(2):494-507. [PudMed:17993523]
[374] Ge Z et al (2008) Helicobacter hepaticus HHGI1 is a pathogenicity island associated with typhlocolitis in B6.129-IL10 tm1Cgn mice. Microbes Infect. 10(7):726-33. [PudMed:18538610]
[375] Navarro L et al (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science. 321(5891):964-7. [PudMed:18703740]
[376] Chong A et al (2008) The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun. 76(12):5488-99. [PudMed:18852245]
[377] Shrivastava S et al (2008) Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PLoS One. 3(8):e2955. [PudMed:18698408]
[378] Degrave A et al (2008) Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol Plant Microbe Interact. 21(8):1076-86. [PudMed:18616404]
[379] Kang Y et al (2008) The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology. 154(Pt 6):1584-98. [PudMed:18524913]
[380] Ludu JS et al (2008) The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol. 190(13):4584-95. [PudMed:18469101]
[381] Fauvart M et al (2008) Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett. 285(1):1-9. [PudMed:18616593]
[382] Loukiadis E et al (2008) Distribution, functional expression, and genetic organization of Cif, a phage-encoded type III-secreted effector from enteropathogenic and enterohemorrhagic Escherichia coli. J Bacteriol. 190(1):275-85. [PudMed:17873042]
[383] Gibbs KA et al (2008) Genetic determinants of self identity and social recognition in bacteria. Science. 321(5886):256-9. [PudMed:18621670]
[384] Zhang S et al (2008) Transcriptional response of chicken macrophages to Salmonella enterica serovar enteritidis infection. Dev Biol (Basel). 132:141-51. [PudMed:18817296]
[385] Pieper R et al (2008) Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics. 8(7):1442-58. [PudMed:18383009]
[386] de Berardinis V et al (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol. 0.2875. [PudMed:18319726]
[387] Nemoto M et al (2008) ORF334 in Vibrio phage KVP40 plays the role of gp27 in T4 phage to form a heterohexameric complex. J Bacteriol. 190(10):3606-12. [PudMed:18326574]
[388] Schell MA et al (2007) Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 64(6):1466-85. [PudMed:17555434]
[389] Smith MG et al (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5):601-14. [PudMed:17344419]
[390] Tamayo R et al (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol. 61:131-48. [PudMed:17480182]
[391] Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol. 9(7):797-803. [PudMed:17558395]
[392] Lombardo MJ et al (2007) An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci U S A. 104(46):18229-34. [PudMed:17986616]
[393] Guina T et al (2007) MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J Bacteriol. 189(18):6580-6. [PudMed:17644593]
[394] Santic M et al (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol. 9(10):2391-403. [PudMed:17517064]
[395] Mohapatra NP et al (2007) Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun. 75(7):3305-14. [PudMed:17452468]
[396] Shalom G et al (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 153(Pt 8):2689-99. [PudMed:17660433]
[397] Gerlach RG et al (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 297(6):401-15. [PudMed:17482513]
[398] Darwin AJ (2007) Regulation of the phage-shock-protein stress response in Yersinia enterocolitica. Adv Exp Med Biol. 603:167-77. [PudMed:17966413]
[399] Forouhar F et al (2007) Functional insights from structural genomics. J Struct Funct Genomics. 8(2-3):37-44. [PudMed:17588214]
[400] Dijkshoorn L et al (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 5(12):939-51. [PudMed:18007677]
[401] Titball RW et al (2007) Francisella tularensis genomics and proteomics. Ann N Y Acad Sci. 1105:98-121. [PudMed:17435122]
[402] Klumpp J et al (2007) Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology. 153(Pt 4):1207-20. [PudMed:17379730]
[403] Economou A et al (2006) Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol. 62(2):308-19. [PudMed:17020575]
[404] Ventre I et al (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A. 103(1):171-6. [PudMed:16373506]
[405] Liberati NT et al (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A. 103(8):2833-8. [PudMed:16477005]
[406] Gavrilin MA et al (2006) Internalization and phagosome escape required for Francisella to induce human monocyte IL-1beta processing and release. Proc Natl Acad Sci U S A. 103(1):141-6. [PudMed:16373510]
[407] Dudley EG et al (2006) Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol. 61(5):1267-82. [PudMed:16925558]
[408] Yang G et al (2006) Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J Bacteriol. 188(6):2254-61. [PudMed:16513755]
[409] Glass MB et al (2006) Burkholderia oklahomensis sp. nov., a Burkholderia pseudomallei-like species formerly known as the Oklahoma strain of Pseudomonas pseudomallei. Int J Syst Evol Microbiol. 6(Pt 9):2171-6. [PudMed:16957116]
[410] Pilatz S et al (2006) Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 74(6):3576-86. [PudMed:16714590]
[411] Lewenza S et al (2005) Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res. 15(2):321-9. [PudMed:15687295]
[412] Enos-Berlage JL et al (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol. 55(4):1160-82. [PudMed:15686562]
[413] Southey-Pillig CJ et al (2005) Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol. 187(23):8114-26. [PudMed:16291684]
[414] Bosio CM et al (2005) Francisella tularensis induces aberrant activation of pulmonary dendritic cells. J Immunol. 175(10):6792-801. [PudMed:16272336]
[415] Clemens DL et al (2005) Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect Immun. 73(9):5892-902. [PudMed:16113308]
[416] Deziel E et al (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol. 55(4):998-1014. [PudMed:15686549]
[417] Schlieker C et al (2005) ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem. 386(11):1115-27. [PudMed:16307477]
[418] Lawlor MS et al (2005) Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol Microbiol. 58(4):1054-73. [PudMed:16262790]
[419] Clemens DL et al (2004) Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun. 72(6):3204-17. [PudMed:15155622]
[420] Yildiz FH et al (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol. 53(2):497-515. [PudMed:15228530]
[421] Lenz DH et al (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell. 118(1):69-82. [PudMed:15242645]
[422] Alarcon-Chaidez FJ et al (2003) RpoN (sigma(54)) is required for plasmid-encoded coronatine biosynthesis in Pseudomonas syringae. Plasmid. 49(2):106-17. [PudMed:12726764]
[423] Potvin E et al (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol. 5(12):1294-308. [PudMed:14641575]
[424] Folkesson A et al (2002) The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol. 153(8):537-45. [PudMed:12437215]
[425] Zhu J et al (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A. 99(5):3129-34. [PudMed:11854465]
[426] Parkins MD et al (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol. 40(5):1215-26. [PudMed:11401724]
[427] Singh PK et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 407(6805):762-4. [PudMed:11048725]
[428] Tan MW et al (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A. 96(5):2408-13. [PudMed:10051655]
[429] Costerton JW et al (1999) Bacterial biofilms: a common cause of persistent infections. Science. 284(5418):1318-22. [PudMed:10334980]
[430] Baron GS et al (1998) MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol. 29(1):247-59. [PudMed:9701818]