ICEberg contains data from 695 references related to integrative and conjugative elements (ICEs), integrative and mobilizable elements (IMEs), cis-mobilizable element (CIMEs). Last Update: May 02, 2018

reviews in silico analyses experimental studies genome sequencing all

Number of references found for the 'all' category : 695

(1) Rivard N et al (2020). Antibiotic Resistance in Vibrio cholera: Mechanistic Insights from Inc Plasmid-Mediated Dissemination of a Novel Family of Genomic Islands Inserted at trmE. mSphere. 5(4) : e00748-20. [PudMed:32848007]
(2) de Curraize C et al (2018). Two new Salmonella genomic islands 1 from Proteus mirabilis and description of blaCTX-M-15 on a variant (SGI1-K7). J Antimicrob Chemother. . [PudMed:29659873]
(3) Bioteau A et al (2018). Redefinition and unification of the SXT/R391 family of integrative and conjugative elements. Appl Environ Microbiol. . [PudMed:29654185]
(4) Lei CW et al (2018). PGI2 Is a Novel SGI1-Relative Multidrug-Resistant Genomic Island Characterized in Proteus mirabilis. Antimicrob Agents Chemother. 62(5). [PudMed:29463532]
(5) Delahay RM et al (2018). Phylogeographic diversity and mosaicism of the Helicobacter pylori tfs integrative and conjugative elements. Mob DNA. 9:05. [PudMed:29416569]
(6) Botelho J et al (2018). Two decades of blaVIM-2-producing Pseudomonas aeruginosa dissemination: an interplay between mobile genetic elements and successful clones. J Antimicrob Chemother. 73(4):873-882. [PudMed:29373674]
(7) Li Y et al (2018). Characterization of the Actinobacillus pleuropneumoniae SXT-related integrative and conjugative element ICEApl2 and analysis of the encoded FloR protein: hydrophobic residues in transmembrane domains contribute dynamically to florfenicol and chloramphenicol efflux. J Antimicrob Chemother. 73(1):57-65. [PudMed:29029160]
(8) Botelho J et al (2018). Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES-6 carbapenemase. J Antimicrob Chemother. 73(1):77-83. [PudMed:29029083]
(9) Pham NP et al (2017). Comparative genomic analysis of Brevibacterium strains: insights into key genetic determinants involved in adaptation to the cheese habitat. BMC Genomics. 18(1):955. [PudMed:29216827]
(10) Husain F et al (2017). Novel large-scale chromosomal transfer in Bacteroides fragilis contributes to its pan-genome and rapid environmental adaptation. Microb Genom. 3(11). [PudMed:29208130]
(11) Castillo A et al (2017). A DNA segment encoding the anticodon stem/loop of tRNA determines the specific recombination of integrative-conjugative elements in Acidithiobacillus species. RNA Biol. :1-8. [PudMed:29168417]
(12) Guedon G et al (2017). The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems. Genes (Basel). 8(11). [PudMed:29165361]
(13) Zhou K et al (2017). ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus agalactiae. Front Microbiol. 1.667361111. [PudMed:29051752]
(14) Ryan MP et al (2017). Analysis and comparative genomics of R997, the first SXT/R391 integrative and conjugative element (ICE) of the Indian Sub-Continent. Sci Rep. 7(1):8562. [PudMed:28819148]
(15) Alamos P et al (2017). Functionality of tRNAs encoded in a mobile genetic element from an acidophilic bacterium. RNA Biol. :1-10. [PudMed:28708455]
(16) Haskett TL et al (2017). Evolutionary persistence of tripartite integrative and conjugative elements. Plasmid. 92:30-36. [PudMed:28669811]
(17) Bie L et al (2017). Identification and characterization of new members of the SXT/R391 family of integrative and conjugative elements (ICEs) in Proteus mirabilis. Int J Antimicrob Agents. 50(2):242-246. [PudMed:28602701]
(18) Harmer CJ et al (2017). pIP40a, a type 1 IncC plasmid from 1969 carries the integrative element GIsul2 and a novel class II mercury resistance transposon. Plasmid. 92:17-25. [PudMed:28577759]
