SecReT4
SecReT4 contains data from 1565 references related to type IV secretion systems (T4SSs). Last Update: Sep 30, 2019

Categories (Literatures contain following contents are categorized)
reviews experimental studies bioinformatics genome sequencing T4SS component T4SS effectors
conjugation DNA uptake and release effector translocation structural study protein interaction other
all
Search
     

Number of references found for the 'translocation' category : 355

References
(1) Zhao H, Xu L, Xu Z, Ding Y, Yu H, Zhang Y, Wu Y, Li B, Ji X (2019). Investigation on the role of gene hp0788 in Helicobacter pylori in infecting gastric epithelial cells. Microb Pathog. 137:103739. [PudMed:31513896]
(2) Bayer-Santos E, Cenens W, Matsuyama BY, Oka GU, Di Sessa G, Mininel IDV, Alves TL, Farah CS (2019). The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathog. 15(9):e1007651. [PudMed:31513674]
(3) Semper RP, Vieth M, Gerhard M, Mejías-Luque R (2019). Helicobacter pylori Exploits the NLRC4 Inflammasome to Dampen Host Defenses. J Immunol. pii: ji1900351. [PudMed:31511355]
(4) Wroblewski LE, Choi E, Petersen C, Delgado AG, Piazuelo MB, Romero-Gallo J, Lantz TL, Zavros Y, Coffey RJ, Goldenring JR, Zemper AE, Peek RM Jr (2019). Targeted mobilization of Lrig1+ gastric epithelial stem cell populations by a carcinogenic Helicobacter pylori type IV secretion system. Proc Natl Acad Sci U S A. 116(39):19652-19658. [PudMed:31488717]
(5) Chmiela M, Kupcinskas J (2019). Review: Pathogenesis of Helicobacter pylori infection. Helicobacter. 24 Suppl 1:e12638. [PudMed:31486234]
(6) Zhi F, Zhou D, Bai F, Li J, Xiang C, Zhang G, Jin Y, Wang A (2019). VceC Mediated IRE1 Pathway and Inhibited CHOP-induced Apoptosis to Support Brucella Replication in Goat Trophoblast Cells. Int J Mol Sci. 20(17). pii: E4104. [PudMed:31443507]
(7) Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeyer N (2019). Tailor-Made Detection of Individual Phosphorylated and Non-Phosphorylated EPIYA-Motifs of Helicobacter pylori Oncoprotein CagA. Cancers (Basel). 11(8). pii: E1163. [PudMed:31412675]
(8) Christie PJ (2019). The Rich Tapestry of Bacterial Protein Translocation Systems. Protein J. 38(4):389-408. [PudMed:31407127]
(9) Demars A, Lison A, Machelart A, Van Vyve M, Potemberg G, Vanderwinden JM, De Bolle X, Letesson JJ, Muraille E (2019). Route of Infection Strongly Impacts the Host-Pathogen Relationship. Front Immunol. 10:1589. [PudMed:31354728]
(10) Liu X, Shin S (2019). Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol. pii: S0022-2836(19)30472-3. [PudMed:31351897]
(11) Byndloss MX, Tsai AY, Walker GT, Miller CN, Young BM, English BC, Seyffert N, Kerrinnes T, de Jong MF, Atluri VL, Winter MG, Celli J, Tsolis RM (2019). Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. MBio. 10(4). pii: e01538-19. [PudMed:31337727]
(12) Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM, Galej WP, Matkovic V, Lopez-Mosqueda J, Kalayil S, Shin D, Dikic I (2019). Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature. 572(7769):382-386. [PudMed:31330532]
(13) Gan N, Zhen X, Liu Y, Xu X, He C, Qiu J, Liu Y, Fujimoto GM, Nakayasu ES, Zhou B, Zhao L, Puvar K, Das C, Ouyang S, Luo ZQ (2019). Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature. 572(7769):387-391. [PudMed:31330531]
(14) Québatte M, Dehio C (2019). Bartonella gene transfer agent: Evolution, function, and proposed role in host adaptation. Cell Microbiol. e13068. [PudMed:31231937]
(15) Pena RT, Blasco L, Ambroa A, González-Pedrajo B, Fernández-García L, López M, Bleriot I, Bou G, García-Contreras R, Wood TK, Tomás M (2019). Relationship Between Quorum Sensing and Secretion Systems. Front Microbiol. 10:1100. [PudMed:31231316]
(16) Wu X, Zhao Y, Sun L, Jiang M, Wang Q, Wang Q, Yang W, Wu Y (2019). Crystal structure of CagV, the Helicobacter pylori homologue of the T4SS protein VirB8. FEBS J. . [PudMed:31230405]
(17) Chung JM, Sheedlo MJ, Campbell AM, Sawhney N, Frick-Cheng AE, Lacy DB, Cover TL, Ohi MD (2019). Structure of the Helicobacter pylori Cag type IV secretion system. Elife. 8. pii: e47644. [PudMed:31210639]
(18) Tsai AY, English BC, Tsolis RM (2019). Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens. Microbiol Spectr. 7(3). [PudMed:31198132]
(19) Buß M, Tegtmeyer N, Schnieder J, Dong X, Li J, Springer TA, Backert S, Niemann HH (2019). Specific high affinity interaction of Helicobacter pylori CagL with integrin αV β6 promotes type IV secretion of CagA into human cells. FEBS J. . [PudMed:31197920]
(20) Kumari R, Shariq M, Sharma S, Kumar A, Mukhopadhyay G (2019). CagW, a VirB6 homologue interacts with Cag-type IV secretion system substrate CagA in Helicobacter pylori. Biochem Biophys Res Commun. 515(4):712-718. [PudMed:31182283]
(21) Sgro GG, Oka GU, Souza DP, Cenens W, Bayer-Santos E, Matsuyama BY, Bueno NF, Dos Santos TR, Alvarez-Martinez CE, Salinas RK, Farah CS (2019). Bacteria-Killing Type IV Secretion Systems. Front Microbiol. 10:1078. [PudMed:31164878]
(22) Kang YS, Kirby JE (2019). A Chemical Genetics Screen Reveals Influence of p38 Mitogen-Activated Protein Kinase and Autophagy on Phagosome Development and Intracellular Replication of Brucella neotomae in Macrophages. Infect Immun. 87(8). pii: e00044-19. [PudMed:31160361]
(23) Wagner A, Tittes C, Dehio C (2019). Versatility of the BID Domain: Conserved Function as Type-IV-Secretion-Signal and Secondarily Evolved Effector Functions Within Bartonella-Infected Host Cells. Front Microbiol. 10:921. [PudMed:31130928]
(24) Knorr J, Ricci V, Hatakeyama M, Backert S (2019). Classification of Helicobacter pylori Virulence Factors: Is CagA a Toxin or Not. Trends Microbiol. 27(9):731-738. [PudMed:31130493]
(25) Deng H, Zhou J, Gong B, Xiao M, Zhang M, Pang Q, Zhang X, Zhao B, Zhou X (2019). Screening and identification of a human domain antibody against Brucella abortus VirB5. Acta Trop. 197:105026. [PudMed:31103700]
(26) Ngwaga T, Hydock AJ, Ganesan S, Shames SR (2019). Potentiation of Cytokine-Mediated Restriction of Legionella Intracellular Replication by a Dot/Icm-Translocated Effector. J Bacteriol. 201(14). pii: e00755-18. [PudMed:31036725]
(27) Arya T, Oudouhou F, Casu B, Bessette B, Sygusch J, Baron C (2019). Fragment-based screening identifies inhibitors of ATPase activity and of hexamer formation of Cagα from the Helicobacter pylori type IV secretion system. Sci Rep. 9(1):6474. [PudMed:31019200]
(28) Ghosal D, Jeong KC, Chang YW, Gyore J, Teng L, Gardner A, Vogel JP, Jensen GJ (2019). Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS. Nat Microbiol. 4(7):1173-1182. [PudMed:31011165]
(29) Zhu J, He M, Xu W, Li Y, Huang R, Wu S, Niu H. (2019). Development of TEM-1 β-lactamase based protein translocation assay for identification of Anaplasma phagocytophilum type IV secretion system effector proteins. Scientific Reports. 9(1):4235. [PudMed:30862835]
(30) Celli J (2019). The Intracellular Life Cycle of Brucella spp. Microbiol Spectr. 7(2). [PudMed:30848234]
(31) Zhang J, Li M, Li Z, Shi J, Zhang Y, Deng X, Liu L, Wang Z, Qi Y, Zhang H (2019). Deletion of the Type IV Secretion System Effector VceA Promotes Autophagy and Inhibits Apoptosis in Brucella-Infected Human Trophoblast Cells. Curr Microbiol. 76(4):510-519. [PudMed:30805699]
(32) Singhal K, Mohanty S (2019). Genome organisation and comparative genomics of four novel Wolbachia genome assemblies from Indian Drosophila host. Funct Integr Genomics. 19(4):617-632. [PudMed:30798391]
(33) Pike CM, Boyer-Andersen R, Kinch LN, Caplan JL, Neunuebel MR (2019). The Legionella effector RavD binds phosphatidylinositol-3-phosphate and helps suppress endolysosomal maturation of the Legionella-containing vacuole. J Biol Chem. 294(16):6405-6415. [PudMed:30733336]
(34) Hayek I, Berens C, Lührmann A (2019). Modulation of host cell metabolism by T4SS-encoding intracellular pathogens. Curr Opin Microbiol. 47:59-65.. [PudMed:30640035]
