SecReT4
SecReT4 contains data from 1565 references related to type IV secretion systems (T4SSs). Last Update: Sep 30, 2019

Categories (Literatures contain following contents are categorized)
reviews experimental studies bioinformatics genome sequencing T4SS component T4SS effectors
conjugation DNA uptake and release effector translocation structural study protein interaction other
all
Search
     

Number of references found for the 'pro_interaction' category : 329

References
(1) Hüttener M, Prieto A, Aznar S, Bernabeu M, Glaría E, Valledor AF, Paytubi S, Merino S, Tomás J, Juárez A (2019). Expression of a novel class of bacterial Ig-like proteins is required for IncHI plasmid conjugation. PLoS Genet. 15(9):e1008399. [PudMed:31527905]
(2) Zhao H, Xu L, Xu Z, Ding Y, Yu H, Zhang Y, Wu Y, Li B, Ji X (2019). Investigation on the role of gene hp0788 in Helicobacter pylori in infecting gastric epithelial cells. Microb Pathog. 137:103739. [PudMed:31513896]
(3) Bayer-Santos E, Cenens W, Matsuyama BY, Oka GU, Di Sessa G, Mininel IDV, Alves TL, Farah CS (2019). The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathog. 15(9):e1007651. [PudMed:31513674]
(4) Semper RP, Vieth M, Gerhard M, Mejías-Luque R (2019). Helicobacter pylori Exploits the NLRC4 Inflammasome to Dampen Host Defenses. J Immunol. pii: ji1900351. [PudMed:31511355]
(5) Wroblewski LE, Choi E, Petersen C, Delgado AG, Piazuelo MB, Romero-Gallo J, Lantz TL, Zavros Y, Coffey RJ, Goldenring JR, Zemper AE, Peek RM Jr (2019). Targeted mobilization of Lrig1+ gastric epithelial stem cell populations by a carcinogenic Helicobacter pylori type IV secretion system. Proc Natl Acad Sci U S A. 116(39):19652-19658. [PudMed:31488717]
(6) Chmiela M, Kupcinskas J (2019). Review: Pathogenesis of Helicobacter pylori infection. Helicobacter. 24 Suppl 1:e12638. [PudMed:31486234]
(7) Zhi F, Zhou D, Bai F, Li J, Xiang C, Zhang G, Jin Y, Wang A (2019). VceC Mediated IRE1 Pathway and Inhibited CHOP-induced Apoptosis to Support Brucella Replication in Goat Trophoblast Cells. Int J Mol Sci. 20(17). pii: E4104. [PudMed:31443507]
(8) Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeyer N (2019). Tailor-Made Detection of Individual Phosphorylated and Non-Phosphorylated EPIYA-Motifs of Helicobacter pylori Oncoprotein CagA. Cancers (Basel). 11(8). pii: E1163. [PudMed:31412675]
(9) Demars A, Lison A, Machelart A, Van Vyve M, Potemberg G, Vanderwinden JM, De Bolle X, Letesson JJ, Muraille E (2019). Route of Infection Strongly Impacts the Host-Pathogen Relationship. Front Immunol. 10:1589. [PudMed:31354728]
(10) Liu X, Shin S (2019). Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol. pii: S0022-2836(19)30472-3. [PudMed:31351897]
(11) Byndloss MX, Tsai AY, Walker GT, Miller CN, Young BM, English BC, Seyffert N, Kerrinnes T, de Jong MF, Atluri VL, Winter MG, Celli J, Tsolis RM (2019). Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. MBio. 10(4). pii: e01538-19. [PudMed:31337727]
(12) Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM, Galej WP, Matkovic V, Lopez-Mosqueda J, Kalayil S, Shin D, Dikic I (2019). Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature. 572(7769):382-386. [PudMed:31330532]
(13) Gan N, Zhen X, Liu Y, Xu X, He C, Qiu J, Liu Y, Fujimoto GM, Nakayasu ES, Zhou B, Zhao L, Puvar K, Das C, Ouyang S, Luo ZQ (2019). Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature. 572(7769):387-391. [PudMed:31330531]
(14) Québatte M, Dehio C (2019). Bartonella gene transfer agent: Evolution, function, and proposed role in host adaptation. Cell Microbiol. e13068. [PudMed:31231937]
(15) Tsai AY, English BC, Tsolis RM (2019). Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens. Microbiol Spectr. 7(3). [PudMed:31198132]
(16) Buß M, Tegtmeyer N, Schnieder J, Dong X, Li J, Springer TA, Backert S, Niemann HH (2019). Specific high affinity interaction of Helicobacter pylori CagL with integrin αV β6 promotes type IV secretion of CagA into human cells. FEBS J. . [PudMed:31197920]
(17) Kumari R, Shariq M, Sharma S, Kumar A, Mukhopadhyay G (2019). CagW, a VirB6 homologue interacts with Cag-type IV secretion system substrate CagA in Helicobacter pylori. Biochem Biophys Res Commun. 515(4):712-718. [PudMed:31182283]
(18) Kang YS, Kirby JE (2019). A Chemical Genetics Screen Reveals Influence of p38 Mitogen-Activated Protein Kinase and Autophagy on Phagosome Development and Intracellular Replication of Brucella neotomae in Macrophages. Infect Immun. 87(8). pii: e00044-19. [PudMed:31160361]
(19) Wagner A, Tittes C, Dehio C (2019). Versatility of the BID Domain: Conserved Function as Type-IV-Secretion-Signal and Secondarily Evolved Effector Functions Within Bartonella-Infected Host Cells. Front Microbiol. 10:921. [PudMed:31130928]
(20) Knorr J, Ricci V, Hatakeyama M, Backert S (2019). Classification of Helicobacter pylori Virulence Factors: Is CagA a Toxin or Not. Trends Microbiol. 27(9):731-738. [PudMed:31130493]
(21) Deng H, Zhou J, Gong B, Xiao M, Zhang M, Pang Q, Zhang X, Zhao B, Zhou X (2019). Screening and identification of a human domain antibody against Brucella abortus VirB5. Acta Trop. 197:105026. [PudMed:31103700]
(22) McCarthy RR, Yu M, Eilers K, Wang YC, Lai EM, Filloux A (2019). Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens. Mol Microbiol. 112(2):632-648. [PudMed:31102484]
(23) Ngwaga T, Hydock AJ, Ganesan S, Shames SR (2019). Potentiation of Cytokine-Mediated Restriction of Legionella Intracellular Replication by a Dot/Icm-Translocated Effector. J Bacteriol. 201(14). pii: e00755-18. [PudMed:31036725]
(24) Celli J (2019). The Intracellular Life Cycle of Brucella spp. Microbiol Spectr. 7(2). [PudMed:30848234]
(25) Zhang J, Li M, Li Z, Shi J, Zhang Y, Deng X, Liu L, Wang Z, Qi Y, Zhang H (2019). Deletion of the Type IV Secretion System Effector VceA Promotes Autophagy and Inhibits Apoptosis in Brucella-Infected Human Trophoblast Cells. Curr Microbiol. 76(4):510-519. [PudMed:30805699]
(26) Pike CM, Boyer-Andersen R, Kinch LN, Caplan JL, Neunuebel MR (2019). The Legionella effector RavD binds phosphatidylinositol-3-phosphate and helps suppress endolysosomal maturation of the Legionella-containing vacuole. J Biol Chem. 294(16):6405-6415. [PudMed:30733336]
(27) Larson CL, Sandoz KM, Cockrell DC, Heinzen RA (2019). Noncanonical Inhibition of mTORC1 by Coxiella burnetii Promotes Replication within a Phagolysosome-Like Vacuole. MBio. 10(1). pii: e02816-18. [PudMed:30723133]
(28) Wagner A, Dehio C (2019). Role of distinct type-IV-secretion systems and secreted effector sets in host adaptation by pathogenic Bartonella species. Cell Microbiol. 21(3):e13004. [PudMed:30644157]
(29) Hayek I, Berens C, Lührmann A (2019). Modulation of host cell metabolism by T4SS-encoding intracellular pathogens. Curr Opin Microbiol. 47:59-65.. [PudMed:30640035]
(30) Wang C, Fu J, Wang M, Cai Y, Hua X, Du Y, Yang Z, Li Y, Wang Z, Sheng H, Yin N, Liu X, Koehler JE, Yuan C (2019). Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 21(4):e12984. [PudMed:30463105]
(31) Gan N, Nakayasu ES, Hollenbeck PJ, Luo ZQ (2019). Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat Microbiol. 4(1):134-143. [PudMed:30420781]
(32) Rikihisa Y (2019). Subversion of RAB5-regulated autophagy by the intracellular pathogen Ehrlichia chaffeensis. Small GTPases. 10(5):343-349. [PudMed:28650718]
(33) Weber S, Steiner B, Welin A, Hilbi H (2018). Legionella-Containing Vacuoles Capture PtdIns(4)P-Rich Vesicles Derived from the Golgi Apparatus. MBio. 9(6). pii: e02420-18. [PudMed:30538188]
(34) Zhao Q, Busch B, Jiménez-Soto LF, Ishikawa-Ankerhold H, Massberg S, Terradot L, Fischer W, Haas R (2018). Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathog. 14(10):e1007359. [PudMed:30365569]
(35) Dmowski M, Gołębiewski M, Kern-Zdanowicz I (2018). Characteristics of the Conjugative Transfer System of the IncM Plasmid pCTX-M3 and Identification of Its Putative Regulators. J Bacteriol. 200(18). pii: e00234-18. [PudMed:29986941]