(19) Perrin A et al (2017). Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun. 8:15483. [PudMed:28537263]
(20) Marin MA et al (2017). The invasive Neisseria meningitidis MenC CC103 from Brazil is characterized by an accessory gene repertoire. Sci Rep. 7(1):1617. [PudMed:28487566]
(21) Burrus V (2017). Mechanisms of stabilization of integrative and conjugative elements. Curr Opin Microbiol. 38:44-50. [PudMed:28482230]
(22) Carraro N et al (2017). Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob Genet Elements. 7(2):1-6. [PudMed:28439449]
(23) Schultz E et al (2017). Multidrug Resistance Salmonella Genomic Island 1 in a Morganella morganii subsp. morganii Human Clinical Isolate from France. mSphere. 2(2). [PudMed:28435889]
(24) Dahmane N et al (2017). Diversity of Integrative and Conjugative Elements of Streptococcus salivarius and Their Intra- and Interspecies Transfer. Appl Environ Microbiol. 83(13). [PudMed:28432093]
(25) Kambarev S et al (2017). Draft Genome Sequences of Two Highly Erythromycin-Resistant Streptococcus gallolyticus subsp. gallolyticus Isolates Containing a Novel Tn916-Like Element, Tn6331. Genome Announc. 5(16). [PudMed:28428309]
(26) Coluzzi C et al (2017). A Glimpse into the World of Integrative and Mobilizable Elements in Streptococci Reveals an Unexpected Diversity and Novel Families of Mobilization Proteins. Front Microbiol. 0.640972222. [PudMed:28373865]
(27) Delavat F et al (2017). The hidden life of integrative and conjugative elements. FEMS Microbiol Rev. 41(4):512-537. [PudMed:28369623]
(28) Soliman AM et al (2017). First report in Africa of two clinical isolates of Proteus mirabilis carrying Salmonella genomic island (SGI1) variants, SGI1-PmABB and SGI1-W. Infect Genet Evol. 51:132-137. [PudMed:28359833]
(29) Carraro N et al (2017). Salmonella genomic island 1 (SGI1) reshapes the mating apparatus of IncC conjugative plasmids to promote self-propagation. PLoS Genet. 13(3):e1006705. [PudMed:28355215]
(30) Bosse JT et al (2017). Whole Genome Sequencing for Surveillance of Antimicrobial Resistance in Actinobacillus pleuropneumoniae. Front Microbiol. 0.549305556. [PudMed:28321207]
(31) Blesa A et al (2017). The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation. PLoS Genet. 13(3):e1006669. [PudMed:28282376]
(32) Lopez-Perez M et al (2017). Networking in microbes: conjugative elements and plasmids in the genus Alteromonas. BMC Genomics. 18(1):36. [PudMed:28056800]
(33) Zhang Y et al (2017). Emergence of Novel Pathogenic Streptomyces Species by Site-Specific Accretion and cis-Mobilization of Pathogenicity Islands. Mol Plant Microbe Interact. 30(1):72-82. [PudMed:27977935]
(34) Hamidian M et al (2017). Acinetobacter baumannii ATCC 19606 Carries GIsul2 in a Genomic Island Located in the Chromosome. Antimicrob Agents Chemother. 61(1). [PudMed:27795382]
(35) Morici E et al (2017). A new mosaic integrative and conjugative element from Streptococcus agalactiae carrying resistance genes for chloramphenicol (catQ) and macrolides [mef(I) and erm(TR)]. J Antimicrob Chemother. 72(1):64-67. [PudMed:27621174]
(36) Badhai J et al (2016). Characterization of Three Novel SXT/R391 Integrating Conjugative Elements ICEMfuInd1a and ICEMfuInd1b, and ICEMprChn1 Identified in the Genomes of Marinomonas fungiae JCM 18476(T) and Marinomonas profundimaris Strain D104. Front Microbiol. 1.608333333. [PudMed:27933056]
(37) Li X et al (2016). SXT/R391 integrative and conjugative elements in Proteus species reveal abundant genetic diversity and multidrug resistance. Sci Rep. 6:37372. [PudMed:27892525]
(38) Ling J et al (2016). Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A. 113(48):13875-13880. [PudMed:27849579]