(35) Wang C, Fu J, Wang M, Cai Y, Hua X, Du Y, Yang Z, Li Y, Wang Z, Sheng H, Yin N, Liu X, Koehler JE, Yuan C (2019). Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 21(4):e12984. [PudMed:30463105]
(36) Gan N, Nakayasu ES, Hollenbeck PJ, Luo ZQ (2019). Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat Microbiol. 4(1):134-143. [PudMed:30420781]
(37) Rikihisa Y (2019). Subversion of RAB5-regulated autophagy by the intracellular pathogen Ehrlichia chaffeensis. Small GTPases. 10(5):343-349. [PudMed:28650718]
(38) Zhao Q, Busch B, Jiménez-Soto LF, Ishikawa-Ankerhold H, Massberg S, Terradot L, Fischer W, Haas R (2018). Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathog. 14(10):e1007359. [PudMed:30365569]
(39) Yuan XY, Wang Y, Wang MY (2018). The type IV secretion system in Helicobacter pylori. Future Microbiol. 13:1041-1054. [PudMed:29927340]
(40) Feige MH, Sokolova O, Pickenhahn A, Maubach G, Naumann M (2018). HopQ impacts the integrin α5β1-independent NF-κB activation by Helicobacter pylori in CEACAM expressing cells. Int J Med Microbiol. 308(5):527-533. [PudMed:29779861]
(41) Prevost MS, Waksman G (2018). X-ray crystal structures of the type IVb secretion system DotB ATPases. Protein Sci. 27(8):1464-1475. [PudMed:29770512]
(42) Valleau D, Quaile AT, Cui H, Xu X, Evdokimova E, Chang C, Cuff ME, Urbanus ML, Houliston S, Arrowsmith CH, Ensminger AW, Savchenko A (2018). Discovery of Ubiquitin Deamidases in the Pathogenic Arsenal of Legionella pneumophila. Cell Rep. 23(2):568-583. [PudMed:29642013]
(43) Weber MM, Faris R, van Schaik EJ, Samuel JE (2018). Identification and characterization of arginine finger-like motifs, and endosome-lysosome basolateral sorting signals within the Coxiella burnetii type IV secreted effector protein CirA. Microbes Infect. 20(5):302-307. [PudMed:29331581]
(44) Yao Y, Shen Y, Zhu L, Ni Y, Wang H, Shao S (2018). Preliminary study and bioinformatics analysis on the potential role of CagQ in type IV secretion system of H.pylori. Microb Pathog. 116:1-7. [PudMed:29306012]
(45) Pechstein J, Schulze-Luehrmann J, Lührmann A (2018). Coxiella burnetii as a useful tool to investigate bacteria-friendly host cell compartments. Int J Med Microbiol. 308(1):77-83. [PudMed:28935173]
(46) Steiner B, Weber S, Hilbi H (2018). Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol. 308(1):49-57. [PudMed:28865995]
(47) An Y, Wang J, Li C, Leier A, Marquez-Lago T, Wilksch J, Zhang Y, Webb GI, Song J, Lithgow T. (2018). Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI. Brief Bioinform. 19(1):148-161. [PudMed:27777222]
(48) Christie PJ, Gomez Valero L, Buchrieser C (2017). Biological Diversity and Evolution of Type IV Secretion Systems. Curr Top Microbiol Immunol. 413:1-30. [PudMed:29536353]
(49) Qiu J, Luo ZQ (2017). Hijacking of the Host Ubiquitin Network by Legionella pneumophila. Front Cell Infect Microbiol. 7:487. [PudMed:29376029]
(50) Ringel PD, Hu D, Basler M (2017). The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
(51) De Leon JA, Qiu J, Nicolai CJ, Counihan JL, Barry KC, Xu L, Lawrence RE, Castellano BM, Zoncu R, Nomura DK, Luo ZQ, Vance RE (2017). Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. Cell Rep. 21(8):2031-2038. [PudMed:29166595]
(52) Harms A, Liesch M, Körner J, Québatte M, Engel P, Dehio C (2017). A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. PLoS Genet. 13(10):e1007077. [PudMed:29073136]
(53) Arriola Benitez PC, Pesce Viglietti AI, Herrmann CK, Dennis VA, Comerci DJ, Giambartolomei GH, Delpino MV (2017). Brucella abortus Promotes a Fibrotic Phenotype in Hepatic Stellate Cells, with Concomitant Activation of the Autophagy Pathway. Infect Immun. 86(1). pii: e00522-17. [PudMed:28993461]
(54) Zimmermann S, Pfannkuch L, Al-Zeer MA, Bartfeld S, Koch M, Liu J, Rechner C, Soerensen M, Sokolova O, Zamyatina A, Kosma P, Mäurer AP, Glowinski F, Pleissner KP, Schmid M, Brinkmann V, Karlas A, Naumann M, Rother M, Machuy N, Meyer TF (2017). ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Rep. 20(10):2384-2395. [PudMed:28877472]
(55) Escoll P, Song OR, Viana F, Steiner B, Lagache T, Olivo-Marin JC, Impens F, Brodin P, Hilbi H, Buchrieser C (2017). Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host Microbe. 22(3):302-316.e7. [PudMed:28867389]
(56) Rice DW, Sheehan KB, Newton ILG (2017). Large-Scale Identification of Wolbachia pipientis Effectors. Genome Biol Evol. 9(7):1925-1937. [PudMed:28854601]
(57) Miller CN, Smith EP, Cundiff JA, Knodler LA, Bailey Blackburn J, Lupashin V, Celli J (2017). A Brucella Type IV Effector Targets the COG Tethering Complex to Remodel Host Secretory Traffic and Promote Intracellular Replication. Cell Host Microbe. 22(3):317-329.e7. [PudMed:28844886]
(58) Prevost MS, Pinotsis N, Dumoux M, Hayward RD, Waksman G (2017). The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery. Sci Rep. 7(1):9450. [PudMed:28842705]
(59) Tohidpour A, Gorrell RJ, Roujeinikova A, Kwok T (2017). The Middle Fragment of Helicobacter pylori CagA Induces Actin Rearrangement and Triggers Its Own Uptake into Gastric Epithelial Cells. Toxins (Basel). 9(8). pii: E237. [PudMed:28788072]
(60) Stein SC, Faber E1, Bats SH, Murillo T, Speidel Y, Coombs N, Josenhans C (2017). Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis. PLoS Pathog. 13(7):e1006514. [PudMed:28715499]
(61) Qiu J, Luo ZQ (2017). Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol. 15(10):591-605. [PudMed:28713154]
(62) Jeong KC, Ghosal D, Chang YW, Jensen GJ, Vogel JP (2017). Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc Natl Acad Sci U S A. 114(30):8077-8082. [PudMed:28696299]
(63) Wang F, Qu N, Peng J, Yue C, Yuan L, Yuan Y (2017). CagA promotes proliferation and inhibits apoptosis of GES-1 cells by upregulating TRAF1/4-1BB. Mol Med Rep. 16(2):1262-1268. [PudMed:28627614]
(64) Tegtmeyer N, Neddermann M, Asche CI, Backert S (2017). Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol Microbiol. 105(3):358-372. [PudMed:28508421]
(65) Qiu J, Yu K, Fei X, Liu Y, Nakayasu ES, Piehowski PD, Shaw JB, Puvar K, Das C, Liu X, Luo ZQ (2017). A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Res. 27(7):865-881. [PudMed:28497808]
(66) Hatakeyama M (2017). Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad Ser B Phys Biol Sci. 93(4):196-219. [PudMed:28413197]
(67) Backert S, Tegtmeyer N (2017). Type IV Secretion and Signal Transduction of Helicobacter pylori CagA through Interactions with Host Cell Receptors. Toxins (Basel). 9(4). pii: E115. [PudMed:28338646]
(68) Ghosal D, Chang YW, Jeong KC, Vogel JP, Jensen GJ (2017). In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 18(5):726-732. [PudMed:28336774]
(69) Liu Y, Zhu W, Tan Y, Nakayasu ES, Staiger CJ, Luo ZQ (2017). A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin. PLoS Pathog. 13(1):e1006186. [PudMed:28129393]
(70) Wang J, Feng Y, Wang C, Srinivas S, Chen C, Liao H, He E, Jiang S, Tang J (2017). Pathogenic Streptococcus strains employ novel escape strategy to inhibit bacteriostatic effect mediated by mammalian peptidoglycan recognition protein. Cell Microbiol. 19(7). [PudMed:28092693]
(71) Naumann M, Sokolova O, Tegtmeyer N, Backert S (2017). Helicobacter pylori: A Paradigm Pathogen for Subverting Host Cell Signal Transmission. Trends Microbiol. 25(4):316-328. [PudMed:28057411]
(72) Kotewicz KM, Ramabhadran V, Sjoblom N, Vogel JP, Haenssler E, Zhang M, Behringer J, Scheck RA, Isberg RR (2017). A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication. Cell Host Microbe. 21(2):169-181. [PudMed:28041930]
(73) Stanger FV, de Beer TAP, Dranow DM, Schirmer T, Phan I, Dehio C (2017). The BID Domain of Type IV Secretion Substrates Forms a Conserved Four-Helix Bundle Topped with a Hook. Structure. 25(1):203-211. [PudMed:27889208]
(74) Dong N, Niu M, Hu L, Yao Q, Zhou R, Shao F (2016). Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol. 2:16236. [PudMed:27941800]