(36) Mary C, Fouillen A, Bessette B, Nanci A, Baron C (2018). Interaction via the N terminus of the type IV secretion system (T4SS) protein VirB6 with VirB10 is required for VirB2 and VirB5 incorporation into T-pili and for T4SS function. J Biol Chem. 293(35):13415-13426. [PudMed:29976757]
(37) Casu B, Mary C, Sverzhinsky A, Fouillen A, Nanci A, Baron C (2018). VirB8 homolog TraE from plasmid pKM101 forms a hexameric ring structure and interacts with the VirB6 homolog TraD. Proc Natl Acad Sci U S A. 115(23):5950-5955. [PudMed:29784815]
(38) Feige MH, Sokolova O, Pickenhahn A, Maubach G, Naumann M (2018). HopQ impacts the integrin α5β1-independent NF-κB activation by Helicobacter pylori in CEACAM expressing cells. Int J Med Microbiol. 308(5):527-533. [PudMed:29779861]
(39) Skoog EC, Morikis VA, Martin ME, Foster GA, Cai LP, Hansen LM, Li B, Gaddy JA, Simon SI, Solnick JV (2018). CagY-Dependent Regulation of Type IV Secretion in Helicobacter pylori Is Associated with Alterations in Integrin Binding. MBio. 9(3). pii: e00717-18. [PudMed:29764950]
(40) Valleau D, Quaile AT, Cui H, Xu X, Evdokimova E, Chang C, Cuff ME, Urbanus ML, Houliston S, Arrowsmith CH, Ensminger AW, Savchenko A (2018). Discovery of Ubiquitin Deamidases in the Pathogenic Arsenal of Legionella pneumophila. Cell Rep. 23(2):568-583. [PudMed:29642013]
(41) Pechstein J, Schulze-Luehrmann J, Lührmann A (2018). Coxiella burnetii as a useful tool to investigate bacteria-friendly host cell compartments. Int J Med Microbiol. 308(1):77-83. [PudMed:28935173]
(42) Steiner B, Weber S, Hilbi H (2018). Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol. 308(1):49-57. [PudMed:28865995]
(43) Christie PJ, Gomez Valero L, Buchrieser C (2017). Biological Diversity and Evolution of Type IV Secretion Systems. Curr Top Microbiol Immunol. 413:1-30. [PudMed:29536353]
(44) Qiu J, Luo ZQ (2017). Hijacking of the Host Ubiquitin Network by Legionella pneumophila. Front Cell Infect Microbiol. 7:487. [PudMed:29376029]
(45) Wessler S, Backert S (2017). A novel basolateral type IV secretion model for the CagA oncoprotein of Helicobacter pylori. Microb Cell. 5(1):60-62. [PudMed:29355242]
(46) Bärlocher K, Welin A, Hilbi H (2017). Formation of the Legionella Replicative Compartment at the Crossroads of Retrograde Trafficking. Front Cell Infect Microbiol. 7:482. [PudMed:29226112]
(47) De Leon JA, Qiu J, Nicolai CJ, Counihan JL, Barry KC, Xu L, Lawrence RE, Castellano BM, Zoncu R, Nomura DK, Luo ZQ, Vance RE (2017). Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. Cell Rep. 21(8):2031-2038. [PudMed:29166595]
(48) Shames SR, Liu L, Havey JC, Schofield WB, Goodman AL, Roy CR (2017). Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. Proc Natl Acad Sci U S A. 114(48):E10446-E10454. [PudMed:29133401]
(49) Harms A, Liesch M, Körner J, Québatte M, Engel P, Dehio C (2017). A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. PLoS Genet. 13(10):e1007077. [PudMed:29073136]
(50) Koelblen T, Bergé C, Cherrier MV, Brillet K, Jimenez-Soto L, Ballut L, Takagi J, Montserret R, Rousselle P, Fischer W, Haas R, Fronzes R, Terradot L (2017). Molecular dissection of protein-protein interactions between integrin α5β1 and the Helicobacter pylori Cag type IV secretion system.. FEBS J. 284(23):4143-4157. [PudMed:29055076]
(51) Horridge DN, Begley AA, Kim J, Aravindan N, Fan K, Forsyth MH (2017). Outer inflammatory protein a (OipA) of Helicobacter pylori is regulated by host cell contact and mediates CagA translocation and interleukin-8 response only in the presence of a functional cag pathogenicity island type IV secretion system. Pathog Dis. 75(8). [PudMed:29040466]
(52) Arriola Benitez PC, Pesce Viglietti AI, Herrmann CK, Dennis VA, Comerci DJ, Giambartolomei GH, Delpino MV (2017). Brucella abortus Promotes a Fibrotic Phenotype in Hepatic Stellate Cells, with Concomitant Activation of the Autophagy Pathway. Infect Immun. 86(1). pii: e00522-17. [PudMed:28993461]
(53) Camilo V, Sugiyama T, Touati E (2017). Pathogenesis of Helicobacter pylori infection. Helicobacter. 22 Suppl 1. [PudMed:28891130]
(54) Zimmermann S, Pfannkuch L, Al-Zeer MA, Bartfeld S, Koch M, Liu J, Rechner C, Soerensen M, Sokolova O, Zamyatina A, Kosma P, Mäurer AP, Glowinski F, Pleissner KP, Schmid M, Brinkmann V, Karlas A, Naumann M, Rother M, Machuy N, Meyer TF (2017). ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Rep. 20(10):2384-2395. [PudMed:28877472]
(55) Escoll P, Song OR, Viana F, Steiner B, Lagache T, Olivo-Marin JC, Impens F, Brodin P, Hilbi H, Buchrieser C (2017). Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host Microbe. 22(3):302-316.e7. [PudMed:28867389]
(56) Miller CN, Smith EP, Cundiff JA, Knodler LA, Bailey Blackburn J, Lupashin V, Celli J (2017). A Brucella Type IV Effector Targets the COG Tethering Complex to Remodel Host Secretory Traffic and Promote Intracellular Replication. Cell Host Microbe. 22(3):317-329.e7. [PudMed:28844886]
(57) Prevost MS, Pinotsis N, Dumoux M, Hayward RD, Waksman G (2017). The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery. Sci Rep. 7(1):9450. [PudMed:28842705]
(58) Dela Pena-Ponce MG, Jimenez MT, Hansen LM, Solnick JV, Miller LA (2017). The Helicobacter pylori type IV secretion system promotes IL-8 synthesis in a model of pediatric airway epithelium via p38 MAP kinase. PLoS One. 12(8):e0183324. [PudMed:28813514]
(59) Gall A, Gaudet RG, Gray-Owen SD, Salama NR (2017). TIFA Signaling in Gastric Epithelial Cells Initiates the cag Type 4 Secretion System-Dependent Innate Immune Response to Helicobacter pylori Infection. MBio. 8(4). pii: e01168-17. [PudMed:28811347]
(60) Tohidpour A, Gorrell RJ, Roujeinikova A, Kwok T (2017). The Middle Fragment of Helicobacter pylori CagA Induces Actin Rearrangement and Triggers Its Own Uptake into Gastric Epithelial Cells. Toxins (Basel). 9(8). pii: E237. [PudMed:28788072]
(61) Alandiyjany MN, Croxall NJ, Grove JI, Delahay RM (2017). A role for the tfs3 ICE-encoded type IV secretion system in pro-inflammatory signalling by the Helicobacter pylori Ser/Thr kinase, CtkA. PLoS One. 12(7):e0182144. [PudMed:28759055]
(62) Stein SC, Faber E1, Bats SH, Murillo T, Speidel Y, Coombs N, Josenhans C (2017). Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis. PLoS Pathog. 13(7):e1006514. [PudMed:28715499]
(63) Qiu J, Luo ZQ (2017). Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol. 15(10):591-605. [PudMed:28713154]
(64) Wang F, Qu N, Peng J, Yue C, Yuan L, Yuan Y (2017). CagA promotes proliferation and inhibits apoptosis of GES-1 cells by upregulating TRAF1/4-1BB. Mol Med Rep. 16(2):1262-1268. [PudMed:28627614]
(65) Tegtmeyer N, Neddermann M, Asche CI, Backert S (2017). Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol Microbiol. 105(3):358-372. [PudMed:28508421]
(66) Qiu J, Yu K, Fei X, Liu Y, Nakayasu ES, Piehowski PD, Shaw JB, Puvar K, Das C, Liu X, Luo ZQ (2017). A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Res. 27(7):865-881. [PudMed:28497808]
(67) Hatakeyama M (2017). Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad Ser B Phys Biol Sci. 93(4):196-219. [PudMed:28413197]
(68) Backert S, Tegtmeyer N (2017). Type IV Secretion and Signal Transduction of Helicobacter pylori CagA through Interactions with Host Cell Receptors. Toxins (Basel). 9(4). pii: E115. [PudMed:28338646]
(69) Schmölders J, Manske C, Otto A, Hoffmann C, Steiner B3, Welin A3, Becher D, Hilbi H (2017). Comparative Proteomics of Purified Pathogen Vacuoles Correlates Intracellular Replication of Legionella pneumophila with the Small GTPase Ras-related protein 1 (Rap1). Mol Cell Proteomics. 16(4):622-641. [PudMed:28183814]
(70) Liu Y, Zhu W, Tan Y, Nakayasu ES, Staiger CJ, Luo ZQ (2017). A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin. PLoS Pathog. 13(1):e1006186. [PudMed:28129393]