(39) Huang J et al (2016). Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci. Front Cell Infect Microbiol. 0.331944444. [PudMed:27774436]
(40) Haskett TL et al (2016). Assembly and transfer of tripartite integrative and conjugative genetic elements. Proc Natl Acad Sci U S A. 113(43):12268-12273. [PudMed:27733511]
(41) Lorenzo-Diaz F et al (2016). Streptococcal group B integrative and mobilizable element IMESag-rpsI encodes a functional relaxase involved in its transfer. Open Biol. 6(10). [PudMed:27707895]
(42) Rahman M et al (2016). Comparative Genome Analysis of the Daptomycin-Resistant Streptococcus anginosus Strain J4206 Associated with Breakthrough Bacteremia. Genome Biol Evol. 8(11):3446-3459. [PudMed:27678123]
(43) Harmer CJ et al (2016). Destabilization of IncA and IncC plasmids by SGI1 and SGI2 type Salmonella genomic islands. Plasmid. 87-88:51-57. [PudMed:27620651]
(44) Huguet KT et al (2016). A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1. Sci Rep. 6:32285. [PudMed:27576575]
(45) Campisi E et al (2016). Genomic Analysis Reveals Multi-Drug Resistance Clusters in Group B Streptococcus CC17 Hypervirulent Isolates Causing Neonatal Invasive Disease in Southern Mainland China. Front Microbiol. 1.170138889. [PudMed:27574519]
(46) Knight DR et al (2016). A Phenotypically Silent vanB2 Operon Carried on a Tn1549-Like Element in Clostridium difficile. mSphere. 1(4). [PudMed:27536735]
(47) Uchiyama I et al (2016). A Novel Approach to Helicobacter pylori Pan-Genome Analysis for Identification of Genomic Islands. PLoS One. 11(8):e0159419. [PudMed:27504980]
(48) Huang K et al (2016). Characterization of Spectinomycin Resistance in Streptococcus suis Leads to Two Novel Insights into Drug Resistance Formation and Dissemination Mechanism. Antimicrob Agents Chemother. 60(10):6390-2. [PudMed:27458226]
(49) Zamarro MT et al (2016). The ICEXTD of Azoarcus sp. CIB, an integrative and conjugative element with aerobic and anaerobic catabolic properties. Environ Microbiol. 18(12):5018-5031. [PudMed:27450529]
(50) Carraro N et al (2016). IncA/C Conjugative Plasmids Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-O1/Non-O139 Isolates from Haiti. MBio. 7(4). [PudMed:27435459]
(51) Bosse JT et al (2016). ICEApl1, an Integrative Conjugative Element Related to ICEHin1056, Identified in the Pig Pathogen Actinobacillus pleuropneumoniae. Front Microbiol. 0.854166667. [PudMed:27379024]
(52) Marcoleta AE et al (2016). Klebsiella pneumoniae Asparagine tDNAs Are Integration Hotspots for Different Genomic Islands Encoding Microcin E492 Production Determinants and Other Putative Virulence Factors Present in Hypervirulent Strains. Front Microbiol. 0.88125. [PudMed:27375573]
(53) Thibessard A et al (2016). Complete Genome Sequence of Streptomyces ambofaciens DSM 40697, a Paradigm for Genome Plasticity Studies. Genome Announc. 4(3). [PudMed:27257195]
(54) Andrey DO et al (2016). Re-emergence of scarlet fever: old players return?. Expert Rev Anti Infect Ther. 14(8):687-9. [PudMed:27249582]
(55) Fonseca EL et al (2016). Commentary: Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front Microbiol. 0.826388889. [PudMed:27242778]
(56) Rodriguez-Blanco A et al (2016). Unveiling the pan-genome of the SXT/R391 family of ICEs: molecular characterisation of new variable regions of SXT/R391-like ICEs detected in Pseudoalteromonas sp. and Vibrio scophthalmi. Antonie Van Leeuwenhoek. 109(8):1141-52. [PudMed:27230650]
(57) Parmeciano Di Noto G et al (2016). Genome analysis of a clinical isolate of Shewanella sp. uncovered an active hybrid integrative and conjugative element carrying an integron platform inserted in a novel genomic locus. Microbiology. 162(8):1335-45. [PudMed:27215217]
