Detailed information    

experimental Experimentally validated

Overview


Name   pilF   Type   Machinery gene
Locus tag   TT_RS08215 Genome accession   NC_005835
Coordinates   1541858..1544527 (-) Length   889 a.a.
NCBI ID   WP_011173991.1    Uniprot ID   Q72H73
Organism   Thermus thermophilus HB27     
Function   power the assembly of type IV pilus   
DNA binding and uptake

Function


The assembly of the DNA transporter pseudopilus in T. thermophilus is powered by the unique polymerization ATPase PilF, which binds two second messenger c-di-GMP molecules. PilF was found to be connected to the pseudopilus in T. thermophilus via PilM as coupling protein.


Genomic Context


Location: 1536858..1549527
Locus tag Gene name Coordinates (strand) Size (bp) Protein ID Product Description
  TT_RS08195 (TT_C1618) - 1537704..1538336 (-) 633 WP_011173987.1 histidine phosphatase family protein -
  TT_RS08200 (TT_C1619) purM 1538333..1539334 (-) 1002 WP_011173988.1 phosphoribosylformylglycinamidine cyclo-ligase -
  TT_RS08205 (TT_C1620) gatB 1539340..1540749 (-) 1410 WP_011173989.1 Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase subunit GatB -
  TT_RS08210 (TT_C1621) pilT 1540760..1541845 (-) 1086 WP_011173990.1 type IV pilus twitching motility protein PilT Machinery gene
  TT_RS08215 (TT_C1622) pilF 1541858..1544527 (-) 2670 WP_011173991.1 type IV pilus assembly ATPase PilB Machinery gene
  TT_RS08220 (TT_C1623) - 1544524..1545009 (-) 486 WP_011173992.1 YqeG family HAD IIIA-type phosphatase -
  TT_RS08225 (TT_C1624) pgeF 1545044..1545772 (-) 729 WP_011173993.1 peptidoglycan editing factor PgeF -
  TT_RS08230 (TT_C1625) surE 1545769..1546524 (-) 756 WP_011173994.1 5'/3'-nucleotidase SurE -
  TT_RS08235 (TT_C1626) - 1546583..1546789 (-) 207 WP_011173995.1 cold-shock protein -
  TT_RS08240 (TT_C1627) - 1546947..1548236 (+) 1290 WP_011173996.1 ABC transporter substrate-binding protein -
  TT_RS08245 (TT_C1628) - 1548288..1549163 (+) 876 WP_011173997.1 carbohydrate ABC transporter permease -

Sequence


Protein


Download         Length: 889 a.a.        Molecular weight: 98213.34 Da        Isoelectric Point: 5.3348

>NTDB_id=1028 TT_RS08215 WP_011173991.1 1541858..1544527(-) (pilF) [Thermus thermophilus HB27]
MSVLTIGDKRLGAALLDAGLLTDEELQRALERHREVGGSLAEVLVDMGLLSERRIAQTIEDRFGIPLVELHRVEIPPKVK
ALLPAEKAKELKAIPFALDEEAGVVRVAFLNPLDTLSLEEVEDLTGLVVEPYQTTKSAFLYALAKHYPELGLPVPPPPSG
EGQKDLKLGELLLQKGWISREALEEALVEQEKTGDLLGRILVRKGLPEEALYRALAEQKGLEFLESTEGIVPDPSAALLL
LRSDALRYGAVPIGFQNGEVEVVLSDPRHKEAVAQLLNRPARFYLALPQAWEELFRRAYPQKNRLGEVLVQEGKLSREAL
KEALEVQKGLPRAKPLGEILVELGLARPEDVEEALQKQRRGGGRLEDTLVQSGKLRPEALAQAVATQLGYPYVDPEEDPP
DPGAPLLLPEDLCRRYGVFPHRLEGNRLVLLMKDPRNILALDDVRLALKRKGLNYEVAPAVATEAAITKLIERFYGKAEL
SEIAKEFAKKQAEEEVPSPLELDESAAQKFVKQVIREAFLQDASDIHIEPRQNDVQVRLRIDGALRPYSTLPKGALNAVI
SVVKIMGGLNIAEKRLPQDGRVRYREGAIDVDLRLSTLPTVYGEKAVMRLLKKASDIPEIEDLGFAPGVFERFKEVISKP
YGIFLITGPTGSGKSFTTFSILKRIATPDKNTQTIEDPVEYEIPGINQTQVNPQAGLTFARALRAFLRQDPDIIMVGEIR
DSETAKIATEAALTGHLVIATLHTNDAAQAITRLDEMGVEPFNISAALIGVLSQRLVRRVCEHCKVEVKPDPETLRRLGL
SEAEIQGARLYKGMGCERCGGTGYKGRYAIHELLVVDDEIRHAIVAGKSATEIKEIARRKGMKTLREDGLYKALQGITTL
EEVLARTIE