(71) Wang J, Feng Y, Wang C, Srinivas S, Chen C, Liao H, He E, Jiang S, Tang J (2017). Pathogenic Streptococcus strains employ novel escape strategy to inhibit bacteriostatic effect mediated by mammalian peptidoglycan recognition protein. Cell Microbiol. 19(7). [PudMed:28092693]
(72) Naumann M, Sokolova O, Tegtmeyer N, Backert S (2017). Helicobacter pylori: A Paradigm Pathogen for Subverting Host Cell Signal Transmission. Trends Microbiol. 25(4):316-328. [PudMed:28057411]
(73) Kotewicz KM, Ramabhadran V, Sjoblom N, Vogel JP, Haenssler E, Zhang M, Behringer J, Scheck RA, Isberg RR (2017). A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication. Cell Host Microbe. 21(2):169-181. [PudMed:28041930]
(74) Dong N, Niu M, Hu L, Yao Q, Zhou R, Shao F (2016). Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol. 2:16236. [PudMed:27941800]
(75) Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I, Dikic I (2016). Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell. 167(6):1636-1649.e13. [PudMed:27912065]
(76) Chen SY, Zhang RG, Duan GC (2016). Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (Review). Oncol Rep. 36(6):3087-3094. [PudMed:27748858]
(77) Königer V, Holsten L, Harrison U, Busch B, Loell E, Zhao Q, Bonsor DA, Roth A, Kengmo-Tchoupa A, Smith SI, Mueller S, Sundberg EJ, Zimmermann W, Fischer W, Hauck CR, Haas R (2016). Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat Microbiol. 2:16188. [PudMed:27748756]
(78) Schoenlaub L, Cherla R, Zhang Y, Zhang G (2016). Coxiella burnetii Avirulent Nine Mile Phase II Induces Caspase-1-Dependent Pyroptosis in Murine Peritoneal B1a B Cells. Infect Immun. 84(12):3638-3654. [PudMed:27736781]
(79) Khan M, Harms JS, Marim FM, Armon L, Hall CL, Liu YP, Banai M, Oliveira SC, Splitter GA, Smith JA (2016). he Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response. Infect Immun. 84(12):3458-3470. [PudMed:27672085]
(80) Sherwood RK, Roy CR (2016). Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. Annu Rev Microbiol. 70:413-33. [PudMed:27607556]
(81) Saju P, Murata-Kamiya N, Hayashi T, Senda Y, Nagase L, Noda S, Matsusaka K, Funata S, Kunita A, Urabe M, Seto Y, Fukayama M, Kaneda A, Hatakeyama M (2016). Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein-Barr virus. Nat Microbiol. 1:16026. [PudMed:27572445]
(82) Barrozo RM, Hansen LM, Lam AM, Skoog EC, Martin ME, Cai LP, Lin Y, Latoscha A, Suerbaum S, Canfield DR, Solnick JV (2016). CagY Is an Immune-Sensitive Regulator of the Helicobacter pylori Type IV Secretion System. Gastroenterology. 151(6):1164-1175.e3. [PudMed:27569724]
(83) Wang G, Romero-Gallo J, Benoit SL, Piazuelo MB, Dominguez RL, Morgan DR, Peek RM Jr, Maier RJ (2016). Hydrogen Metabolism in Helicobacter pylori Plays a Role in Gastric Carcinogenesis through Facilitating CagA Translocation. MBio. 7(4). pii: e01022-16. [PudMed:27531909]
(84) Popa CM, Tabuchi M, Valls M (2016). Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells. Front Cell Infect Microbiol. 6:73. [PudMed:27489796]
(85) Gruber CJ, Lang S, Rajendra VK, Nuk M, Raffl S, Schildbach JF, Zechner EL (2016). Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins. Front Mol Biosci. 3:32. [PudMed:27486582]
(86) Eisenreich W, Heuner K (2016). The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett. 590(21):3868-3886. [PudMed:27455397]
(87) Krisch LM, Posselt G, Hammerl P, Wessler S (2016). CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families. Infect Immun. 84(9):2671-80. [PudMed:27382024]
(88) Sheehan KB, Martin M, Lesser CF, Isberg RR, Newton IL (2016). Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton. MBio. 7(4). pii: e00622-16. [PudMed:27381293]
(89) Gonzalez-Rivera C, Bhatty M, Christie PJ (2016). Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr. 4(3). [PudMed:27337453]
(90) Martinez E, Allombert J, Cantet F, Lakhani A, Yandrapalli N, Neyret A, Norville IH, Favard C, Muriaux D, Bonazzi M (2016). Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc Natl Acad Sci U S A. 113(23):E3260-9. [PudMed:27226300]
(91) Varga MG, Shaffer CL, Sierra JC, Suarez G, Piazuelo MB, Whitaker ME, Romero-Gallo J, Krishna US, Delgado A, Gomez MA, Good JA, Almqvist F, Skaar EP, Correa P, Wilson KT, Hadjifrangiskou M, Peek RM (2016). Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene. 35(48):6262-6269. [PudMed:27157617]
(92) Zhao L, Mahony D, Cavallaro AS, Zhang B, Zhang J, Deringer JR, Zhao CX, Brown WC, Yu C, Mitter N, Middelberg AP (2016). Immunogenicity of Outer Membrane Proteins VirB9-1 and VirB9-2, a Novel Nanovaccine against Anaplasma marginale. PLoS One. 11(4):e0154295. [PudMed:27115492]
(93) Del Giudice MG, Döhmer PH, Spera JM, Laporte FT, Marchesini MI, Czibener C, Ugalde JE (2016). VirJ Is a Brucella Virulence Factor Involved in the Secretion of Type IV Secreted Substrates. J Biol Chem. 291(23):12383-93. [PudMed:27059960]
(94) Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES, Das C, Liu X, Luo ZQ (2016). Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature. 533(7601):120-4. [PudMed:27049943]
(95) Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chávez-Arroyo A, Tsai AY, Cevallos SA, Winter MG, Pham OH, Tiffany CR, de Jong MF, Kerrinnes T, Ravindran R, Luciw PA, McSorley SJ, Bäumler AJ, Tsolis RM (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature. 532(7599):394-7. [PudMed:27007849]
(96) Wang X, Ling F, Wang H, Yu M, Zhu H, Chen C, Qian J, Liu C, Zhang Y, Shao S (2016). The Helicobacter pylori Cag Pathogenicity Island Protein Cag1 is Associated with the Function of T4SS. Curr Microbiol. 73(1):22-30. [PudMed:26971262]
(97) Graham JG, Winchell CG, Kurten RC, Voth DE (2016). Development of an Ex Vivo Tissue Platform To Study the Human Lung Response to Coxiella burnetii. Infect Immun. 84(5):1438-1445. [PudMed:26902725]
(98) Weber MM1, Faris R1, McLachlan J1, Tellez A1, Wright WU1, Galvan G1, Luo ZQ2, Samuel JE (2016). Modulation of the host transcriptome by Coxiella burnetii nuclear effector Cbu1314. Microbes Infect. 18(5):336-45. [PudMed:26827929]
(99) Rodríguez-Escudero M, Cid VJ, Molina M, Schulze-Luehrmann J, Lührmann A, Rodríguez-Escudero I (2016). Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation. PLoS One. 11(1):e0148032. [PudMed:26821324]
(100) Bradley WP, Boyer MA, Nguyen HT, Birdwell LD, Yu J2, Ribeiro JM, Weiss SR, Zamboni DS, Roy CR, Shin S (2016). Primary Role for Toll-Like Receptor-Driven Tumor Necrosis Factor Rather than Cytosolic Immune Detection in Restricting Coxiella burnetii Phase II Replication within Mouse Macrophages. Infect Immun. 84(4):998-1015. [PudMed:26787725]
(101) Bisle S, Klingenbeck L, Borges V, Sobotta K, Schulze-Luehrmann J, Menge C, Heydel C, Gomes JP, Lührmann A (2016). The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence. 7(4):400-12. [PudMed:26760129]
(102) So EC, Schroeder GN, Carson D, Mattheis C, Mousnier A, Broncel M, Tate EW, Frankel G (2016). The Rab-binding Profiles of Bacterial Virulence Factors during Infection. J Biol Chem. 291(11):5832-43. [PudMed:26755725]
(103) Abu Khweek A, Kanneganti A, Guttridge D DC, Amer AO (2016). The Sphingosine-1-Phosphate Lyase (LegS2) Contributes to the Restriction of Legionella pneumophila in Murine Macrophages. PLoS One. 11(1):e0146410. [PudMed:26741365]
(104) Zhu W, Luo ZQ (2016). Cell biology and immunology lessons taught by Legionella pneumophila. Sci China Life Sci. 59(1):3-10. [PudMed:26596966]
(105) Wasilko DJ, Mao Y (2016). Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC. Curr Genet. 62(1):105-8. [PudMed:26433729]
(106) Arriola Benitez PC, Rey Serantes D, Herrmann CK, Pesce Viglietti AI, Vanzulli S, Giambartolomei GH, Comerci DJ, Delpino MV (2015). The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells. Infect Immun. 84(2):598-606. [PudMed:26667834]