(58) Siebor E et al (2016). Mobilization of the Salmonella genomic island SGI1 and the Proteus genomic island PGI1 by the A/C2 plasmid carrying blaTEM-24 harboured by various clinical species of Enterobacteriaceae. J Antimicrob Chemother. 71(8):2167-70. [PudMed:27150396]
(59) Luo P et al (2016). Comparative genomic analysis of six new-found integrative conjugative elements (ICEs) in Vibrio alginolyticus. BMC Microbiol. 0.721527778. [PudMed:27145747]
(60) Del Grosso M et al (2016). ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes. Antimicrob Agents Chemother. 60(7):3906-12. [PudMed:27067338]
(61) Panda P et al (2016). Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Front Microbiol. 0.567361111. [PudMed:27065965]
(62) Wang R et al (2016). Variations in SXT elements in epidemic Vibrio cholerae O1 El Tor strains in China. Sci Rep. 6:22733. [PudMed:26956038]
(63) Athey TB et al (2016). Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains. PLoS One. 11(3):e0150908. [PudMed:26954687]
(64) Klima CL et al (2016). Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS One. 11(2):e0149520. [PudMed:26926339]
(65) Huang J et al (2016). Comparative Genomic Analysis of the ICESa2603 Family ICEs and Spread of erm(B)- and tet(O)-Carrying Transferable 89K-Subtype ICEs in Swine and Bovine Isolates in China. Front Microbiol. 7:55. [PudMed:26870017]
(66) Lei CW et al (2016). Characterization of SXT/R391 Integrative and Conjugative Elements in Proteus mirabilis Isolates from Food-Producing Animals in China. Antimicrob Agents Chemother. 60(3):1935-8. [PudMed:26824957]
(67) Mingoia M et al (2016). Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907. J Antimicrob Chemother. 71(3):593-600. [PudMed:26679245]
(68) Naito M et al (2016). The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat. DNA Res. 23(1):11-9. [PudMed:26645327]
(69) Abbott ZD et al (2016). csrT Represents a New Class of csrA-Like Regulatory Genes Associated with Integrative Conjugative Elements of Legionella pneumophila. J Bacteriol. 198(3):553-64. [PudMed:26598366]
(70) Bidet P et al (2016). Genome Analysis of Kingella kingae Strain KWG1 Reveals How a beta-Lactamase Gene Inserted in the Chromosome of This Species. Antimicrob Agents Chemother. 60(1):703-8. [PudMed:26574009]
(71) Chapleau M et al (2016). Identification of genetic and environmental factors stimulating excision from Streptomyces scabiei chromosome of the toxicogenic region responsible for pathogenicity. Mol Plant Pathol. 17(4):501-9. [PudMed:26177341]
(72) Ambroset C et al (2015). New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration. Front Microbiol. 1.279861111. [PudMed:26779141]
(73) Cesbron S et al (2015). Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. Front Plant Sci. 1.031944444. [PudMed:26734033]
(74) Mohammed M et al (2015). Whole genome sequencing provides possible explanations for the difference in phage susceptibility among two Salmonella Typhimurium phage types (DT8 and DT30) associated with a single foodborne outbreak. BMC Res Notes. 0.838888889. [PudMed:26613761]
(75) Kojima KK et al (2015). Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance. BMC Genomics. 1.234027778. [PudMed:26481899]
(76) Johnson CM et al (2015). Integrative and Conjugative Elements (ICEs): What They Do and How They Work. Annu Rev Genet. 49:577-601. [PudMed:26473380]
(77) Carraro N et al (2015). Unraveling the regulatory network of IncA/C plasmid mobilization: When genomic islands hijack conjugative elements. Mob Genet Elements. 5(3):1-5. [PudMed:26442183]
(78) Wasels F et al (2015). Integration of erm(B)-containing elements through large chromosome fragment exchange in Clostridium difficile. Mob Genet Elements. 5(1):12-16. [PudMed:26442177]
(79) Douarre PE et al (2015). Host specificity in the diversity and transfer of lsa resistance genes in group B Streptococcus. J Antimicrob Chemother. 70(12):3205-13. [PudMed:26410170]