Nucleotide


Download         Length: 2670 bp        

>NTDB_id=1028 TT_RS08215 WP_011173991.1 1541858..1544527(-) (pilF) [Thermus thermophilus HB27]
ATGAGCGTGCTCACCATAGGGGACAAAAGGCTCGGGGCGGCCCTCTTGGACGCCGGGCTCCTCACGGACGAGGAGCTGCA
GCGGGCCTTGGAACGGCACCGGGAGGTGGGGGGCTCCTTGGCCGAGGTCCTGGTGGACATGGGCCTCCTCTCCGAGAGGA
GGATCGCCCAGACCATTGAGGACCGCTTCGGCATCCCCCTGGTGGAGCTCCACCGGGTGGAGATCCCCCCCAAGGTCAAG
GCCCTCCTTCCCGCGGAGAAGGCCAAGGAACTCAAGGCCATCCCCTTCGCCCTGGACGAGGAGGCGGGGGTGGTGCGGGT
GGCCTTCCTCAACCCCCTGGACACCCTGAGCCTCGAGGAGGTGGAGGACCTCACGGGGCTCGTGGTGGAGCCGTACCAGA
CCACCAAAAGCGCCTTCCTCTACGCCCTGGCCAAACACTACCCGGAGCTCGGCCTTCCCGTCCCCCCGCCGCCTTCGGGC
GAGGGCCAGAAGGACCTCAAGCTCGGGGAGCTCCTCCTGCAAAAGGGGTGGATCTCCCGCGAGGCCCTGGAGGAGGCCTT
GGTGGAACAGGAGAAGACGGGGGACCTCCTCGGGCGGATCCTGGTGCGGAAGGGGCTCCCCGAGGAGGCCCTTTACCGGG
CCTTGGCGGAGCAGAAGGGGCTGGAGTTTCTGGAAAGCACCGAGGGGATCGTCCCCGACCCCTCCGCCGCCCTCCTCCTC
CTCCGCTCCGACGCCCTGCGTTACGGCGCCGTGCCCATCGGCTTCCAAAACGGGGAGGTGGAGGTGGTCCTCTCCGACCC
CCGGCACAAGGAGGCGGTGGCCCAGCTCCTCAATCGGCCCGCCCGCTTCTACCTCGCCCTCCCCCAGGCCTGGGAGGAGC
TCTTCCGCCGGGCCTACCCGCAGAAGAACCGCCTGGGGGAGGTCCTGGTCCAGGAGGGCAAGCTCTCCCGGGAAGCGCTG
AAGGAGGCCCTGGAGGTGCAGAAAGGCCTGCCCCGGGCCAAGCCTTTGGGGGAGATCCTGGTGGAGCTCGGCCTCGCCCG
CCCCGAGGACGTGGAGGAGGCCCTGCAGAAGCAAAGGCGGGGCGGGGGCCGGCTGGAGGACACCCTGGTCCAGTCGGGGA
AGCTCAGGCCCGAGGCCCTGGCCCAGGCGGTGGCCACCCAGCTGGGCTACCCCTACGTTGACCCCGAGGAGGACCCCCCC
GATCCCGGCGCCCCCCTCCTCCTCCCAGAGGACCTGTGCCGCCGCTATGGGGTCTTCCCCCACCGCCTCGAGGGAAACCG
CCTCGTCCTCCTGATGAAGGACCCGAGGAACATCCTGGCCCTGGACGACGTGCGCCTCGCCCTCAAGAGGAAGGGCCTGA
ACTACGAAGTGGCCCCCGCCGTGGCCACGGAGGCCGCCATCACCAAGCTCATCGAGCGCTTCTACGGCAAGGCCGAGCTC
TCGGAGATCGCCAAGGAGTTCGCCAAAAAGCAGGCGGAGGAGGAGGTCCCAAGCCCCCTGGAGCTGGACGAGAGCGCCGC
CCAGAAGTTCGTGAAGCAGGTGATCCGGGAGGCCTTCCTCCAGGACGCCTCCGACATCCACATTGAGCCCAGGCAGAACG
ACGTCCAGGTGCGCCTCCGGATTGACGGCGCCCTGCGGCCGTACAGCACCCTGCCCAAGGGGGCGCTGAACGCGGTGATC
TCCGTGGTCAAGATCATGGGCGGGCTCAACATCGCCGAGAAGCGCCTCCCCCAGGACGGACGGGTGCGCTACCGGGAAGG
GGCCATAGACGTGGACCTCCGGCTTTCCACCCTGCCCACGGTCTACGGGGAGAAGGCGGTGATGCGCCTCCTCAAGAAGG
CCTCGGACATCCCCGAGATCGAGGACCTGGGCTTCGCCCCGGGGGTGTTTGAACGCTTCAAGGAGGTGATCTCCAAGCCC
TACGGCATCTTCCTCATCACCGGGCCCACGGGGTCGGGCAAGAGCTTCACCACCTTCTCCATCCTCAAGCGCATCGCCAC
CCCCGACAAGAACACCCAGACCATTGAAGACCCCGTGGAGTACGAGATCCCCGGGATCAACCAGACCCAGGTGAACCCCC
AGGCGGGCCTCACCTTCGCCCGGGCGCTAAGGGCCTTCCTCAGGCAGGACCCGGACATCATCATGGTGGGGGAGATCCGG
GACTCCGAGACGGCCAAGATCGCCACCGAAGCCGCCCTCACCGGCCACCTCGTCATCGCCACCCTGCACACCAACGACGC
CGCCCAGGCCATCACCCGCCTGGACGAGATGGGGGTGGAGCCCTTCAACATCTCCGCGGCCCTCATCGGCGTCCTCTCCC
AGCGCCTGGTGCGCAGGGTGTGCGAGCACTGCAAGGTGGAGGTCAAGCCGGACCCCGAGACCCTCAGGCGCCTCGGGCTT
TCCGAGGCGGAGATCCAAGGGGCCAGGCTCTACAAGGGCATGGGGTGCGAGCGGTGCGGCGGCACCGGGTACAAGGGCCG
CTACGCCATCCACGAGCTTTTGGTGGTGGACGACGAGATCCGCCACGCCATCGTGGCGGGGAAGTCGGCCACGGAGATCA
AGGAGATCGCCCGGAGGAAGGGGATGAAGACCCTGAGGGAGGACGGCCTCTACAAGGCCCTCCAAGGGATCACCACCCTC
GAGGAGGTCCTGGCGCGTACCATTGAGTAA