(107) Sheedlo MJ, Qiu J, Tan Y, Paul LN, Luo ZQ, Das C (2015). Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci U S A. 112(49):15090-5. [PudMed:26598703]
(108) Ke Y, Wang Y, Li W, Chen Z (2015). Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol. 5:72. [PudMed:26528442]
(109) Rikihisa Y (2015). Molecular Pathogenesis of Ehrlichia chaffeensis Infection. Annu Rev Microbiol. 69:283-304. [PudMed:26488275]
(110) Chacón-Díaz C, Altamirano-Silva P, González-Espinoza G, Medina MC, Alfaro-Alarcón A, Bouza-Mora L, Jiménez-Rojas C, Wong M, Barquero-Calvo E, Rojas N, Guzmán-Verri C, Moreno E, Chaves-Olarte E (2015). Brucella canis is an intracellular pathogen that induces a lower proinflammatory response than smooth zoonotic counterparts. Infect Immun. 83(12):4861-70. [PudMed:26438796]
(111) Macedo AA, Silva AP, Mol JP, Costa LF, Garcia LN, Araújo MS, Martins Filho OA, Paixão TA, Santos RL (2015). The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages. PLoS One. 10(9):e0138131. [PudMed:26366863]
(112) Horenkamp FA, Kauffman KJ, Kohler LJ, Sherwood RK, Krueger KP, Shteyn V, Roy CR, Melia TJ, Reinisch KM (2015). The Legionella Anti-autophagy Effector RavZ Targets the Autophagosome via PI3P- and Curvature-Sensing Motifs. Dev Cell. 34(5):569-76. [PudMed:26343456]
(113) Isaac DT, Laguna RK, Valtz N, Isberg RR (2015). MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth. Proc Natl Acad Sci U S A. 112(37):E5208-17. [PudMed:26330609]
(114) Kohler LJ, Roy CR (2015). Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. Microbes Infect. 17(11-12):766-71. [PudMed:26327296]
(115) Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS, Beier-Sexton M, Azad AF (2015). Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog. 11(8):e1005115. [PudMed:26291822]
(116) Schroeder GN, Aurass P, Oates CV, Tate EW, Hartland EL, Flieger A, Frankel G (2015). Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor. Infect Immun. 83(10):3989-4002. [PudMed:26216420]
(117) Tafreshi M, Zwickel N, Gorrell RJ, Kwok T (2015). Preservation of Helicobacter pylori CagA Translocation and Host Cell Proinflammatory Responses in the Face of CagL Hypervariability at Amino Acid Residues 58/59. PLoS One. 10(7):e0133531. [PudMed:26196862]
(118) Haenssler E, Ramabhadran V, Murphy CS, Heidtman MI, Isberg RR (2015). Endoplasmic Reticulum Tubule Protein Reticulon 4 Associates with the Legionella pneumophila Vacuole and with Translocated Substrate Ceg9. Infect Immun. 83(9):3479-89. [PudMed:26099580]
(119) Backert S, Tegtmeyer N, Fischer W (2015). Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol. 10(6):955-65. [PudMed:26059619]
(120) So EC, Mattheis C, Tate EW, Frankel G, Schroeder GN (2015). Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol. 61(9):617-35. [PudMed:26059316]
(121) Mishra JP, Cohen D, Zamperone A, Nesic D, Muesch A, Stein M (2015). CagA of Helicobacter pylori interacts with and inhibits the serine-threonine kinase PRK2. Cell Microbiol. 17(11):1670-82. [PudMed:26041307]
(122) Rennoll-Bankert KE, Garcia-Garcia JC, Sinclair SH, Dumler JS (2015). Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol. 17(11):1640-52. [PudMed:25996657]
(123) Haley KP, Delgado AG, Piazuelo MB, Mortensen BL, Correa P, Damo SM, Chazin WJ, Skaar EP, Gaddy JA (2015). The Human Antimicrobial Protein Calgranulin C Participates in Control of Helicobacter pylori Growth and Regulation of Virulence. Infect Immun. 83(7):2944-56. [PudMed:25964473]
(124) Michard C, Sperandio D, Baïlo N, Pizarro-Cerdá J, LeClaire L, Chadeau-Argaud E, Pombo-Grégoire I, Hervet E, Vianney A, Gilbert C, Faure M, Cossart P, Doublet P (2015). The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway. MBio. 6(3):e00354-15. [PudMed:25944859]
(125) Asrat S, Davis KM, Isberg RR (2015). Modulation of the host innate immune and inflammatory response by translocated bacterial proteins. Cell Microbiol. 17(6):785-795. [PudMed:25850689]
(126) Schätzle S, Specht M, Waidner B (2015). Coiled coil rich proteins (Ccrp) influence molecular pathogenicity of Helicobacter pylori. PLoS One. 10(3):e0121463. [PudMed:25822999]
(127) Sohn YS, Shin HC, Park WS, Ge J, Kim CH, Lee BL, Heo WD, Jung JU, Rigden DJ, Oh BH (2015). Lpg0393 of Legionella pneumophila is a guanine-nucleotide exchange factor for Rab5, Rab21 and Rab22. PLoS One. 10(3):e0118683. [PudMed:25821953]
(128) Lina TT, Alzahrani S, House J, Yamaoka Y, Sharpe AH, Rampy BA, Pinchuk IV, Reyes VE (2015). Helicobacter pylori cag pathogenicity island's role in B7-H1 induction and immune evasion. PLoS One. 10(3):e0121841. [PudMed:25807464]
(129) Jeong KC, Sexton JA, Vogel JP (2015). Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog. 11(3):e1004695. [PudMed:25774515]
(130) Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G, Sticht H, Backert S, Blaser MJ (2015). A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions. PLoS Pathog. 11(2):e1004621. [PudMed:25646814]
(131) O'Brien KM, Lindsay EL, Starai VJ (2015). The Legionella pneumophila effector protein, LegC7, alters yeast endosomal trafficking. PLoS One. 10(2):e0116824. [PudMed:25643265]
(132) Barden S, Niemann HH (2015). Adhesion of several cell lines to Helicobacter pylori CagL is mediated by integrin αVβ6 via an RGDLXXL motif. J Mol Biol. 427(6 Pt B):1304-1315. [PudMed:25617764]
(133) Pollak CN, Wanke MM, Estein SM, Delpino MV, Monachesi NE, Comercio EA, Fossati CA, Baldi PC (2015). Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs. Clin Vaccine Immunol. 22(3):274-81. [PudMed:25540276]
(134) Siamer S, Dehio C (2015). New insights into the role of Bartonella effector proteins in pathogenesis. Curr Opin Microbiol. 23:80-5. [PudMed:25461577]
(135) Portier E, Zheng H, Sahr T, Burnside DM, Mallama C, Buchrieser C, Cianciotto NP, Héchard Y (2015). IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages. Environ Microbiol. 17(4):1338-50. [PudMed:25141909]
(136) Price CT, Abu Kwaik Y (2014). The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages. PLoS One. 9(12):e114914. [PudMed:25485627]
(137) Silva TM, Mol JP, Winter MG, Atluri V, Xavier MN, Pires SF, Paixão TA, Andrade HM, Santos RL, Tsolis RM (2014). The predicted ABC transporter AbcEDCBA is required for type IV secretion system expression and lysosomal evasion by Brucella ovis. PLoS One. 9(12):e114532. [PudMed:25474545]
(138) Gaddy JA, Radin JN, Loh JT, Piazuelo MB, Kehl-Fie TE, Delgado AG, Ilca FT, Peek RM, Cover TL, Chazin WJ, Skaar EP, Scott Algood HM (2014). The host protein calprotectin modulates the Helicobacter pylori cag type IV secretion system via zinc sequestration. PLoS Pathog. 10(10):e1004450. [PudMed:25330071]
(139) Mol JP, Costa EA, Carvalho AF, Sun YH, Tsolis RM, Paixão TA, Santos RL (2014). Early transcriptional responses of bovine chorioallantoic membrane explants to wild type, ΔvirB2 or ΔbtpB Brucella abortus infection. PLoS One. 9(9):e108606. [PudMed:25259715]
(140) Mousnier A, Schroeder GN, Stoneham CA, So EC, Garnett JA, Yu L, Matthews SJ, Choudhary JS, Hartland EL, Frankel G (2014). A new method to determine in vivo interactomes reveals binding of the Legionella pneumophila effector PieE to multiple rab GTPases. MBio. 5(4). pii: e01148-14. [PudMed:25118235]
(141) Guimarães NM, Azevedo NF, Vieira MJ, Figueiredo C (2014). Water-induced modulation of Helicobacter pylori virulence properties. Mem Inst Oswaldo Cruz. 109(4):414-9. [PudMed:25075780]
(142) Asrat S, Dugan AS, Isberg RR (2014). The frustrated host response to Legionella pneumophila is bypassed by MyD88-dependent translation of pro-inflammatory cytokines. PLoS Pathog. 10(7):e1004229. [PudMed:25058342]
(143) Darby A, Lertpiriyapong K, Sarkar U, Seneviratne U, Park DS, Gamazon ER, Batchelder C, Cheung C, Buckley EM, Taylor NS, Shen Z, Tannenbaum SR, Wishnok JS, Fox JG (2014). Cytotoxic and pathogenic properties of Klebsiella oxytoca isolated from laboratory animals. PLoS One. 9(7):e100542. [PudMed:25057966]