(80) Morales M et al (2015). Insights into the Evolutionary Relationships of LytA Autolysin and Ply Pneumolysin-Like Genes in Streptococcus pneumoniae and Related Streptococci. Genome Biol Evol. 7(9):2747-61. [PudMed:26349755]
(81) Han X et al (2015). Functional analysis of a bacitracin resistance determinant located on ICECp1, a novel Tn916-like element from a conjugative plasmid in Clostridium perfringens. Antimicrob Agents Chemother. 59(11):6855-65. [PudMed:26282424]
(82) Chen J et al (2015). Characterization of the chromosomal integration of Saccharopolyspora plasmid pCM32 and its application to improve production of spinosyn in Saccharopolyspora spinosa. Appl Microbiol Biotechnol. 99(23):10141-9. [PudMed:26260388]
(83) Martin-Moldes Z et al (2015). Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol. 38(7):462-71. [PudMed:26259823]
(84) Qin S et al (2015). Emergence of Extensively Drug-Resistant Proteus mirabilis Harboring a Conjugative NDM-1 Plasmid and a Novel Salmonella Genomic Island 1 Variant, SGI1-Z. Antimicrob Agents Chemother. 59(10):6601-4. [PudMed:26195511]
(85) de Andrade Barboza S et al (2015). Complete Genome Sequence of Noninvasive Streptococcus pyogenes M/emm28 Strain STAB10015, Isolated from a Child with Perianal Dermatitis in French Brittany. Genome Announc. 3(4). [PudMed:26184948]
(86) De Maayer P et al (2015). Integrative conjugative elements of the ICEPan family play a potential role in Pantoea ananatis ecological diversification and antibiosis. Front Microbiol. 0.65. [PudMed:26106378]
(87) Fonseca EL et al (2015). Full characterization of the integrative and conjugative element carrying the metallo-beta-lactamase bla SPM-1 and bicyclomycin bcr1 resistance genes found in the pandemic Pseudomonas aeruginosa clone SP/ST277. J Antimicrob Chemother. 70(9):2547-50. [PudMed:26093374]
(88) Schultz E et al (2015). Survey of multidrug resistance integrative mobilizable elements SGI1 and PGI1 in Proteus mirabilis in humans and dogs in France, 2010-13. J Antimicrob Chemother. 70(9):2543-6. [PudMed:26066582]
(89) Carraro N et al (2015). Replication and Active Partition of Integrative and Conjugative Elements (ICEs) of the SXT/R391 Family: The Line between ICEs and Conjugative Plasmids Is Getting Thinner. PLoS Genet. 11(6):e1005298. [PudMed:26061412]
(90) Marini E et al (2015). Recombination between Streptococcus suis ICESsu32457 and Streptococcus agalactiae ICESa2603 yields a hybrid ICE transferable to Streptococcus pyogenes. Vet Microbiol. 178(1-2):99-104. [PudMed:25935120]
(91) Lei CW et al (2015). Two novel Salmonella genomic island 1 variants in Proteus mirabilis isolates from swine farms in China. Antimicrob Agents Chemother. 59(7):4336-8. [PudMed:25918148]
(92) Puymege A et al (2015). Analysis of Streptococcus agalactiae pan-genome for prevalence, diversity and functionality of integrative and conjugative or mobilizable elements integrated in the tRNA(Lys CTT) gene. Mol Genet Genomics. 290(5):1727-40. [PudMed:25832353]
(93) Chancey ST et al (2015). Composite mobile genetic elements disseminating macrolide resistance in Streptococcus pneumoniae. Front Microbiol. 6:26. [PudMed:25709602]
(94) Hu Y et al (2015). Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. Antimicrob Agents Chemother. 59(2):1152-61. [PudMed:25487802]
(95) Davies MR et al (2015). Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat Genet. 47(1):84-7. [PudMed:25401300]
(96) Eidam C et al (2015). Analysis and comparative genomics of ICEMh1, a novel integrative and conjugative element (ICE) of Mannheimia haemolytica. J Antimicrob Chemother. 70(1):93-7. [PudMed:25239467]