(75) Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I, Dikic I (2016). Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell. 167(6):1636-1649.e13. [PudMed:27912065]
(76) Chen SY, Zhang RG, Duan GC (2016). Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (Review). Oncol Rep. 36(6):3087-3094. [PudMed:27748858]
(77) Königer V, Holsten L, Harrison U, Busch B, Loell E, Zhao Q, Bonsor DA, Roth A, Kengmo-Tchoupa A, Smith SI, Mueller S, Sundberg EJ, Zimmermann W, Fischer W, Hauck CR, Haas R (2016). Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat Microbiol. 2:16188. [PudMed:27748756]
(78) Sherwood RK, Roy CR (2016). Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. Annu Rev Microbiol. 70:413-33. [PudMed:27607556]
(79) Lind J, Backert S, Hoffmann R, Eichler J, Yamaoka Y, Perez-Perez GI, Torres J, Sticht H, Tegtmeyer N (2016). Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains. BMC Microbiol. 16(1):201. [PudMed:27590005]
(80) Saju P, Murata-Kamiya N, Hayashi T, Senda Y, Nagase L, Noda S, Matsusaka K, Funata S, Kunita A, Urabe M, Seto Y, Fukayama M, Kaneda A, Hatakeyama M (2016). Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein-Barr virus. Nat Microbiol. 1:16026. [PudMed:27572445]
(81) Barrozo RM, Hansen LM, Lam AM, Skoog EC, Martin ME, Cai LP, Lin Y, Latoscha A, Suerbaum S, Canfield DR, Solnick JV (2016). CagY Is an Immune-Sensitive Regulator of the Helicobacter pylori Type IV Secretion System. Gastroenterology. 151(6):1164-1175.e3. [PudMed:27569724]
(82) Wang G, Romero-Gallo J, Benoit SL, Piazuelo MB, Dominguez RL, Morgan DR, Peek RM Jr, Maier RJ (2016). Hydrogen Metabolism in Helicobacter pylori Plays a Role in Gastric Carcinogenesis through Facilitating CagA Translocation. MBio. 7(4). pii: e01022-16. [PudMed:27531909]
(83) Popa CM, Tabuchi M, Valls M (2016). Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells. Front Cell Infect Microbiol. 6:73. [PudMed:27489796]
(84) Campodonico EM, Roy CR, Ninio S (2016). Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling. PLoS One. 11(7):e0159698. [PudMed:27459495]
(85) Eisenreich W, Heuner K (2016). The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett. 590(21):3868-3886. [PudMed:27455397]
(86) Whitaker N, Berry TM, Rosenthal N, Gordon JE, Gonzalez-Rivera C, Sheehan KB, Truchan HK, VieBrock L, Newton IL, Carlyon JA, Christie PJ (2016). Chimeric Coupling Proteins Mediate Transfer of Heterologous Type IV Effectors through the Escherichia coli pKM101-Encoded Conjugation Machine. J Bacteriol. 198(19):2701-18. [PudMed:27432829]
(87) Krisch LM, Posselt G, Hammerl P, Wessler S (2016). CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families. Infect Immun. 84(9):2671-80. [PudMed:27382024]
(88) Sheehan KB, Martin M, Lesser CF, Isberg RR, Newton IL (2016). Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton. MBio. 7(4). pii: e00622-16. [PudMed:27381293]
(89) Gonzalez-Rivera C, Bhatty M, Christie PJ (2016). Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr. 4(3). [PudMed:27337453]
(90) Martinez E, Allombert J, Cantet F, Lakhani A, Yandrapalli N, Neyret A, Norville IH, Favard C, Muriaux D, Bonazzi M (2016). Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc Natl Acad Sci U S A. 113(23):E3260-9. [PudMed:27226300]
(91) Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES, Das C, Liu X, Luo ZQ (2016). Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature. 533(7601):120-4. [PudMed:27049943]
(92) Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chávez-Arroyo A, Tsai AY, Cevallos SA, Winter MG, Pham OH, Tiffany CR, de Jong MF, Kerrinnes T, Ravindran R, Luciw PA, McSorley SJ, Bäumler AJ, Tsolis RM (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature. 532(7599):394-7. [PudMed:27007849]
(93) Jiménez-Soto LF, Haas R (2016). The CagA toxin of Helicobacter pylori: abundant production but relatively low amount translocated. Sci Rep. 6:23227. [PudMed:26983895]
(94) Graham JG, Winchell CG, Kurten RC, Voth DE (2016). Development of an Ex Vivo Tissue Platform To Study the Human Lung Response to Coxiella burnetii. Infect Immun. 84(5):1438-1445. [PudMed:26902725]
(95) Weber MM1, Faris R1, McLachlan J1, Tellez A1, Wright WU1, Galvan G1, Luo ZQ2, Samuel JE (2016). Modulation of the host transcriptome by Coxiella burnetii nuclear effector Cbu1314. Microbes Infect. 18(5):336-45. [PudMed:26827929]
(96) Rodríguez-Escudero M, Cid VJ, Molina M, Schulze-Luehrmann J, Lührmann A, Rodríguez-Escudero I (2016). Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation. PLoS One. 11(1):e0148032. [PudMed:26821324]
(97) Bisle S, Klingenbeck L, Borges V, Sobotta K, Schulze-Luehrmann J, Menge C, Heydel C, Gomes JP, Lührmann A (2016). The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence. 7(4):400-12. [PudMed:26760129]
(98) So EC, Schroeder GN, Carson D, Mattheis C, Mousnier A, Broncel M, Tate EW, Frankel G (2016). The Rab-binding Profiles of Bacterial Virulence Factors during Infection. J Biol Chem. 291(11):5832-43. [PudMed:26755725]
(99) Schindele F, Weiss E, Haas R, Fischer W (2016). Quantitative analysis of CagA type IV secretion by Helicobacter pylori reveals substrate recognition and translocation requirements. Mol Microbiol. 100(1):188-203. [PudMed:26713727]
(100) Labra Á, Arredondo-Zelada O, Flores-Herrera P, Marshall SH, Gómez FA (2016). In sílico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis. Microb Pathog. 92:11-18. [PudMed:26706346]
(101) Zhu W, Luo ZQ (2016). Cell biology and immunology lessons taught by Legionella pneumophila. Sci China Life Sci. 59(1):3-10. [PudMed:26596966]
(102) Wasilko DJ, Mao Y (2016). Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC. Curr Genet. 62(1):105-8. [PudMed:26433729]
(103) Arriola Benitez PC, Rey Serantes D, Herrmann CK, Pesce Viglietti AI, Vanzulli S, Giambartolomei GH, Comerci DJ, Delpino MV (2015). The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells. Infect Immun. 84(2):598-606. [PudMed:26667834]
(104) Sheedlo MJ, Qiu J, Tan Y, Paul LN, Luo ZQ, Das C (2015). Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci U S A. 112(49):15090-5. [PudMed:26598703]
(105) Ke Y, Wang Y, Li W, Chen Z (2015). Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol. 5:72. [PudMed:26528442]
(106) Rikihisa Y (2015). Molecular Pathogenesis of Ehrlichia chaffeensis Infection. Annu Rev Microbiol. 69:283-304. [PudMed:26488275]
(107) Horenkamp FA, Kauffman KJ, Kohler LJ, Sherwood RK, Krueger KP, Shteyn V, Roy CR, Melia TJ, Reinisch KM (2015). The Legionella Anti-autophagy Effector RavZ Targets the Autophagosome via PI3P- and Curvature-Sensing Motifs. Dev Cell. 34(5):569-76. [PudMed:26343456]
(108) Kohler LJ, Roy CR (2015). Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. Microbes Infect. 17(11-12):766-71. [PudMed:26327296]
(109) Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS, Beier-Sexton M, Azad AF (2015). Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog. 11(8):e1005115. [PudMed:26291822]
(110) Wood RE, Newton P, Latomanski EA, Newton H (2015). Dot/Icm Effector Translocation by Legionella longbeachae Creates a Replicative Vacuole Similar to That of Legionella pneumophila despite Translocation of Distinct Effector Repertoires.. Infect Immun. 83(10):4081-92. [PudMed:26216429]
(111) Schroeder GN, Aurass P, Oates CV, Tate EW, Hartland EL, Flieger A, Frankel G (2015). Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor. Infect Immun. 83(10):3989-4002. [PudMed:26216420]
(112) Tafreshi M, Zwickel N, Gorrell RJ, Kwok T (2015). Preservation of Helicobacter pylori CagA Translocation and Host Cell Proinflammatory Responses in the Face of CagL Hypervariability at Amino Acid Residues 58/59. PLoS One. 10(7):e0133531. [PudMed:26196862]
(113) Quaile AT, Urbanus ML, Stogios PJ, Nocek B, Skarina T, Ensminger AW, Savchenko A (2015). Molecular Characterization of LubX: Functional Divergence of the U-Box Fold by Legionella pneumophila. Structure. 23(8):1459-1469. [PudMed:26146184]