(144) Lee DG, Kim HS, Lee YS, Kim S, Cha SY, Ota I, Kim NH, Cha YH, Yang DH, Lee Y, Park GJ, Yook JI, Lee Y (2014). Helicobacter pylori CagA promotes Snail-mediated epithelial-mesenchymal transition by reducing GSK-3 activity. Nat Commun. 5:4423. [PudMed:25055241]
(145) Dolinsky S, Haneburger I, Cichy A, Hannemann M, Itzen A, Hilbi H (2014). The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect Immun. 82(10):4021-33. [PudMed:25024371]
(146) Hsu F, Luo X, Qiu J, Teng YB, Jin J, Smolka MB, Luo ZQ, Mao Y (2014). The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A. 111(29):10538-43. [PudMed:25006264]
(147) Heimesaat MM, Fischer A, Plickert R1, Wiedemann T, Loddenkemper C, Göbel UB, Bereswll S, Rieder G (2014). Helicobacter pylori induced gastric immunopathology is associated with distinct microbiota changes in the large intestines of long-term infected Mongolian gerbils. PLoS One. 9(6):e100362. [PudMed:24941045]
(148) Dunne C, Dolan B, Clyne M (2014). Factors that mediate colonization of the human stomach by Helicobacter pylori. World J Gastroenterol. 20(19):5610-24. [PudMed:24914320]
(149) Gorvel JP (2014). "If you bring an alarm, we will destroy it," said Brucella to the host cell. Virulence. 5(4):460-2. [PudMed:24786767]
(150) Isaac DT, Isberg R (2014). Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol. 9(3):343-59. [PudMed:24762308]
(151) Eckart RA, Bisle S, Schulze-Luehrmann J, Wittmann I, Jantsch J, Schmid B, Berens C, Lührmann A (2014). Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect Immun. 82(7):2763-71. [PudMed:24733095]
(152) Martinez E, Cantet F, Fava L, Norville I, Bonazzi M (2014). Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog. 10(3):e1004013. [PudMed:24651569]
(153) Winchell CG, Graham JG, Kurten RC, Voth DE (2014). Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes. Infect Immun. 82(6):2229-38. [PudMed:24643534]
(154) Gaspar AH, Machner MP (2014). VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc Natl Acad Sci U S A. 111(12):4560-5. [PudMed:24616501]
(155) Del Campo CM, Mishra AK, Wang YH, Roy CR, Janmey PA, Lambright DG (2014). Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 22(3):397-408. [PudMed:24530282]
(156) Hardiman CA, Roy CR (2014). AMPylation is critical for Rab1 localization to vacuoles containing Legionella pneumophila. MBio. 5(1):e01035-13. [PudMed:24520063]
(157) Horenkamp FA, Mukherjee S, Alix E, Schauder CM, Hubber AM, Roy CR, Reinisch KM. (2014). Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic. 15(5):488-99. [PudMed:24483784]
(158) Weber S, Wagner M, Hilbi H (2014). Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection. MBio. 5(1):e00839-13. [PudMed:24473127]
(159) Sokolova O, Maubach G, Naumann M2 (2014). MEKK3 and TAK1 synergize to activate IKK complex in Helicobacter pylori infection. Biochim Biophys Acta. 1843(4):715-24. [PudMed:24418622]
(160) Guo Z, Stephenson R, Qiu J, Zheng S, Luo ZQ (2014). A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes Infect. 16(3):225-36. [PudMed:24286927]
(161) Macdonald LJ, Graham JG, Kurten RC, Voth DE (2014). Coxiella burnetii exploits host cAMP-dependent protein kinase signalling to promote macrophage survival. Cell Microbiol. 16(1):146-59. [PudMed:24028560]
(162) Pachathundikandi SK, Tegtmeyer N, Backert S (2013). Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes. 4(6):454-74. [PudMed:24280762]
(163) Bonsor DA, Weiss E, Iosub-Amir A, Reingewertz TH, Chen TW, Haas R, Friedler A, Fischer W, Sundberg EJ (2013). Characterization of the translocation-competent complex between the Helicobacter pylori oncogenic protein CagA and the accessory protein CagF. J Biol Chem. 288(46):32897-909. [PudMed:24072713]
(164) Rothmeier E, Pfaffinger G, Hoffmann C, Harrison CF, Grabmayr H, Repnik U, Hannemann M, Wölke S, Bausch A, Griffiths G, Müller-Taubenberger A, Itzen A, Hilbi H (2013). Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog. 9(9):e1003598. [PudMed:24068924]
(165) Kumar N, Shariq M, Kumari R, Tyagi RK, Mukhopadhyay G (2013). Cag type IV secretion system: CagI independent bacterial surface localization of CagA. PLoS One. 8(9):e74620. [PudMed:24040297]
(166) Harding CR, Mattheis C, Mousnier A, Oates CV, Hartland EL, Frankel G, Schroeder GN (2013). LtpD is a novel Legionella pneumophila effector that binds phosphatidylinositol 3-phosphate and inositol monophosphatase IMPA1. Infect Immun. 81(11):4261-70. [PudMed:24002062]
(167) Sokolova O, Borgmann M, Rieke C, Schweitzer K, Rothkötter HJ, Naumann M (2013). Helicobacter pylori induces type 4 secretion system-dependent, but CagA-independent activation of IκBs and NF-κB/RelA at early time points. Int J Med Microbiol. 303(8):548-52. [PudMed:23972614]
(168) Ripoll-Rozada J, Zunzunegui S, de la Cruz F, Arechaga I, Cabezón E (2013). Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J Bacteriol. 195(18):4195-201. [PudMed:23852869]
(169) Mishra AK, Del Campo CM, Collins RE, Roy CR, Lambright DG (2013). The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism. J Biol Chem. 288(33):24000-11. [PudMed:23821544]
(170) Li T, Lu Q, Wang G, Xu H, Huang H, Cai T, Kan B, Ge J, Shao F (2013). SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep. 14(8):733-40. [PudMed:23797873]
(171) Belogolova E, Bauer B, Pompaiah M, Asakura H, Brinkman V, Ertl C, Bartfeld S, Nechitaylo TY, Haas R, Machuy N, Salama N, Churin Y, Meyer TF (2013). Helicobacter pylori outer membrane protein HopQ identified as a novel T4SS-associated virulence factor. Cell Microbiol. 15(11):1896-912. [PudMed:23782461]
(172) Zhu W, Hammad LA, Hsu F, Mao Y, Luo ZQ (2013). Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates. Cell Microbiol. 15(11):1783-95. [PudMed:23773455]
(173) Casson CN, Copenhaver AM, Zwack EE, Nguyen HT, Strowig T, Javdan B, Bradley WP, Fung TC, Flavell RA, Brodsky IE, Shin S (2013). Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog. 9(6):e1003400. [PudMed:23762026]
(174) Sánchez-Zauco NA, Torres J, Pérez-Figueroa GE, Álvarez-Arellano L, Camorlinga-Ponce M, Gómez A, Giono-Cerezo S, Maldonado-Bernal C (2013). Impact of cagPAI and T4SS on the inflammatory response of human neutrophils to Helicobacter pylori infection. PLoS One. 8(6):e64623. [PudMed:23755130]
(175) Segura RL, Aguila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goñi FM, Alkorta I (2013). The transmembrane domain of the T4SS coupling protein TrwB and its role in protein-protein interactions. Biochim Biophys Acta. 1828(9):2015-25. [PudMed:23735543]
(176) Chen Y, Tascón I, Neunuebel MR, Pallara C, Brady J, Kinch LN, Fernández-Recio J, Rojas AL, Machner MP, Hierro A (2013). Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD. PLoS Pathog. 9(5):e1003382. [PudMed:23696742]
(177) Yu Q, Hu L, Yao Q, Zhu Y, Dong N, Wang DC, Shao F (2013). Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP. Cell Res. 23(6):775-87. [PudMed:23588383]
(178) Chen Y, Machner MP (2013). Targeting of the small GTPase Rab6A' by the Legionella pneumophila effector LidA. Infect Immun. 81(6):2226-35. [PudMed:23569112]
(179) Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN, Frankel G, Flieger A (2013). The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem. 288(16):11080-92. [PudMed:23457299]
(180) Petersen E, Rajashekara G, Sanakkayala N, Eskra L, Harms J, Splitter G (2013). Erythritol triggers expression of virulence traits in Brucella melitensis. Microbes Infect. 15(6-7):440-9. [PudMed:23421980]
(181) Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, Hassan H, Majumdar N, Doran A, Guirado E, Schlesinger LS, Shuman H, Amer AO (2013). A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol. 43(5):1333-44. [PudMed:23420491]
(182) Papadakos KS, Sougleri IS, Mentis AF, Hatziloukas E, Sgouras DN (2013). Presence of terminal EPIYA phosphorylation motifs in Helicobacter pylori CagA contributes to IL-8 secretion, irrespective of the number of repeats. PLoS One. 8(2):e56291. [PudMed:23409168]
