Detailed information    

experimental Experimentally validated

Overview


Name   addA   Type   Machinery gene
Locus tag   BSU_10630 Genome accession   NC_000964
Coordinates   1139807..1143505 (+) Length   1232 a.a.
NCBI ID   NP_388944.2    Uniprot ID   P23478
Organism   Bacillus subtilis subsp. subtilis str. 168     
Function   homologous recombination; plasmid transformation   
Homologous recombination

Function


AddA, along with AddB, forms a heterodimer that functions as a nuclease, processing incoming double-stranded DNA (dsDNA) to generate single-stranded DNA (ssDNA) intermediates. This processing is crucial for the subsequent steps of homologous recombination.


Genomic Context


Location: 1134807..1148505
Locus tag Gene name Coordinates (strand) Size (bp) Protein ID Product Description
  BSU_10600 (BSU10600) yhjQ 1135255..1135581 (-) 327 NP_388941.1 putative metal-chelating cysteine-rich protein of unknown function -
  BSU_10610 (BSU10610) yhjR 1135699..1136136 (-) 438 NP_388942.1 putative electron carrier protein (putative sporulation gene) -
  BSU_10620 (BSU10620) addB 1136320..1139820 (+) 3501 NP_388943.2 ATP-dependent deoxyribonuclease (subunit B) Machinery gene
  BSU_10630 (BSU10630) addA 1139807..1143505 (+) 3699 NP_388944.2 ATP-dependent deoxyribonuclease (subunit A) Machinery gene
  BSU_10640 (BSU10640) sbcD 1143577..1144752 (+) 1176 NP_388945.3 DNA repair exonuclease -
  BSU_10650 (BSU10650) sbcC 1144749..1148141 (+) 3393 NP_388946.2 DNA ATP-dependent repair enzyme -
  BSU_10660 (BSU10660) hlpB 1148155..1148457 (+) 303 NP_388947.1 HNH nuclease-like essential for DNA repair -

Sequence


Protein


Download         Length: 1232 a.a.        Molecular weight: 141087.44 Da        Isoelectric Point: 5.0963

>NTDB_id=119 BSU_10630 NP_388944.2 1139807..1143505(+) (addA) [Bacillus subtilis subsp. subtilis str. 168]
MNIPKPADSTWTDDQWNAIVSTGQDILVAAAAGSGKTAVLVERMIRKITAEENPIDVDRLLVVTFTNASAAEMKHRIAEA
LEKELVQRPGSLHIRRQLSLLNRASISTLHSFCLQVLKKYYYLIDLDPGFRIADQTEGELIGDEVLDELFEDEYAKGEKA
FFELVDRYTTDRHDLDLQFLVKQVYEYSRSHPNPEAWLESFVHLYDVSEKSAIEELPFYQYVKEDIAMVLNGAKEKLLRA
LELTKAPGGPAPRADNFLDDLAQIDELIQHQDDFSELYKRVPAVSFKRAKAVKGDEFDPALLDEATDLRNGAKKLLEKLK
TDYFTRSPEQHLKSLAEMKPVIETLVQLVISYGKRFEAAKQEKSIIDFSDLEHYCLAILTAENDKGEREPSEAARFYQEQ
FHEVLVDEYQDTNLVQESILQLVTSGPEETGNLFMVGDVKQSIYRFRLAEPLLFLSKYKRFTESGEGTGRKIDLNKNFRS
RADILDSTNFLFKQLMGGKIGEVDYDEQAELKLGAAYPDNDETETELLLIDNAEDTDASEEAEELETVQFEAKAIAKEIR
KLISSPFKVYDGKKKTHRNIQYRDIVILLRSMPWAPQIMEELRAQGIPVYANLTSGYFEAVEVAVALSVLKVIDNPYQDI
PLASVLRSPIVGADENELSLIRLENKKAPYYEAMKDYLAAGDRSDELYQKLNTFYGHLQKWRAFSKNHSVSELIWEVYRD
TKYMDYVGGMPGGKQRQANLRVLYDRARQYESTAFRGLFRFLRFIERMQERGDDLGTARALSEQEDVVRLMTIHSSKGLE
FPVVFVAGLGRNFNMMDLNKSYLLDKELGFGTKYIHPQLRISYPTLPLIAMKKKMRRELLSEELRVLYVALTRAKEKLFL
IGSCKDHQKQLAKWQASASQTDWLLPEFDRYQARTYLDFIGPALARHRDLGDLAGVPAHADISGHPARFAVQMIHSYDLL
DDDLEERMEEKSERLEAIRRGEPVPGSFAFDEKAREQLSWTYPHQEVTQIRTKQSVSEIKRKREYEDEYSGRAPVKPADG
SILYRRPAFMMKKGLTAAEKGTAMHTVMQHIPLSHVPSIEEAEQTVHRLYEKELLTEEQKDAIDIEEIVQFFHTEIGGQL
IGAKWKDREIPFSLALPAKEIYPDAHEADEPLLVQGIIDCLYETEDGLYLLDYKSDRIEGKFQHGFEGAAPILKKRYETQ
IQLYTKAVEQIAKTKVKGCALYFFDGGHILTL