(114) Haenssler E, Ramabhadran V, Murphy CS, Heidtman MI, Isberg RR (2015). Endoplasmic Reticulum Tubule Protein Reticulon 4 Associates with the Legionella pneumophila Vacuole and with Translocated Substrate Ceg9. Infect Immun. 83(9):3479-89. [PudMed:26099580]
(115) Backert S, Tegtmeyer N, Fischer W (2015). Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol. 10(6):955-65. [PudMed:26059619]
(116) So EC, Mattheis C, Tate EW, Frankel G, Schroeder GN (2015). Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol. 61(9):617-35. [PudMed:26059316]
(117) Mishra JP, Cohen D, Zamperone A, Nesic D, Muesch A, Stein M (2015). CagA of Helicobacter pylori interacts with and inhibits the serine-threonine kinase PRK2. Cell Microbiol. 17(11):1670-82. [PudMed:26041307]
(118) Michard C, Sperandio D, Baïlo N, Pizarro-Cerdá J, LeClaire L, Chadeau-Argaud E, Pombo-Grégoire I, Hervet E, Vianney A, Gilbert C, Faure M, Cossart P, Doublet P (2015). The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway. MBio. 6(3):e00354-15. [PudMed:25944859]
(119) Whitaker N, Chen Y, Jakubowski SJ, Sarkar MK, Li F, Christie PJ (2015). The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates. J Bacteriol. 197(14):2335-49. [PudMed:25939830]
(120) Asrat S, Davis KM, Isberg RR (2015). Modulation of the host innate immune and inflammatory response by translocated bacterial proteins. Cell Microbiol. 17(6):785-795. [PudMed:25850689]
(121) Bonsor DA, Pham KT, Beadenkopf R, Diederichs K, Haas R, Beckett D, Fischer W, Sundberg EJ (2015). Integrin engagement by the helical RGD motif of the Helicobacter pylori CagL protein is regulated by pH-induced displacement of a neighboring helix. J Biol Chem. 290(20):12929-40. [PudMed:25837254]
(122) Sohn YS, Shin HC, Park WS, Ge J, Kim CH, Lee BL, Heo WD, Jung JU, Rigden DJ, Oh BH (2015). Lpg0393 of Legionella pneumophila is a guanine-nucleotide exchange factor for Rab5, Rab21 and Rab22. PLoS One. 10(3):e0118683. [PudMed:25821953]
(123) Jeong KC, Sexton JA, Vogel JP (2015). Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog. 11(3):e1004695. [PudMed:25774515]
(124) Sinclair SH, Garcia-Garcia JC, Dumler JS. (2015). Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front Microbiol. 6:55. [PudMed:25705208]
(125) Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G, Sticht H, Backert S, Blaser MJ (2015). A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions. PLoS Pathog. 11(2):e1004621. [PudMed:25646814]
(126) O'Brien KM, Lindsay EL, Starai VJ (2015). The Legionella pneumophila effector protein, LegC7, alters yeast endosomal trafficking. PLoS One. 10(2):e0116824. [PudMed:25643265]
(127) Jeong KC, Sutherland MC, Vogel JP (2015). Novel export control of a Legionella Dot/Icm substrate is mediated by dual, independent signal sequences. Mol Microbiol. 96(1):175-88. [PudMed:25582583]
(128) Siamer S, Dehio C (2015). New insights into the role of Bartonella effector proteins in pathogenesis. Curr Opin Microbiol. 23:80-5. [PudMed:25461577]
(129) Gopal GJ, Pal J, Kumar A, Mukhopadhyay G (2015). C-terminal domain of CagX is responsible for its interaction with CagT protein of Helicobacter pylori type IV secretion system. Biochem Biophys Res Commun. 456(1):98-103. [PudMed:25446105]
(130) Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF (2015). Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev. 39(1):47-80. [PudMed:25168200]
(131) Portier E, Zheng H, Sahr T, Burnside DM, Mallama C, Buchrieser C, Cianciotto NP, Héchard Y (2015). IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages. Environ Microbiol. 17(4):1338-50. [PudMed:25141909]
(132) Das A, Das A (2014). Delineation of polar localization domains of Agrobacterium tumefaciens type IV secretion apparatus proteins VirB4 and VirB11. Microbiologyopen. 3(5):793-802. [PudMed:25220247]
(133) Copenhaver AM, Casson CN, Nguyen HT, Fung TC, Duda MM, Roy CR, Shin S (2014). Alveolar macrophages and neutrophils are the primary reservoirs for Legionella pneumophila and mediate cytosolic surveillance of type IV secretion. Infect Immun. 82(10):4325-36. [PudMed:25092908]
(134) Guimarães NM, Azevedo NF, Vieira MJ, Figueiredo C (2014). Water-induced modulation of Helicobacter pylori virulence properties. Mem Inst Oswaldo Cruz. 109(4):414-9. [PudMed:25075780]
(135) Lee DG, Kim HS, Lee YS, Kim S, Cha SY, Ota I, Kim NH, Cha YH, Yang DH, Lee Y, Park GJ, Yook JI, Lee Y (2014). Helicobacter pylori CagA promotes Snail-mediated epithelial-mesenchymal transition by reducing GSK-3 activity. Nat Commun. 5:4423. [PudMed:25055241]
(136) Dolinsky S, Haneburger I, Cichy A, Hannemann M, Itzen A, Hilbi H (2014). The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect Immun. 82(10):4021-33. [PudMed:25024371]
(137) Hsu F, Luo X, Qiu J, Teng YB, Jin J, Smolka MB, Luo ZQ, Mao Y (2014). The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A. 111(29):10538-43. [PudMed:25006264]
(138) Vannini A, Roncarati D, Spinsanti M, Scarlato V, Danielli A (2014). In depth analysis of the Helicobacter pylori cag pathogenicity island transcriptional responses. PLoS One. 9(6):e98416. [PudMed:24892739]
(139) Isaac DT, Isberg R (2014). Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol. 9(3):343-59. [PudMed:24762308]
(140) Eckart RA, Bisle S, Schulze-Luehrmann J, Wittmann I, Jantsch J, Schmid B, Berens C, Lührmann A (2014). Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect Immun. 82(7):2763-71. [PudMed:24733095]
(141) Lang S, Gruber CJ, Raffl S, Reisner A, Zechner EL (2014). Common Requirement for the Relaxosome of Plasmid R1 in Multiple Activities of the Conjugative Type IV Secretion System. J Bacteriol. 196(11):2108-21. [PudMed:24682328]
(142) Winchell CG, Graham JG, Kurten RC, Voth DE (2014). Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes. Infect Immun. 82(6):2229-38. [PudMed:24643534]
(143) Gaspar AH, Machner MP (2014). VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc Natl Acad Sci U S A. 111(12):4560-5. [PudMed:24616501]
(144) Yao D, Cherney M, Cygler M (2014). Structure of the N-terminal domain of the effector protein LegC3 from Legionella pneumophila. Acta Crystallogr D Biol Crystallogr. 70(Pt 2):436-41. [PudMed:24531477]
(145) Del Campo CM, Mishra AK, Wang YH, Roy CR, Janmey PA, Lambright DG (2014). Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 22(3):397-408. [PudMed:24530282]
(146) Fernandez-Gonzalez E, Backert S (2014). DNA transfer in the gastric pathogen Helicobacter pylori. J Gastroenterol. 49(4):594-604. [PudMed:24515309]
(147) Horenkamp FA, Mukherjee S, Alix E, Schauder CM, Hubber AM, Roy CR, Reinisch KM. (2014). Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic. 15(5):488-99. [PudMed:24483784]
(148) Nešić D, Buti L, Lu X, Stebbins CE (2014). Structure of the Helicobacter pylori CagA oncoprotein bound to the human tumor suppressor ASPP2. Proc Natl Acad Sci U S A. 111(4):1562-7. [PudMed:24474782]
(149) Sakalis PA, van Heusden GP, Hooykaas PJ (2014). Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells. Microbiologyopen. 3(1):104-17. [PudMed:24376037]
(150) Guo Z, Stephenson R, Qiu J, Zheng S, Luo ZQ (2014). A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes Infect. 16(3):225-36. [PudMed:24286927]
(151) Laverde Gomez JA, Bhatty M, Christie PJ (2014). PrgK, a multidomain peptidoglycan hydrolase, is essential for conjugative transfer of the pheromone-responsive plasmid pCF10. J Bacteriol. 196(3):527-39. [PudMed:24244005]
(152) Macdonald LJ, Graham JG, Kurten RC, Voth DE (2014). Coxiella burnetii exploits host cAMP-dependent protein kinase signalling to promote macrophage survival. Cell Microbiol. 16(1):146-59. [PudMed:24028560]
(153) Meng G, An X, Ye S, Liu Y, Zhu W, Zhang R, Zheng X (2013). The crystal structure of LidA, a translocated substrate of the Legionella pneumophila type IV secretion system.. Protein Cell. 4(12):897-900. [PudMed:24293259]