(183) Niu H, Rikihisa Y (2013). Ats-1: a novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy. 9(5):787-8. [PudMed:23388398]
(184) Newton HJ, McDonough JA, Roy CR (2013). Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PLoS One. 8(1):e54566. [PudMed:23349930]
(185) Graham JG, MacDonald LJ, Hussain SK, Sharma UM, Kurten RC, Voth DE (2013). Virulent Coxiella burnetii pathotypes productively infect primary human alveolar macrophages.. Cell Microbiol. 15(6):1012-25. [PudMed:23279051]
(186) Klingenbeck L, Eckart RA, Berens C, Lührmann A (2013). The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell Microbiol. 15(4):675-87. [PudMed:23126667]
(187) Dorer MS, Cohen IE, Sessler TH, Fero J, Salama NR (2013). Natural competence promotes Helicobacter pylori chronic infection. Infect Immun. 81(1):209-15. [PudMed:23115044]
(188) Gobert AP, Verriere T, de Sablet T, Peek RM Jr, Chaturvedi R, Wilson KT (2013). Haem oxygenase-1 inhibits phosphorylation of the Helicobacter pylori oncoprotein CagA in gastric epithelial cells. Cell Microbiol. 15(1):145-56. [PudMed:23051580]
(189) Shukla SK, Prasad KN, Tripathi A, Jaiswal V, Khatoon J, Ghsohal UC, Krishnani N, Husain N (2013). Helicobacter pylori cagL amino acid polymorphisms and its association with gastroduodenal diseases. Gastric Cancer. 16(3):435-9. [PudMed:22941498]
(190) Ku B, Lee KH, Park WS, Yang CS, Ge J, Lee SG, Cha SS, Shao F, Heo WD, Jung JU, Oh BH (2012). VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog. 8(12):e1003082. [PudMed:23271971]
(191) Tsugawa H, Suzuki H, Saya H, Hatakeyama M, Hirayama T, Hirata K, Nagano O, Matsuzaki J, Hibi T (2012). Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe. 12(6):764-77. [PudMed:23245321]
(192) Hardiman CA, McDonough JA, Newton HJ, Roy CR (2012). The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii. Biochem Soc Trans. 40(6):1353-9. [PudMed:23176480]
(193) Choy A, Dancourt J, Mugo B, O'Connor TJ, Isberg RR, Melia TJ, Roy CR (2012). The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science. 338(6110):1072-6. [PudMed:23112293]
(194) Smith MA, Coinçon M, Paschos A, Jolicoeur B, Lavallée P, Sygusch J, Baron C (2012). Identification of the binding site of Brucella VirB8 interaction inhibitors. Chem Biol. 19(8):1041-8. [PudMed:22921071]
(195) Vincent CD et al (2012). Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol. . [PudMed:22694730]
(196) Villamil Giraldo AM et al (2012). Type IV Secretion System Core Component VirB8 from Brucella Binds to the Globular Domain of VirB5 and to a Periplasmic Domain of VirB6. Biochemistry. 51(18):3881-90. [PudMed:22515661]
(197) Pham KT et al (2012). CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL. PLoS One. 7(4):e35341. [PudMed:22493745]
(198) Ge J, Gong YN, Xu Y, Shao F (2012). Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc Natl Acad Sci U S A. 109(16):6193-8. [PudMed:22474394]
(199) Franco IS, Shohdy N, Shuman HA (2012). The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog. 8(2):e1002546. [PudMed:22383880]
(200) Creasey EA, Isberg RR (2012). The protein SdhA maintains the integrity of the Legionella-containiCreasey EA1, Isberg RR.ng vacuole. Proc Natl Acad Sci U S A. 109(9):3481-6. [PudMed:22308473]
(201) Jank T, Böhmer KE, Tzivelekidis T, Schwan C, Belyi Y, Aktories K (2012). Domain organization of Legionella effector SetA. Cell Microbiol. 14(6):852-68. [PudMed:22288428]
(202) Wiedemann T, Hofbaur S, Tegtmeyer N, Huber S, Sewald N, Wessler S, Backert S, Rieder G (2012). Helicobacter pylori CagL dependent induction of gastrin expression via a novel αvβ5-integrin-integrin linked kinase signalling complex. Gut. 61(7):986-96. [PudMed:22287591]
(203) Morse K et al (2012). Association and evidence for linked recognition of type IV secretion system proteins VirB9-1, VirB9-2, and VirB10 in Anaplasma marginale. Infect Immun. 80(1):215-27. [PudMed:22038917]
(204) Conradi J et al (2012). Cyclic RGD peptides interfere with binding of the Helicobacter pylori protein CagL to integrins alpha(V)beta (3) and alpha (5)beta (1). Amino Acids. 43(1):219-32. [PudMed:21915696]
(205) Dubreuil R et al (2011). Bringing host-cell takeover by pathogenic bacteria to center stage. Cell Logist. 1(4):120-124. [PudMed:22279609]
(206) Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011). Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science. 334(6062):1553-7. [PudMed:22096100]
(207) Lang S et al (2011). An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol. 82(5):1071-85. [PudMed:22066957]
(208) Backert S et al (2011). Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal. 9:28. [PudMed:22044679]
(209) Wessler S et al (2011). Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells. Cell Commun Signal. 9(1):27. [PudMed:22044652]
(210) Truttmann MC et al (2011). BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures. PLoS One. 6(10):e25106. [PudMed:22043280]
(211) Berry TM et al (2011). Caught in the act: the dialogue between bacteriophage R17 and the type IV secretion machine of plasmid R1. Mol Microbiol. 82(5):1039-43. [PudMed:22023392]
(212) Schoebel S, Cichy AL, Goody RS, Itzen A (2011). Protein LidA from Legionella is a Rab GTPase supereffector. Proc Natl Acad Sci U S A. 108(44):17945-50. [PudMed:22011575]
(213) Jain S et al (2011). Processing and maturation of the pilin of the type IV secretion system encoded within the gonococcal genetic island. J Biol Chem. 286(51):43601-10. [PudMed:22006923]
(214) Fernandez-Gonzalez E et al (2011). Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J Bacteriol. 193(22):6257-65. [PudMed:21908662]
(215) Backert S et al (2011). Pathogenesis of Helicobacter pylori infection. Helicobacter. 16 Suppl 1:19-25. [PudMed:21896081]
(216) Hilbi H et al (2011). Anchors for effectors: subversion of phosphoinositide lipids by legionella. Front Microbiol. 2:91. [PudMed:21833330]
(217) Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE, Roy CR (2011). Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature. 477(7362):103-6. [PudMed:21822290]
(218) Andrieux L et al (2011). A single amino acid change in the transmembrane domain of the VirB8 protein affects dimerization, interaction with VirB10 and Brucella suis virulence. FEBS Lett. 585(15):2431-6. [PudMed:21763312]
(219) Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A, Machner MP (2011). De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science. 333(6041):453-6. [PudMed:21680813]
(220) de Barsy M et al (2011). Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol. 13(7):1044-58. [PudMed:21501366]
(221) Sivanesan D et al (2011). The dimer interface of Agrobacterium tumefaciens VirB8 is important for type IV secretion system function, stability, and association of VirB2 with the core complex. J Bacteriol. 193(9):2097-106. [PudMed:21398549]
(222) Terradot L et al (2011). Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J. 278(8):1213-22. [PudMed:21352491]
(223) Tegtmeyer N et al (2011). Role of Abl and Src family kinases in actin-cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein. Eur J Cell Biol. 90(11):880-90. [PudMed:21247656]
(224) Paschos A et al (2011). An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect Immun. 79(3):1033-43. [PudMed:21173315]
(225) Jurik A et al (2010). The coupling protein Cagbeta and its interaction partner CagZ are required for type IV secretion of the Helicobacter pylori CagA protein. Infect Immun. 78(12):5244-51. [PudMed:20876293]
(226) Olbermann P et al (2010). A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6(8):e1001069. [PudMed:20808891]
(227) Hutton ML et al (2010). Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun. 78(11):4523-31. [PudMed:20713621]