Nucleotide


Download         Length: 3699 bp        

>NTDB_id=119 BSU_10630 NP_388944.2 1139807..1143505(+) (addA) [Bacillus subtilis subsp. subtilis str. 168]
ATGAACATTCCTAAACCGGCAGACAGCACATGGACAGATGACCAATGGAATGCCATTGTTTCAACCGGCCAGGATATTCT
TGTGGCAGCGGCTGCGGGCTCTGGTAAAACCGCTGTGCTCGTTGAACGAATGATTCGGAAAATCACCGCGGAGGAAAACC
CAATAGATGTAGACCGTCTTCTCGTTGTGACATTTACAAACGCCTCAGCGGCAGAGATGAAGCACCGAATCGCAGAAGCC
TTGGAAAAAGAGCTTGTACAGCGCCCCGGCTCGCTGCATATTAGACGCCAGCTGTCTCTTTTAAACCGGGCCAGCATTTC
GACGCTCCATTCCTTTTGCCTGCAAGTGCTGAAGAAATATTACTACTTGATCGATCTTGATCCGGGCTTTCGGATAGCTG
ATCAGACGGAAGGCGAGCTGATCGGGGATGAAGTGCTTGACGAGCTGTTTGAAGACGAATACGCAAAGGGCGAAAAGGCG
TTTTTTGAGCTTGTTGACCGCTATACGACAGACCGGCATGATCTGGATCTGCAATTTCTCGTTAAACAGGTGTACGAGTA
TTCCCGATCCCATCCCAACCCGGAGGCGTGGCTGGAAAGCTTTGTTCATTTGTATGATGTATCAGAAAAGAGCGCCATCG
AGGAGCTGCCGTTTTATCAATATGTCAAAGAAGATATTGCAATGGTGCTTAACGGGGCGAAGGAAAAGCTCTTGCGCGCG
CTTGAGCTGACGAAAGCGCCGGGCGGCCCGGCGCCGCGTGCTGACAATTTTCTTGATGATCTTGCTCAGATTGATGAACT
GATTCAGCATCAGGACGATTTCAGTGAACTATATAAGCGGGTGCCCGCCGTCTCTTTTAAGCGTGCCAAAGCAGTAAAAG
GGGATGAGTTCGATCCAGCGCTCCTTGATGAGGCGACAGATTTGAGGAACGGCGCAAAAAAACTGCTTGAAAAGCTCAAA
ACCGACTACTTCACGCGAAGTCCTGAACAGCACTTGAAAAGCCTAGCCGAGATGAAGCCTGTCATTGAAACGCTCGTACA
GCTTGTCATCAGCTATGGAAAACGATTCGAAGCTGCGAAACAGGAAAAATCAATCATCGATTTTTCGGATTTGGAGCATT
ACTGTTTAGCGATTTTGACAGCTGAGAATGACAAAGGTGAACGTGAGCCGAGCGAGGCTGCAAGGTTTTATCAGGAACAG
TTTCATGAGGTGCTCGTTGACGAATATCAGGATACCAACCTCGTGCAGGAATCGATTCTGCAGCTCGTCACAAGCGGTCC
GGAGGAGACTGGTAACCTGTTTATGGTAGGAGATGTCAAACAGTCGATTTATCGATTCAGGCTTGCGGAGCCGCTTCTTT
TCCTCTCTAAATACAAACGGTTTACAGAGAGCGGAGAAGGCACGGGGCGGAAAATCGATTTAAATAAAAATTTCCGAAGC
CGGGCTGATATTTTAGACAGCACAAACTTTTTATTTAAACAGCTGATGGGCGGCAAAATCGGTGAGGTCGATTATGACGA
GCAGGCTGAGCTGAAGCTTGGTGCAGCGTATCCGGACAATGACGAGACGGAAACAGAGCTGCTGCTGATCGACAACGCAG
AAGATACGGATGCAAGCGAGGAAGCAGAAGAGCTTGAAACGGTGCAGTTTGAGGCAAAAGCCATCGCTAAGGAAATTCGT
AAGCTGATTTCATCGCCGTTTAAGGTGTATGACGGAAAAAAGAAAACACATCGCAATATTCAATACCGAGATATCGTGAT