(154) Rothmeier E, Pfaffinger G, Hoffmann C, Harrison CF, Grabmayr H, Repnik U, Hannemann M, Wölke S, Bausch A, Griffiths G, Müller-Taubenberger A, Itzen A, Hilbi H (2013). Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog. 9(9):e1003598. [PudMed:24068924]
(155) Kumar N, Shariq M, Kumari R, Tyagi RK, Mukhopadhyay G (2013). Cag type IV secretion system: CagI independent bacterial surface localization of CagA. PLoS One. 8(9):e74620. [PudMed:24040297]
(156) Harding CR, Mattheis C, Mousnier A, Oates CV, Hartland EL, Frankel G, Schroeder GN (2013). LtpD is a novel Legionella pneumophila effector that binds phosphatidylinositol 3-phosphate and inositol monophosphatase IMPA1. Infect Immun. 81(11):4261-70. [PudMed:24002062]
(157) Sokolova O, Borgmann M, Rieke C, Schweitzer K, Rothkötter HJ, Naumann M (2013). Helicobacter pylori induces type 4 secretion system-dependent, but CagA-independent activation of IκBs and NF-κB/RelA at early time points. Int J Med Microbiol. 303(8):548-52. [PudMed:23972614]
(158) Salcedo SP, Marchesini MI, Degos C, Terwagne M, Von Bargen K, Lepidi H, Herrmann CK, Santos Lacerda TL, Imbert PRC, Pierre P, Alexopoulou L, Letesson J-J, Comerci DJ and Gorvel J-P (2013). BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. . Front. Cell. Infect. Microbiol. . 2013.00028 . [PudMed:23847770]
(159) Toulabi L, Wu X, Cheng Y, Mao Y (2013). Identification and structural characterization of a Legionella phosphoinositide phosphatase. J Biol Chem. 288(34):24518-27. [PudMed:23843460]
(160) Mishra AK, Del Campo CM, Collins RE, Roy CR, Lambright DG (2013). The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism. J Biol Chem. 288(33):24000-11. [PudMed:23821544]
(161) Amyot WM, deJesus D, Isberg RR (2013). Poison domains block transit of translocated substrates via the Legionella pneumophila Icm/Dot system. Infect Immun. 81(9):3239-52. [PudMed:23798536]
(162) Li T, Lu Q, Wang G, Xu H, Huang H, Cai T, Kan B, Ge J, Shao F (2013). SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep. 14(8):733-40. [PudMed:23797873]
(163) Zhu W, Hammad LA, Hsu F, Mao Y, Luo ZQ (2013). Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates. Cell Microbiol. 15(11):1783-95. [PudMed:23773455]
(164) Sutherland MC, Binder KA, Cualing PY, Vogel JP (2013). Reassessing the role of DotF in the Legionella pneumophila type IV secretion system. PLoS One. 8(6):e65529. [PudMed:23762385]
(165) Chen Y, Tascón I, Neunuebel MR, Pallara C, Brady J, Kinch LN, Fernández-Recio J, Rojas AL, Machner MP, Hierro A (2013). Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD. PLoS Pathog. 9(5):e1003382. [PudMed:23696742]
(166) Yu Q, Hu L, Yao Q, Zhu Y, Dong N, Wang DC, Shao F (2013). Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP. Cell Res. 23(6):775-87. [PudMed:23588383]
(167) Chen Y, Machner MP (2013). Targeting of the small GTPase Rab6A' by the Legionella pneumophila effector LidA. Infect Immun. 81(6):2226-35. [PudMed:23569112]
(168) Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN, Frankel G, Flieger A (2013). The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem. 288(16):11080-92. [PudMed:23457299]
(169) Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, Hassan H, Majumdar N, Doran A, Guirado E, Schlesinger LS, Shuman H, Amer AO (2013). A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol. 43(5):1333-44. [PudMed:23420491]
(170) Papadakos KS, Sougleri IS, Mentis AF, Hatziloukas E, Sgouras DN (2013). Presence of terminal EPIYA phosphorylation motifs in Helicobacter pylori CagA contributes to IL-8 secretion, irrespective of the number of repeats. PLoS One. 8(2):e56291. [PudMed:23409168]
(171) Niu H, Rikihisa Y (2013). Ats-1: a novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy. 9(5):787-8. [PudMed:23388398]
(172) Newton HJ, McDonough JA, Roy CR (2013). Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PLoS One. 8(1):e54566. [PudMed:23349930]
(173) Lu YY, Franz B, Truttmann MC, Riess T, Gay-Fraret J, Faustmann M, Kempf VA, Dehio C (2013). Bartonella henselae trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system. Cell Microbiol. 15(5):759-78. [PudMed:23163798]
(174) Klingenbeck L, Eckart RA, Berens C, Lührmann A (2013). The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell Microbiol. 15(4):675-87. [PudMed:23126667]
(175) Gobert AP, Verriere T, de Sablet T, Peek RM Jr, Chaturvedi R, Wilson KT (2013). Haem oxygenase-1 inhibits phosphorylation of the Helicobacter pylori oncoprotein CagA in gastric epithelial cells. Cell Microbiol. 15(1):145-56. [PudMed:23051580]
(176) Ku B, Lee KH, Park WS, Yang CS, Ge J, Lee SG, Cha SS, Shao F, Heo WD, Jung JU, Oh BH (2012). VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog. 8(12):e1003082. [PudMed:23271971]
(177) Tsugawa H, Suzuki H, Saya H, Hatakeyama M, Hirayama T, Hirata K, Nagano O, Matsuzaki J, Hibi T (2012). Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe. 12(6):764-77. [PudMed:23245321]
(178) Hardiman CA, McDonough JA, Newton HJ, Roy CR (2012). The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii. Biochem Soc Trans. 40(6):1353-9. [PudMed:23176480]
(179) Choy A, Dancourt J, Mugo B, O'Connor TJ, Isberg RR, Melia TJ, Roy CR (2012). The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science. 338(6110):1072-6. [PudMed:23112293]
(180) Sutherland MC, Nguyen TL, Tseng V, Vogel JP (2012). The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Pathog. 8(9):e1002910. [PudMed:23028312]
(181) Kaplan-Türköz B, Jiménez-Soto LF, Dian C, Ertl C, Remaut H, Louche A, Tosi T, Haas R, Terradot L (2012). Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin. Proc Natl Acad Sci U S A. 109(36):14640-5. [PudMed:22908298]
(182) Hsu F, Zhu W, Brennan L, Tao L, Luo ZQ, Mao Y (2012). Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A. 109(34):13567-72. [PudMed:22872863]
(183) Hayashi T, Senda M, Morohashi H, Higashi H, Horio M, Kashiba Y, Nagase L, Sasaya D, Shimizu T, Venugopalan N, Kumeta H, Noda NN, Inagaki F, Senda T, Hatakeyama M (2012). Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe. 12(1):20-33. [PudMed:22817985]
(184) McDonough JA et al (2012). Coxiella burnetii Secretion Systems. Adv Exp Med Biol. 984:171-97. [PudMed:22711632]
(185) Gelvin SB (2012). Traversing the Cell: Agrobacterium T-DNA's Journey to the Host Genome. Front Plant Sci. 3:52. [PudMed:22645590]
(186) Harding CR et al (2012). Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun. . [PudMed:22645286]
(187) Smolka AJ et al (2012). How Helicobacter pylori infection controls gastric acid secretion. J Gastroenterol. . [PudMed:22565637]
(188) Pham KT et al (2012). CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL. PLoS One. 7(4):e35341. [PudMed:22493745]
(189) Ge J, Gong YN, Xu Y, Shao F (2012). Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc Natl Acad Sci U S A. 109(16):6193-8. [PudMed:22474394]
(190) Cheng W, Yin K, Lu D, Li B, Zhu D, Chen Y, Zhang H, Xu S, Chai J, Gu L (2012). Structural insights into a unique Legionella pneumophila effector LidA recognizing both GDP and GTP bound Rab1 in their active state.. PLoS Pathog. 8(3):e1002528. [PudMed:22416225]
(191) Zechner EL et al (2012). Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
(192) Rolando M et al (2012). Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Future Microbiol. 7(3):369-81. [PudMed:22393890]
(193) Franco IS, Shohdy N, Shuman HA (2012). The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog. 8(2):e1002546. [PudMed:22383880]
(194) Liu H et al (2012). Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell Microbiol. 14(7):1037-50. [PudMed:22348527]
(195) Voth DE et al (2012). Bacterial Type IV secretion systems: versatile virulence machines. Future Microbiol. 7(2):241-57. [PudMed:22324993]
(196) Creasey EA, Isberg RR (2012). The protein SdhA maintains the integrity of the Legionella-containiCreasey EA1, Isberg RR.ng vacuole. Proc Natl Acad Sci U S A. 109(9):3481-6. [PudMed:22308473]