(228) Kerr JE et al (2010). Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol. 192(19):4923-34. [PudMed:20656905]
(229) Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A (2010). The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science. 329(5994):946-9. [PudMed:20651120]
(230) Wallden K et al (2010). Type IV secretion systems: versatility and diversity in function. Cell Microbiol. 12(9):1203-12. [PudMed:20642798]
(231) Waksman G et al (2010). Molecular architecture of bacterial type IV secretion systems. Trends Biochem Sci. 35(12):691-8. [PudMed:20621482]
(232) Murata-Kamiya N et al (2010). Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe. 7(5):399-411. [PudMed:20478541]
(233) Tsai YL et al (2010). The small heat-shock protein HspL is a VirB8 chaperone promoting type IV secretion-mediated DNA transfer. J Biol Chem. 285(26):19757-66. [PudMed:20427270]
(234) Sivanesan D et al (2010). Quantitative analysis of VirB8-VirB9-VirB10 interactions provides a dynamic model of type IV secretion system core complex assembly. Biochemistry. 49(21):4483-93. [PudMed:20426418]
(235) de Paz HD et al (2010). Functional dissection of the conjugative coupling protein TrwB. J Bacteriol. 192(11):2655-69. [PudMed:20363945]
(236) Mossey P et al (2010). Agrobacterium tumefaciens type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization. J Bacteriol. 192(11):2830-8. [PudMed:20348257]
(237) Lee IO, Kim JH, Choi YJ, Pillinger MH, Kim SY, Blaser MJ, Lee YC (2010). Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem. 285(21):16042-50. [PudMed:20348091]
(238) Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C (2010). The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol. 12(9):1272-91. [PudMed:20345489]
(239) Xu L et al (2010). Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 6(3):e1000822. [PudMed:20333253]
(240) Zhu Y et al (2010). Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc Natl Acad Sci U S A. 107(10):4699-704. [PudMed:20176951]
(241) Niu H et al (2010). Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog. 6(2):e1000774. [PudMed:20174550]
(242) Losick VP, Haenssler E, Moy MY, Isberg RR (2010). LnaB: a Legionella pneumophila activator of NF-kappaB. Cell Microbiol. 12(8):1083-97. [PudMed:20148897]
(243) Rego AT et al (2010). Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J. 425(3):475-88. [PudMed:20070257]
(244) Habyarimana F, Price CT, Santic M, Al-Khodor S, Kwaik YA (2010). Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect Immun. 78(3):1123-34. [PudMed:20028808]
(245) Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009). RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell. 36(6):1060-72. [PudMed:20064470]
(246) Jimenez-Soto LF et al (2009). Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog. 5(12):e1000684. [PudMed:19997503]
(247) Monroe KM, McWhirter SM, Vance RE (2009). Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog. 5(11):e1000665. [PudMed:19936053]
(248) Lamb A, Yang XD, Tsang YH, Li JD, Higashi H, Hatakeyama M, Peek RM, Blanke SR, Chen LF (2009). Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep. 10(11):1242-9. [PudMed:19820695]
(249) Mihajlovic S et al (2009). Plasmid r1 conjugative DNA processing is regulated at the coupling protein interface. J Bacteriol. 191(22):6877-87. [PudMed:19767437]
(250) Fronzes R et al (2009). The structural biology of type IV secretion systems. Nat Rev Microbiol. 7(10):703-14. [PudMed:19756009]
(251) Urwyler S et al (2009). Endosomal and secretory markers of the Legionella-containing vacuole. Commun Integr Biol. 2(2):107-9. [PudMed:19704903]
(252) Lim JW, Kim KH, Kim H (2009). alphaPix interacts with Helicobacter pylori CagA to induce IL-8 expression in gastric epithelial cells. Scand J Gastroenterol. 44(10):1166-72. [PudMed:19672789]
(253) Ge J et al (2009). A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci U S A. 106(33):13725-30. [PudMed:19666608]
(254) Oliveira MJ et al (2009). CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype. J Infect Dis. 200(5):745-55. [PudMed:19604117]
(255) Rasis M et al (2009). The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol. 72(4):995-1010. [PudMed:19400807]
(256) Bourg G et al (2009). Interactions between Brucella suis VirB8 and its homolog TraJ from the plasmid pSB102 underline the dynamic nature of type IV secretion systems. J Bacteriol. 191(9):2985-92. [PudMed:19251859]
(257) Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, Nagai S, Koyasu S, Gilman RH, Kersulyte D, Berg DE, Sasakawa C (2009). Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 5(1):23-34. [PudMed:19154985]
(258) Bauer B, Bartfeld S, Meyer TF (2009). H. pylori selectively blocks EGFR endocytosis via the non-receptor kinase c-Abl and CagA. Cell Microbiol. 11(1):156-69. [PudMed:19016792]
(259) Heidtman M, Chen EJ, Moy MY, Isberg RR (2009). Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol. 11(2):230-48. [PudMed:19016775]
(260) Hatakeyama M (2008). Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA. Oncogene. 27(55):7047-54. [PudMed:19029944]
(261) de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA (2008). Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 4(8):e1000117. [PudMed:18670632]
(262) Delahay RM et al (2008). The highly repetitive region of the Helicobacter pylori CagY protein comprises tandem arrays of an alpha-helical repeat module. J Mol Biol. 377(3):956-71. [PudMed:18295231]
(263) Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT, Garcia MT, Kwaik YA (2008). Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol. 10(6):1460-74. [PudMed:18279343]
(264) Hatakeyama M (2008). SagA of CagA in Helicobacter pylori pathogenesis. Curr Opin Microbiol. 11(1):30-7. [PudMed:18243773]
(265) Kutter S et al (2008). Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol. 190(6):2161-71. [PudMed:18178731]
(266) Aly KA et al (2008). The type IV secretion system component VirB5 binds to the trans-zeatin biosynthetic enzyme Tzs and enables its translocation to the cell surface of Agrobacterium tumefaciens. J Bacteriol. 190(5):1595-604. [PudMed:18165307]
(267) Rolan HG et al (2008). VirB12 is a serological marker of Brucella infection in experimental and natural hosts. Clin Vaccine Immunol. 15(2):208-14. [PudMed:18077620]
(268) Cambronne ED et al (2007). The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3(12):e188. [PudMed:18069892]
(269) Mimuro H, Suzuki T, Nagai S, Rieder G, Suzuki M, Nagai T, Fujita Y, Nagamatsu K, Ishijima N, Koyasu S, Haas R, Sasakawa C (2007). Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe. 2(4):250-63. [PudMed:18005743]
(270) Aly KA et al (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology. 153(Pt 11):3766-75. [PudMed:17975085]
(271) Hare S et al (2007). Identification, structure and mode of action of a new regulator of the Helicobacter pylori HP0525 ATPase. EMBO J. 26(23):4926-34. [PudMed:17972918]
(272) Ingmundson A, Delprato A, Lambright DG, Roy CR (2007). Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature. 450(7168):365-9. [PudMed:17952054]
(273) Pattis I et al (2007). The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology. 153(Pt 9):2896-909. [PudMed:17768234]
(274) Zupan J et al (2007). VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol. 189(18):6551-63. [PudMed:17631630]
(275) Baek HY et al (2007). Interaction between the Helicobacter pylori CagA and alpha-Pix in gastric epithelial AGS cells. Ann N Y Acad Sci. 1096:18-23. [PudMed:17405911]
(276) IJdo JW, Carlson AC, Kennedy EL (2007). Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell Microbiol. 9(5):1284-96. [PudMed:17250594]
(277) Bayliss R et al (2007). NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc Natl Acad Sci U S A. 104(5):1673-8. [PudMed:17244707]
(278) Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, Aburatani H, Akiyama T, Peek RM Jr, Azuma T, Hatakeyama M (2007). Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 26(32):4617-26. [PudMed:17237808]