TTTGCTCCGTTCGATGCCGTGGGCTCCGCAAATCATGGAGGAGCTGAGAGCACAGGGCATACCGGTTTACGCCAATTTAA
CGTCAGGCTATTTTGAAGCGGTCGAAGTCGCCGTCGCGCTTTCTGTGCTGAAGGTGATTGATAATCCGTATCAGGATATA
CCGCTTGCCTCTGTGCTGCGCTCACCGATTGTCGGAGCAGATGAAAACGAGCTGTCTTTGATCCGGCTTGAAAATAAAAA
AGCGCCGTACTATGAGGCGATGAAAGACTACCTGGCTGCTGGTGACCGGAGCGATGAGCTTTATCAAAAGTTAAATACGT
TTTACGGACATCTGCAAAAATGGCGCGCGTTTTCGAAAAACCACTCAGTATCTGAGCTGATTTGGGAAGTGTACCGCGAC
ACCAAATATATGGATTATGTCGGCGGCATGCCGGGCGGAAAACAGCGCCAGGCCAATTTGCGTGTTCTTTATGACAGGGC
GCGTCAATATGAATCAACGGCATTTCGCGGCTTGTTCCGTTTCCTGCGGTTTATCGAACGCATGCAGGAGCGGGGCGATG
ATCTTGGTACGGCGAGAGCGCTCAGCGAGCAGGAGGATGTTGTCCGCTTAATGACGATCCACAGCAGCAAAGGGCTCGAA
TTTCCAGTCGTGTTTGTAGCAGGTCTCGGCCGGAATTTCAACATGATGGATTTGAACAAATCGTACCTGCTGGATAAGGA
GCTCGGATTTGGCACGAAGTATATTCATCCGCAATTACGCATCAGCTATCCGACACTTCCGCTCATTGCGATGAAGAAAA
AAATGCGCAGGGAGCTGCTGTCAGAGGAATTGCGTGTGCTCTATGTTGCATTAACGAGAGCGAAGGAAAAGCTGTTTCTG
ATTGGCTCATGTAAGGATCATCAGAAACAGCTTGCAAAATGGCAGGCATCCGCGTCCCAAACTGATTGGCTTCTGCCGGA
ATTTGACCGCTATCAGGCGAGAACGTATCTAGATTTCATTGGGCCGGCTCTTGCCAGGCACAGAGACTTGGGGGATTTGG
CTGGTGTGCCAGCACACGCTGACATCTCAGGTCACCCGGCTCGTTTTGCCGTTCAAATGATCCATTCCTATGATTTGCTT
GATGATGATCTGGAAGAAAGAATGGAAGAAAAAAGCGAGCGCCTAGAAGCGATCCGCCGAGGTGAACCAGTTCCCGGCTC
GTTTGCGTTTGATGAAAAAGCCCGCGAGCAGCTGAGCTGGACCTACCCGCATCAAGAAGTGACGCAAATTCGGACAAAGC
AATCAGTTTCTGAGATCAAGAGAAAAAGAGAGTACGAGGATGAATACAGCGGCAGGGCCCCTGTAAAACCGGCTGATGGA
AGCATTCTGTACAGACGTCCCGCTTTTATGATGAAAAAAGGCCTGACAGCGGCAGAGAAAGGGACTGCCATGCATACGGT
TATGCAGCATATCCCGCTGTCACATGTGCCGTCGATAGAAGAAGCTGAGCAGACGGTTCACAGGCTTTATGAAAAAGAGC
TTCTCACTGAAGAACAAAAAGACGCTATTGATATAGAAGAAATCGTGCAATTTTTCCATACAGAAATCGGCGGACAGCTG
ATCGGTGCTAAGTGGAAGGACCGGGAAATACCATTCAGCTTAGCGCTTCCGGCCAAGGAGATCTATCCTGATGCACACGA
GGCAGATGAGCCGCTTTTAGTGCAGGGTATTATTGACTGTCTCTATGAAACTGAGGACGGATTATATCTATTGGATTATA
AGTCGGACCGGATTGAGGGCAAATTCCAGCATGGATTTGAAGGAGCGGCCCCGATCTTGAAGAAACGATATGAAACGCAA
ATTCAGCTGTACACGAAGGCAGTGGAGCAAATTGCAAAAACAAAGGTAAAGGGATGTGCGCTTTATTTCTTTGACGGAGG
GCACATTCTGACATTATAG