(197) Goody PR et al (2012). Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J. 31(7):1774-84. [PudMed:22307087]
(198) Dolezal P et al (2012). Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog. 8(1):e1002459. [PudMed:22241989]
(199) de Jong MF et al (2012). Brucellosis and type IV secretion. Future Microbiol. 7(1):47-58. [PudMed:22191446]
(200) Altman E et al (2012). Helicobacter pylori isolates from Greek children express type 2 and type 1 Lewis and alpha1,6-glucan antigens in conjunction with a functional type IV secretion system. J Med Microbiol. 61(Pt 4):559-66. [PudMed:22160312]
(201) Wang H et al (2012). Characterization of CagI in the cag pathogenicity island of Helicobacter pylori. Curr Microbiol. 64(2):191-6. [PudMed:22109855]
(202) Luo ZQ (2012). Legionella secreted effectors and innate immune responses. Cell Microbiol. 14(1):19-27. [PudMed:21985602]
(203) Lockwood S et al (2011). Identification of Anaplasma marginale type IV secretion system effector proteins. PLoS One. 6(11):e27724. [PudMed:22140462]
(204) Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011). Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science. 334(6062):1553-7. [PudMed:22096100]
(205) Lai CH et al (2011). Helicobacter pylori CagA-mediated IL-8 induction in gastric epithelial cells is cholesterol-dependent and requires the C-terminal tyrosine phosphorylation-containing domain. FEMS Microbiol Lett. 323(2):155-63. [PudMed:22092715]
(206) Backert S et al (2011). Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal. 9:28. [PudMed:22044679]
(207) Berry TM et al (2011). Caught in the act: the dialogue between bacteriophage R17 and the type IV secretion machine of plasmid R1. Mol Microbiol. 82(5):1039-43. [PudMed:22023392]
(208) Schoebel S, Cichy AL, Goody RS, Itzen A (2011). Protein LidA from Legionella is a Rab GTPase supereffector. Proc Natl Acad Sci U S A. 108(44):17945-50. [PudMed:22011575]
(209) Shaffer CL et al (2011). Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog. 7(9):e1002237. [PudMed:21909278]
(210) Fernandez-Gonzalez E et al (2011). Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J Bacteriol. 193(22):6257-65. [PudMed:21908662]
(211) O'Connor TJ, Adepoju Y, Boyd D, Isberg RR (2011). Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci U S A. 108(36):14733-40. [PudMed:21873199]
(212) Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE, Roy CR (2011). Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature. 477(7362):103-6. [PudMed:21822290]
(213) Locht C et al (2011). The ins and outs of pertussis toxin. FEBS J. 278(23):4668-82. [PudMed:21740523]
(214) Marchesini MI et al (2011). In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system. Cell Microbiol. 13(8):1261-74. [PudMed:21707904]
(215) Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A, Machner MP (2011). De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science. 333(6041):453-6. [PudMed:21680813]
(216) Ishijima N et al (2011). BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. J Biol Chem. 286(28):25256-64. [PudMed:21596743]
(217) de Barsy M et al (2011). Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol. 13(7):1044-58. [PudMed:21501366]
(218) Banta LM et al (2011). An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J Bacteriol. 193(10):2566-74. [PudMed:21421757]
(219) Fontana MF et al (2011). Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog. 7(2):e1001289. [PudMed:21390206]
(220) Terradot L et al (2011). Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J. 278(8):1213-22. [PudMed:21352491]
(221) Fischer W (2011). Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J. 278(8):1203-12. [PudMed:21352490]
(222) Cendron L et al (2011). Structural and functional aspects of unique type IV secretory components in the Helicobacter pylori cag-pathogenicity island. FEBS J. 278(8):1223-31. [PudMed:21284804]
(223) Tegtmeyer N et al (2011). Role of Abl and Src family kinases in actin-cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein. Eur J Cell Biol. 90(11):880-90. [PudMed:21247656]
(224) Scheidegger F et al (2011). The Bartonella henselae VirB/Bep system interferes with vascular endothelial growth factor (VEGF) signalling in human vascular endothelial cells. Cell Microbiol. 13(3):419-31. [PudMed:21044238]
(225) Lorenz J et al (2011). Legionella pneumophila-induced IkappaBzeta-dependent expression of interleukin-6 in lung epithelium. Eur Respir J. 37(3):648-57. [PudMed:20650996]
(226) Zhong Q et al (2011). Characterization of peptidoglycan hydrolase in Cag pathogenicity island of Helicobacter pylori. Mol Biol Rep. 38(1):503-9. [PudMed:20358296]
(227) Chen C et al (2010). Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A. 107(50):21755-60. [PudMed:21098666]
(228) Molnar B et al (2010). Molecular pathogenesis of Helicobacter pylori infection: the role of bacterial virulence factors. Dig Dis. 28(4-5):604-8. [PudMed:21088410]
(229) Olbermann P et al (2010). A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6(8):e1001069. [PudMed:20808891]
(230) Hutton ML et al (2010). Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun. 78(11):4523-31. [PudMed:20713621]
(231) Rikihisa Y et al (2010). Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell Microbiol. 12(9):1213-21. [PudMed:20670295]
(232) Hayashi T et al (2010). Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits. PLoS One. 5(7):e11718. [PudMed:20661449]
(233) Price CT et al (2010). Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J Exp Med. 207(8):1713-26. [PudMed:20660614]
(234) Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A (2010). The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science. 329(5994):946-9. [PudMed:20651120]
(235) Wallden K et al (2010). Type IV secretion systems: versatility and diversity in function. Cell Microbiol. 12(9):1203-12. [PudMed:20642798]
(236) Murata-Kamiya N et al (2010). Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe. 7(5):399-411. [PudMed:20478541]
(237) Lee IO, Kim JH, Choi YJ, Pillinger MH, Kim SY, Blaser MJ, Lee YC (2010). Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem. 285(21):16042-50. [PudMed:20348091]
(238) Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C (2010). The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol. 12(9):1272-91. [PudMed:20345489]
(239) Xu L et al (2010). Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 6(3):e1000822. [PudMed:20333253]
(240) Gillespie JJ et al (2010). Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect Immun. 78(5):1809-23. [PudMed:20176788]
(241) Cazalet C et al (2010). Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet. 6(2):e1000851. [PudMed:20174605]
(242) Niu H et al (2010). Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog. 6(2):e1000774. [PudMed:20174550]
(243) Pitzschke A et al (2010). New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 29(6):1021-32. [PudMed:20150897]
(244) Losick VP, Haenssler E, Moy MY, Isberg RR (2010). LnaB: a Legionella pneumophila activator of NF-kappaB. Cell Microbiol. 12(8):1083-97. [PudMed:20148897]
(245) Rego AT et al (2010). Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J. 425(3):475-88. [PudMed:20070257]
(246) Habyarimana F, Price CT, Santic M, Al-Khodor S, Kwaik YA (2010). Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect Immun. 78(3):1123-34. [PudMed:20028808]
(247) Nesić D, Miller MC, Quinkert ZT, Stein M, Chait BT, Stebbins CE. (2010). Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nat Struct Mol Biol. 17(1):130-2. [PudMed:19966800]
(248) Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009). RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell. 36(6):1060-72. [PudMed:20064470]
(249) Allison CC et al (2009). Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J Immunol. 183(12):8099-109. [PudMed:20007577]
(250) Jimenez-Soto LF et al (2009). Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog. 5(12):e1000684. [PudMed:19997503]