(279) Moese S, Selbach M, Brinkmann V, Karlas A, Haimovich B, Backert S, Meyer TF (2007). The Helicobacter pylori CagA protein disrupts matrix adhesion of gastric epithelial cells by dephosphorylation of vinculin. Cell Microbiol. 9(5):1148-61. [PudMed:17217431]
(280) Baron C (2006). VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem Cell Biol. 84(6):890-9. [PudMed:17215876]
(281) Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K (2006). Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A. 103(45):16953-8. [PudMed:17068130]
(282) Vincent CD et al (2006). The Legionella pneumophila IcmS-LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol Microbiol. 61(3):596-613. [PudMed:16803597]
(283) Busler VJ et al (2006). Protein-protein interactions among Helicobacter pylori cag proteins. J Bacteriol. 188(13):4787-800. [PudMed:16788188]
(284) Weber SS et al (2006). Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog. 2(5):e46. [PudMed:16710455]
(285) Paschos A et al (2006). Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc Natl Acad Sci U S A. 103(19):7252-7. [PudMed:16648257]
(286) Robinson CG, Roy CR (2006). Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell Microbiol. 8(5):793-805. [PudMed:16611228]
(287) Bailey S et al (2006). Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci U S A. 103(8):2582-7. [PudMed:16481621]
(288) Couturier MR et al (2006). Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun. 74(1):273-81. [PudMed:16368981]
(289) Carle A et al (2006). The Brucella suis type IV secretion system assembles in the cell envelope of the heterologous host Agrobacterium tumefaciens and increases IncQ plasmid pLS1 recipient competence. Infect Immun. 74(1):108-17. [PudMed:16368963]
(290) Walker DH et al (2005). Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi. Ann N Y Acad Sci. 1063:13-25. [PudMed:16481486]
(291) Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C (2005). Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med. 202(9):1235-47. [PudMed:16275761]
(292) de Paz HD et al (2005). Functional interactions between type IV secretion systems involved in DNA transfer and virulence. Microbiology. 151(Pt 11):3505-16. [PudMed:16272374]
(293) Hoppner C et al (2005). The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology. 151(Pt 11):3469-82. [PudMed:16272371]
(294) Cascales E et al (2005). Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol. 58(2):565-79. [PudMed:16194240]
(295) Christie PJ et al (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol. 59:451-85. [PudMed:16153176]
(296) Chang B, Kura F, Amemura-Maekawa J, Koizumi N, Watanabe H (2005). Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. Infect Immun. 73(7):4272-80. [PudMed:15972519]
(297) Yuan Q et al (2005). Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem. 280(28):26349-59. [PudMed:15901731]
(298) Shohdy N, Efe JA, Emr SD, Shuman HA (2005). Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A. 102(13):4866-71. [PudMed:15781869]
(299) Alegria MC et al (2005). Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. J Bacteriol. 187(7):2315-25. [PudMed:15774874]
(300) Amor JC, Swails J, Zhu X, Roy CR, Nagai H, Ingmundson A, Cheng X, Kahn RA (2005). The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem. 280(2):1392-400. [PudMed:15520000]
(301) Cascales E et al (2004). Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A. 101(49):17228-33. [PudMed:15569944]
(302) Atmakuri K et al (2004). Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol. 54(5):1199-211. [PudMed:15554962]
(303) Hwang HH et al (2004). Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell. 16(11):3148-67. [PudMed:15494553]
(304) Beranek A et al (2004). Thirty-eight C-terminal amino acids of the coupling protein TraD of the F-like conjugative resistance plasmid R1 are required and sufficient to confer binding to the substrate selector protein TraM. J Bacteriol. 186(20):6999-7006. [PudMed:15466052]
(305) Noirot P et al (2004). Protein interaction networks in bacteria. Curr Opin Microbiol. 7(5):505-12. [PudMed:15451506]
(306) Hatakeyama M (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer. 4(9):688-94. [PudMed:15343275]
(307) Jakubowski SJ et al (2004). Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. J Mol Biol. 341(4):961-77. [PudMed:15328612]
(308) Harris RL et al (2004). Tra proteins characteristic of F-like type IV secretion systems constitute an interaction group by yeast two-hybrid analysis. J Bacteriol. 186(16):5480-5. [PudMed:15292150]
(309) Shamaei-Tousi A et al (2004). Interaction between protein subunits of the type IV secretion system of Bartonella henselae. J Bacteriol. 186(14):4796-801. [PudMed:15231811]
(310) Llosa M et al (2004). Euroconference on the Biology of Type IV Secretion Processes: bacterial gates into the outer world. Mol Microbiol. 53(1):1-8. [PudMed:15225298]
(311) Terradot L et al (2004). Biochemical characterization of protein complexes from the Helicobacter pylori protein interaction map: strategies for complex formation and evidence for novel interactions within type IV secretion systems. Mol Cell Proteomics. 3(8):809-19. [PudMed:15133060]
(312) Malek JA et al (2004). Protein interaction mapping on a functional shotgun sequence of Rickettsia sibirica. Nucleic Acids Res. 32(3):1059-64. [PudMed:14872061]
(313) Luo ZQ, Isberg RR (2004). Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A. 20;101(3):841-6. [PudMed:14715899]
(314) Cascales E et al (2003). The versatile bacterial type IV secretion systems. Nat Rev Microbiol. 1(2):137-49. [PudMed:15035043]
(315) Atmakuri K et al (2003). VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol. 49(6):1699-713. [PudMed:12950931]
(316) Llosa M et al (2003). Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A. 100(18):10465-70. [PudMed:12925737]
(317) Gilmour MW et al (2003). Interaction between the IncHI1 plasmid R27 coupling protein and type IV secretion system: TraG associates with the coiled-coil mating pair formation protein TrhB. Mol Microbiol. 49(1):105-16. [PudMed:12823814]
(318) Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S (2003). Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science. 300(5624):1430-4. [PudMed:12775840]
(319) Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M (2003). Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol. 161(2):249-55. [PudMed:12719469]
(320) Jakubowski SJ et al (2003). Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol. 185(9):2867-78. [PudMed:12700266]
(321) Ding Z et al (2002). A novel cytology-based, two-hybrid screen for bacteria applied to protein-protein interaction studies of a type IV secretion system. J Bacteriol. 184(20):5572-82. [PudMed:12270814]
(322) Krall L et al (2002). Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 99(17):11405-10. [PudMed:12177443]
(323) Ward DV et al (2002). Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A. 99(17):11493-500. [PudMed:12177441]
(324) Schroder G et al (2002). TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates. J Bacteriol. 184(10):2767-79. [PudMed:11976307]
(325) Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR. (2002). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes.. Science. 295(5555):679-82. [PudMed:11809974]
(326) Dumenil G et al (2001). The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Mol Microbiol. 40(5):1113-27. [PudMed:11401716]
(327) Zhao Z et al (2001). Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J Bacteriol. 183(13):3855-65. [PudMed:11395448]
(328) Hapfelmeier S et al (2000). VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol. 182(16):4505-11. [PudMed:10913084]
(329) Deng W et al (1999). VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol. 31(6):1795-807. [PudMed:10209751]