References |
(1) Yuan XY, Wang Y, Wang MY (2018). The type IV secretion system in Helicobacter pylori. Future Microbiol. 13:1041-1054. [PudMed:29927340]
|
(2) Chang YW, Shaffer CL, Rettberg LA, Ghosal D, Jensen GJ (2018). In Vivo Structures of the Helicobacter pylori cag Type IV Secretion System. Cell Rep. 23(3):673-681. [PudMed:29669273]
|
(3) Callaghan MM, Heilers JH, van der Does C, Dillard JP (2017). Secretion of Chromosomal DNA by the Neisseria gonorrhoeae Type IV Secretion System. Curr Top Microbiol Immunol. 413:323-345. [PudMed:29536365]
|
(4) Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE (2017). Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities. Front Microbiol. 8:1390. [PudMed:28798731]
|
(5) Obergfell KP, Seifert HS (2015). Mobile DNA in the Pathogenic Neisseria. Microbiol Spectr. 3(1):MDNA3-0015-2014. [PudMed:26104562]
|
(6) Ramsey ME, Hackett KT, Bender T, Kotha C, van der Does C, Dillard JP (2014). TraK and TraB are conserved outer membrane proteins of the Neisseria gonorrhoeae Type IV secretion system and are expressed at low levels in wild-type cells. J Bacteriol. 196(16):2954-68. [PudMed:24914183]
|
(7) Fernandez-Gonzalez E, Backert S (2014). DNA transfer in the gastric pathogen Helicobacter pylori. J Gastroenterol. 49(4):594-604. [PudMed:24515309]
|
(8) Zweig M, Schork S, Koerdt A, Siewering K, Sternberg C, Thormann K, Albers SV, Molin S, van der Does C (2014). Secreted single-stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae. Environ Microbiol. 16(4):1040-52. [PudMed:24119133]
|
(9) Kohler PL, Chan YA, Hackett KT, Turner N, Hamilton HL, Cloud-Hansen KA, Dillard JP (2013). Mating pair formation homologue TraG is a variable membrane protein essential for contact-independent type IV secretion of chromosomal DNA by Neisseria gonorrhoeae. J Bacteriol. 195(8):1666-79. [PudMed:23378511]
|
(10) Rohrer S, Holsten L, Weiss E, Benghezal M, Fischer W, Haas R (2012). Multiple pathways of plasmid DNA transfer in Helicobacter pylori. PLoS One. 7(9):e45623. [PudMed:23029142]
|
(11) Zechner EL et al (2012). Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
|
(12) Woodhams KL et al (2012). Prevalence and detailed mapping of the gonococcal genetic island in Neisseria meningitidis. J Bacteriol. 194(9):2275-85. [PudMed:22366419]
|
(13) Wallden K et al (2010). Type IV secretion systems: versatility and diversity in function. Cell Microbiol. 12(9):1203-12. [PudMed:20642798]
|
(14) Stingl K et al (2010). Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc Natl Acad Sci U S A. 107(3):1184-9. [PudMed:20080542]
|
(15) Rego AT et al (2010). Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J. 425(3):475-88. [PudMed:20070257]
|
(16) Alvarez-Martinez CE et al (2009). Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev. 73(4):775-808. [PudMed:19946141]
|
(17) Fronzes R et al (2009). The structural biology of type IV secretion systems. Nat Rev Microbiol. 7(10):703-14. [PudMed:19756009]
|
(18) Salgado-Pabon W et al (2007). A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae. Mol Microbiol. 66(4):930-47. [PudMed:17927698]
|
(19) Kohler PL et al (2007). AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system. J Bacteriol. 189(15):5421-8. [PudMed:17526702]
|
(20) Baron C et al (2007). Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect Disord Drug Targets. 7(1):19-27. [PudMed:17346208]
|
(21) Backert S et al (2006). Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 9(2):207-17. [PudMed:16529981]
|
(22) Hamilton HL et al (2006). Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol. 59(2):376-85. [PudMed:16390436]
|
(23) Baron C (2005). From bioremediation to biowarfare: on the impact and mechanism of type IV secretion systems. FEMS Microbiol Lett. 253(2):163-70. [PudMed:16239080]
|
(24) Christie PJ et al (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol. 59:451-85. [PudMed:16153176]
|
(25) Leonard TA, Møller-Jensen J, Löwe J (2005). Towards understanding the molecular basis of bacterial DNA segregation. Philos Trans R Soc Lond B Biol Sci. 360(1455):523-35. [PudMed:15897178]
|
(26) Hamilton HL et al (2005). Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol. 55(6):1704-21. [PudMed:15752195]
|
(27) Christie PJ (2004). Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta. 1694(1-3):219-34. [PudMed:15546668]
|
(28) Cascales E et al (2003). The versatile bacterial type IV secretion systems. Nat Rev Microbiol. 1(2):137-49. [PudMed:15035043]
|
(29) Ding Z et al (2003). The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11(11):527-35. [PudMed:14607070]
|
(30) Hofreuter D et al (2003). Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. Int J Med Microbiol. 293(2-3):153-65. [PudMed:12868652]
|
(31) Chen I et al (2003). DNA transport during transformation. Front Biosci. 8:s544-56. [PudMed:12700070]
|
(32) Fischer W et al (2002). Type IV secretion systems in pathogenic bacteria. Int J Med Microbiol. 292(3-4):159-68. [PudMed:12398207]
|
(33) Krall L et al (2002). Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 99(17):11405-10. [PudMed:12177443]
|
(34) Schroder G et al (2002). TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates. J Bacteriol. 184(10):2767-79. [PudMed:11976307]
|
(35) Smeets LC et al (2002). Natural transformation in Helicobacter pylori: DNA transport in an unexpected way. Trends Microbiol. 10(4):159-62; discussion 162. [PudMed:11912014]
|
(36) Hamilton HL et al (2001). Insertion-duplication mutagenesis of neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island. J Bacteriol. 183(16):4718-26. [PudMed:11466274]
|
(37) Christie PJ (2001). Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol. 40(2):294-305. [PudMed:11309113]
|