(251) Alvarez-Martinez CE et al (2009). Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev. 73(4):775-808. [PudMed:19946141]
(252) Monroe KM, McWhirter SM, Vance RE (2009). Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog. 5(11):e1000665. [PudMed:19936053]
(253) Lamb A, Yang XD, Tsang YH, Li JD, Higashi H, Hatakeyama M, Peek RM, Blanke SR, Chen LF (2009). Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep. 10(11):1242-9. [PudMed:19820695]
(254) Fronzes R et al (2009). The structural biology of type IV secretion systems. Nat Rev Microbiol. 7(10):703-14. [PudMed:19756009]
(255) Zhang R et al (2009). Two type IV secretion systems with different functions in Burkholderia cenocepacia K56-2. Microbiology. 155(Pt 12):4005-13. [PudMed:19744991]
(256) Lim JW, Kim KH, Kim H (2009). alphaPix interacts with Helicobacter pylori CagA to induce IL-8 expression in gastric epithelial cells. Scand J Gastroenterol. 44(10):1166-72. [PudMed:19672789]
(257) Burstein D et al (2009). Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog. 5(7):e1000508. [PudMed:19593377]
(258) Degtyar E et al (2009). A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell Microbiol. 11(8):1219-35. [PudMed:19438520]
(259) Voth DE et al (2009). The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol. 191(13):4232-42. [PudMed:19411324]
(260) Raychaudhury S, Farelli JD, Montminy TP, Matthews M, Ménétret JF, Duménil G, Roy CR, Head JF, Isberg RR, Akey CW (2009). Structure and function of interacting IcmR-IcmQ domains from a type IVb secretion system in Legionella pneumophila. Structure. 17(4):590-601. [PudMed:19368892]
(261) Vardarova K et al (2009). PKC(alpha) and PKC(epsilon) differentially regulate Legionella pneumophila-induced GM-CSF. Eur Respir J. 34(5):1171-9. [PudMed:19324950]
(262) Rhomberg TA et al (2009). A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. Cell Microbiol. 11(6):927-45. [PudMed:19302579]
(263) Chomel BB et al (2009). Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res. 40(2):29. [PudMed:19284965]
(264) Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, Nagai S, Koyasu S, Gilman RH, Kersulyte D, Berg DE, Sasakawa C (2009). Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 5(1):23-34. [PudMed:19154985]
(265) Stewart CR et al (2009). Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol. 191(5):1537-46. [PudMed:19114479]
(266) Cendron L et al (2009). The Helicobacter pylori CagD (HP0545, Cag24) protein is essential for CagA translocation and maximal induction of interleukin-8 secretion. J Mol Biol. 386(1):204-17. [PudMed:19109970]
(267) Bauer B, Bartfeld S, Meyer TF (2009). H. pylori selectively blocks EGFR endocytosis via the non-receptor kinase c-Abl and CagA. Cell Microbiol. 11(1):156-69. [PudMed:19016792]
(268) Heidtman M, Chen EJ, Moy MY, Isberg RR (2009). Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol. 11(2):230-48. [PudMed:19016775]
(269) Pulliainen AT et al (2009). Bartonella henselae: subversion of vascular endothelial cell functions by translocated bacterial effector proteins. Int J Biochem Cell Biol. 41(3):507-10. [PudMed:19010441]
(270) Hodges LD et al (2009). The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants. J Bacteriol. 191(1):355-64. [PudMed:18952790]
(271) Hatakeyama M (2008). Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA. Oncogene. 27(55):7047-54. [PudMed:19029944]
(272) Al-Khodor S et al (2008). A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol. 70(4):908-23. [PudMed:18811729]
(273) de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA (2008). Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 4(8):e1000117. [PudMed:18670632]
(274) Nijskens C et al (2008). Intracellular rescuing of a B. melitensis 16M virB mutant by co-infection with a wild type strain. Microb Pathog. 45(2):134-41. [PudMed:18547782]
(275) Snider JL et al (2008). The beta1 integrin activates JNK independent of CagA, and JNK activation is required for Helicobacter pylori CagA+-induced motility of gastric cancer cells. J Biol Chem. 283(20):13952-63. [PudMed:18356158]
(276) Kubori T et al (2008). Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol. 67(6):1307-19. [PudMed:18284575]
(277) Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT, Garcia MT, Kwaik YA (2008). Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol. 10(6):1460-74. [PudMed:18279343]
(278) Soderberg MA et al (2008). A Legionella pneumophila peptidyl-prolyl cis-trans isomerase present in culture supernatants is necessary for optimal growth at low temperatures. Appl Environ Microbiol. 74(5):1634-8. [PudMed:18165359]
(279) Cambronne ED et al (2007). The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3(12):e188. [PudMed:18069892]
(280) Mimuro H, Suzuki T, Nagai S, Rieder G, Suzuki M, Nagai T, Fujita Y, Nagamatsu K, Ishijima N, Koyasu S, Haas R, Sasakawa C (2007). Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe. 2(4):250-63. [PudMed:18005743]
(281) Ingmundson A, Delprato A, Lambright DG, Roy CR (2007). Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature. 450(7168):365-9. [PudMed:17952054]
(282) Guo M et al (2007). Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. Mol Plant Microbe Interact. 20(10):1201-12. [PudMed:17918622]
(283) Ninio S et al (2007). Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol. 15(8):372-80. [PudMed:17632005]
(284) Cendron L, Tasca E, Seraglio T, Seydel A, Angelini A, Battistutta R, Montecucco C, Zanotti G (2007). The crystal structure of CagS from the Helicobacter pylori pathogenicity island. Proteins. 69(2):440-3. [PudMed:17623849]
(285) Tiaden A et al (2007). The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol. 9(12):2903-20. [PudMed:17614967]
(286) Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A, Ohno S, Hatakeyama M (2007). Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 447(7142):330-3. [PudMed:17507984]
(287) Reyes-Leon A et al (2007). Heterogeneity in the activity of Mexican Helicobacter pylori strains in gastric epithelial cells and its association with diversity in the cagA gene. Infect Immun. 75(7):3445-54. [PudMed:17438024]
(288) Chen J et al (2007). Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell Microbiol. 9(7):1660-71. [PudMed:17371403]
(289) Baron C et al (2007). Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect Disord Drug Targets. 7(1):19-27. [PudMed:17346208]
(290) IJdo JW, Carlson AC, Kennedy EL (2007). Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell Microbiol. 9(5):1284-96. [PudMed:17250594]
(291) Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, Aburatani H, Akiyama T, Peek RM Jr, Azuma T, Hatakeyama M (2007). Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 26(32):4617-26. [PudMed:17237808]
(292) Moese S, Selbach M, Brinkmann V, Karlas A, Haimovich B, Backert S, Meyer TF (2007). The Helicobacter pylori CagA protein disrupts matrix adhesion of gastric epithelial cells by dephosphorylation of vinculin. Cell Microbiol. 9(5):1148-61. [PudMed:17217431]
(293) Schmid MC et al (2006). A translocated bacterial protein protects vascular endothelial cells from apoptosis. PLoS Pathog. 2(11):e115. [PudMed:17121462]
(294) Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K (2006). Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A. 103(45):16953-8. [PudMed:17068130]
(295) Garcia JT et al (2006). Measurement of effector protein injection by type III and type IV secretion systems by using a 13-residue phosphorylatable glycogen synthase kinase tag. Infect Immun. 74(10):5645-57. [PudMed:16988240]
(296) Cambronne ED et al (2006). Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic. 7(8):929-39. [PudMed:16734660]
(297) VanRheenen SM et al (2006). Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun. 74(6):3597-606. [PudMed:16714592]
(298) McCullen CA et al (2006). Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol. 22:101-27. [PudMed:16709150]