Secondary structure


Protein secondary structures were predicted by S4PRED and visualized by seqviz.



3D structure


Source ID Structure
  PDB 8PKZ

Transmembrane helices


Transmembrane helices of protein were predicted by TMHMM 2.0 and visualized by seqviz and ECharts.



Visualization of predicted probability:


Similar proteins


Only experimentally validated proteins are listed.

Protein Organism Identities (%) Coverage (%) Ha-value
  pilB Deinococcus radiodurans R1 = ATCC 13939 = DSM 20539

56.229

100

0.565

  pilB Vibrio cholerae strain A1552

40.111

96.263

0.386

  pilB Haemophilus influenzae 86-028NP

36.134

100

0.371

  pilB Haemophilus influenzae Rd KW20

36.134

100

0.371

  pilB Vibrio campbellii strain DS40M4

36.833

100

0.369

  pilB Vibrio parahaemolyticus RIMD 2210633

36.396

100

0.367

  pilB Acinetobacter baumannii D1279779

37.011

98.596

0.365

  pilB Legionella pneumophila strain ERS1305867

38.848

93.728

0.364

  pilB Glaesserella parasuis strain SC1401

35.01

100

0.362


Multiple sequence alignment    



References


[1] Konstantin Neißner et al. (2025) The structural basis for high-affinity c-di-GMP binding to the GSPII-B domain of the traffic ATPase PilF from Thermus thermophilus. The Journal of Biological Chemistry 301(1):108041. [PMID: 39615687]
[2] Konstantin Neißner et al. (2025) NMR Solution Structure of the N-Terminal GSPII Domain from the Thermus Thermophilus Traffic ATPase PilF and Reconstruction of its c-di-GMP Binding Capability. Chembiochem : A European Journal of Chemical Biology 26(7):e202400959. [PMID: 39960869]
[3] Beate Averhoff et al. (2021) Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophiles : Life Under Extreme Conditions 25(5-6):425-436. [PMID: 34542714]
[4] Kerstin Kruse et al. (2019) The traffic ATPase PilF interacts with the inner membrane platform of the DNA translocator and type IV pili from Thermus thermophilus. FEBS Open Bio 9(1):4-17. [PMID: 30652069]
[5] Kerstin Kruse et al. (2018) Functional dissection of the three N-terminal general secretory pathway domains and the Walker motifs of the traffic ATPase PilF from Thermus thermophilus. Extremophiles : Life Under Extreme Conditions 22(3):461-471. [PMID: 29464394]
[6] Ralf Salzer et al. (2014) Type IV pilus biogenesis, twitching motility, and DNA uptake in Thermus thermophilus: discrete roles of antagonistic ATPases PilF, PilT1, and PilT2. Applied And Environmental Microbiology 80(2):644-52. [PMID: 24212586]
[7] Ralf Salzer et al. (2014) Zinc and ATP binding of the hexameric AAA-ATPase PilF from Thermus thermophilus: role in complex stability, piliation, adhesion, twitching motility, and natural transformation. The Journal of Biological Chemistry 289(44):30343-30354. [PMID: 25202014]
[8] Richard F Collins et al. (2013) Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus. The Biochemical Journal 450(2):417-25. [PMID: 23252471]
[9] Ralf Salzer et al. (2013) The DNA uptake ATPase PilF of Thermus thermophilus: a reexamination of the zinc content. Extremophiles : Life Under Extreme Conditions 17(4):697-8. [PMID: 23712905]
[10] Ilona Rose et al. (2011) Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27. Extremophiles : Life Under Extreme Conditions 15(2):191-202. [PMID: 21210168]
[11] Cornelia Schwarzenlander et al. (2009) The role of single subunits of the DNA transport machinery of Thermus thermophilus HB27 in DNA binding and transport. Environmental Microbiology 11(4):801-8. [PMID: 19396940]
[12] Alexandra Friedrich et al. (2002) Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Applied And Environmental Microbiology 68(2):745-55. [PMID: 11823215]