Secondary structure


Protein secondary structures were predicted by S4PRED and visualized by seqviz.



3D structure


Source ID Structure
  PDB 3U44
  PDB 3U4Q
  PDB 4CEH
  PDB 4CEI
  PDB 4CEJ

Transmembrane helices


Transmembrane helices of protein were predicted by TMHMM 2.0 and visualized by seqviz and ECharts.



Visualization of predicted probability:


Similar proteins


Only experimentally validated proteins are listed.

Protein Organism Identities (%) Coverage (%) Ha-value

References


[1] Neville S Gilhooly et al. (2016) Chi hotspots trigger a conformational change in the helicase-like domain of AddAB to activate homologous recombination. Nucleic Acids Research 44(6):2727-41. [PMID: 26762979]
[2] Wojciech W Krajewski et al. (2014) Structural basis for translocation by AddAB helicase-nuclease and its arrest at χ sites. Nature 508(7496):416-9. [PMID: 24670664]
[3] Kayarat Saikrishnan et al. (2012) Insights into Chi recognition from the structure of an AddAB-type helicase-nuclease complex. The EMBO Journal 31(6):1568-78. [PMID: 22307084]
[4] Joseph T P Yeeles et al. (2011) The AddAB helicase-nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain. Nucleic Acids Research 39(6):2271-85. [PMID: 21071401]
[5] Gareth A Cromie (2009) Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes. Journal of Bacteriology 191(16):5076-84. [PMID: 19542287]
[6] J Kooistra et al. (1997) A conserved helicase motif of the AddA subunit of the Bacillus subtilis ATP-dependent nuclease (AddAB) is essential for DNA repair and recombination. Molecular Microbiology 23(1):137-49. [PMID: 9004227]
[7] B J Haijema et al. (1996) The C terminus of the AddA subunit of the Bacillus subtilis ATP-dependent DNase is required for the ATP-dependent exonuclease activity but not for the helicase activity. Journal of Bacteriology 178(17):5086-91. [PMID: 8752323]
[8] B J Haijema et al. (1995) Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Molecular Microbiology 15(2):203-11. [PMID: 7746142]
[9] J Kooistra et al. (1993) The Bacillus subtilis addAB genes are fully functional in Escherichia coli. Molecular Microbiology 7(6):915-23. [PMID: 8387145]
[10] J C Alonso et al. (1993) Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. Molecular & General Genetics : MGG 239(1-2):129-36. [PMID: 8510642]