(299) Robinson CG, Roy CR (2006). Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell Microbiol. 8(5):793-805. [PudMed:16611228]
(300) Hatakeyama M (2006). Helicobacter pylori CagA -- a bacterial intruder conspiring gastric carcinogenesis. Int J Cancer. 119(6):1217-23. [PudMed:16557568]
(301) Backert S et al (2006). Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 9(2):207-17. [PudMed:16529981]
(302) Hohlfeld S et al (2006). A C-terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein. Mol Microbiol. 59(5):1624-37. [PudMed:16469000]
(303) Couturier MR et al (2006). Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun. 74(1):273-81. [PudMed:16368981]
(304) Walker DH et al (2005). Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi. Ann N Y Acad Sci. 1063:13-25. [PudMed:16481486]
(305) Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C (2005). Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med. 202(9):1235-47. [PudMed:16275761]
(306) de Felipe KS et al (2005). Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol. 187(22):7716-26. [PudMed:16267296]
(307) Baron C (2005). From bioremediation to biowarfare: on the impact and mechanism of type IV secretion systems. FEMS Microbiol Lett. 253(2):163-70. [PudMed:16239080]
(308) Naumann M (2005). Pathogenicity island-dependent effects of Helicobacter pylori on intracellular signal transduction in epithelial cells. Int J Med Microbiol. 295(5):335-41. [PudMed:16173500]
(309) Christie PJ et al (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol. 59:451-85. [PudMed:16153176]
(310) Bauer B et al (2005). Analysis of cell type-specific responses mediated by the type IV secretion system of Helicobacter pylori. Infect Immun. 73(8):4643-52. [PudMed:16040977]
(311) Chang B, Kura F, Amemura-Maekawa J, Koizumi N, Watanabe H (2005). Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. Infect Immun. 73(7):4272-80. [PudMed:15972519]
(312) Sexton JA et al (2005). Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol Microbiol. 57(1):70-84. [PudMed:15948950]
(313) Rieder G et al (2005). Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology. 128(5):1229-42. [PudMed:15887107]
(314) Shohdy N, Efe JA, Emr SD, Shuman HA (2005). Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A. 102(13):4866-71. [PudMed:15781869]
(315) Bardill JP et al (2005). IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol. 56(1):90-103. [PudMed:15773981]
(316) Rieder G et al (2005). Interaction of Helicobacter pylori with host cells: function of secreted and translocated molecules. Curr Opin Microbiol. 8(1):67-73. [PudMed:15694859]
(317) Vergunst AC et al (2005). Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A. 102(3):832-7. [PudMed:15644442]
(318) Schulein R et al (2005). A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci U S A. 102(3):856-61. [PudMed:15642951]
(319) Nagai H et al (2005). A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A. 102(3):826-31. [PudMed:15613486]
(320) Amor JC, Swails J, Zhu X, Roy CR, Nagai H, Ingmundson A, Cheng X, Kahn RA (2005). The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem. 280(2):1392-400. [PudMed:15520000]
(321) Christie PJ (2004). Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta. 1694(1-3):219-34. [PudMed:15546668]
(322) Hubber A et al (2004). Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol. 54(2):561-74. [PudMed:15469524]
(323) VanRheenen SM et al (2004). IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect Immun. 72(10):5972-82. [PudMed:15385501]
(324) Selbach M et al (2004). The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin. Proteomics. 4(10):2961-8. [PudMed:15378755]
(325) Azuma T (2004). Helicobacter pylori CagA protein variation associated with gastric cancer in Asia. J Gastroenterol. 39(2):97-103. [PudMed:15069615]
(326) Chen J et al (2004). Legionella effectors that promote nonlytic release from protozoa. Science. 303(5662):1358-61. [PudMed:14988561]
(327) Luo ZQ, Isberg RR (2004). Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A. 20;101(3):841-6. [PudMed:14715899]
(328) Cascales E et al (2003). The versatile bacterial type IV secretion systems. Nat Rev Microbiol. 1(2):137-49. [PudMed:15035043]
(329) Hase K et al (2003). Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology. 125(6):1613-25. [PudMed:14724813]
(330) Ding Z et al (2003). The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11(11):527-35. [PudMed:14607070]
(331) Azuma T et al (2003). The effects of cure of Helicobacter pylori infection on the signal transduction of gastric epithelial cells. Aliment Pharmacol Ther. 18 Suppl 1:39-44. [PudMed:12925139]
(332) Aras RA et al (2003). Natural variation in populations of persistently colonizing bacteria affect human host cell phenotype. J Infect Dis. 188(4):486-96. [PudMed:12898434]
(333) Brassinga AK et al (2003). A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol. 185(15):4630-7. [PudMed:12867476]
(334) Duckely M et al (2003). The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett. 223(1):1-6. [PudMed:12798992]
(335) Nagai H et al (2003). Show me the substrates: modulation of host cell function by type IV secretion systems. Cell Microbiol. 5(6):373-83. [PudMed:12780775]
(336) Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S (2003). Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science. 300(5624):1430-4. [PudMed:12775840]
(337) Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M (2003). Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol. 161(2):249-55. [PudMed:12719469]
(338) Schrammeijer B et al (2003). Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res. 31(3):860-8. [PudMed:12560481]
(339) Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C (2002). Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol Cell. 10(4):745-55. [PudMed:12419219]
(340) Fischer W et al (2002). Type IV secretion systems in pathogenic bacteria. Int J Med Microbiol. 292(3-4):159-68. [PudMed:12398207]
(341) Krall L et al (2002). Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 99(17):11405-10. [PudMed:12177443]
(342) Schroder G et al (2002). TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates. J Bacteriol. 184(10):2767-79. [PudMed:11976307]
(343) Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR. (2002). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes.. Science. 295(5555):679-82. [PudMed:11809974]
(344) Selbach M et al (2002). Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect Immun. 70(2):665-71. [PudMed:11796597]
(345) Fischer W et al (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol. 42(5):1337-48. [PudMed:11886563]
(346) Naumann M (2001). Host cell signaling in Helicobacter pylori infection. Int J Med Microbiol. 291(4):299-305. [PudMed:11680790]
(347) Simone M et al (2001). The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol. 41(6):1283-93. [PudMed:11580834]
(348) Sagulenko E et al (2001). Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol. 183(20):5813-25. [PudMed:11566978]
(349) Zhao Z et al (2001). Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J Bacteriol. 183(13):3855-65. [PudMed:11395448]
(350) Christie PJ (2001). Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol. 40(2):294-305. [PudMed:11309113]
(351) Stein M et al (2001). Interaction of Helicobacter pylori with professional phagocytes: role of the cag pathogenicity island and translocation, phosphorylation and processing of CagA. Cell Microbiol. 3(1):21-31. [PudMed:11207617]
(352) Backert S et al (2000). Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol. 2(2):155-64. [PudMed:11207572]
(353) Christie PJ et al (2000). Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8(8):354-60. [PudMed:10920394]
(354) Odenbreit S et al (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 287(5457):1497-500. [PudMed:10688800]
(355) Stein M et al (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A. 97(3):1263-8. [PudMed:10655519]