(97) Girlich D et al (2015). Integration of the blaNDM-1 carbapenemase gene into Proteus genomic island 1 (PGI1-PmPEL) in a Proteus mirabilis clinical isolate. J Antimicrob Chemother. 70(1):98-102. [PudMed:25239462]
(98) Hamidian M et al (2015). The complete sequence of Salmonella genomic island SGI1-K. J Antimicrob Chemother. 70(1):305-6. [PudMed:25193084]
(99) Miyazaki R et al (2015). Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds. Environ Microbiol. 17(1):91-104. [PudMed:24803113]
(100) Carraro N et al (2014). Biology of Three ICE Families: SXT/R391, ICEBs1, and ICESt1/ICESt3. Microbiol Spectr. 2(6). [PudMed:26104437]
(101) Reeve W et al (2014). Genome sequence of the Lotus corniculatus microsymbiont Mesorhizobium loti strain R88B. Stand Genomic Sci. 9:03. [PudMed:25780496]
(102) Mingoia M et al (2014). Genetic basis of the association of resistance genes mef(I) (macrolides) and catQ (chloramphenicol) in streptococci. Front Microbiol. 0.727083333. [PudMed:25610433]
(103) Hilty M et al (2014). Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol Evol. 6(12):3281-94. [PudMed:25480686]
(104) Gillespie JJ et al (2014). Genomic diversification in strains of Rickettsia felis Isolated from different arthropods. Genome Biol Evol. 7(1):35-56. [PudMed:25477419]
(105) Bustamante P et al (2014). Toxin-antitoxin systems in the mobile genome of Acidithiobacillus ferrooxidans. PLoS One. 9(11):e112226. [PudMed:25384039]
(106) Santoro F et al (2014). Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol. 0.579861111. [PudMed:25368607]
(107) Carraro N et al (2014). The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination. PLoS Genet. 10(10):e1004714. [PudMed:25340549]
(108) Lei CW et al (2014). Molecular characteristics of Salmonella genomic island 1 in Proteus mirabilis isolates from poultry farms in China. Antimicrob Agents Chemother. 58(12):7570-2. [PudMed:25267683]
(109) Marin MA et al (2014). Worldwide occurrence of integrative conjugative element encoding multidrug resistance determinants in epidemic Vibrio cholerae O1. PLoS One. 9(9):e108728. [PudMed:25265418]
(110) Raftis EJ et al (2014). Unusual genome complexity in Lactobacillus salivarius JCM1046. BMC Genomics. 1.160416667. [PudMed:25201645]
(111) Husain F et al (2014). The Ellis Island Effect: A novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Mob Genet Elements. 4:e29801. [PudMed:25165618]
(112) Spagnoletti M et al (2014). Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage. MBio. 5(4). [PudMed:25139901]
(113) Siebor E et al (2014). Proteus genomic island 1 (PGI1), a new resistance genomic island from two Proteus mirabilis French clinical isolates. J Antimicrob Chemother. 69(12):3216-20. [PudMed:25114166]
(114) Mingoia M et al (2014). Tn5253 family integrative and conjugative elements carrying mef(I) and catQ determinants in Streptococcus pneumoniae and Streptococcus pyogenes. Antimicrob Agents Chemother. 58(10):5886-93. [PudMed:25070090]
(115) Wasels F et al (2014). Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB. Microb Drug Resist. 20(6):555-60. [PudMed:25055190]
(116) Montilla A et al (2014). Genetic environment of the lnu(B) gene in a Streptococcus agalactiae clinical isolate. Antimicrob Agents Chemother. 58(9):5636-7. [PudMed:24957835]
(117) Croucher NJ et al (2014). Variable recombination dynamics during the emergence, transmission and 'disarming' of a multidrug-resistant pneumococcal clone. BMC Biol. 12:49. [PudMed:24957517]
(118) Huguet-Tapia JC et al (2014). Characterization of the integration and modular excision of the integrative conjugative element PAISt in Streptomyces turgidiscabies Car8. PLoS One. 9(6):e99345. [PudMed:24927117]
(119) Bachmann NL et al (2014). Genome analysis and CRISPR typing of Salmonella enterica serovar Virchow. BMC Genomics. 0.895138889. [PudMed:24885207]
(120) Flynn KJ et al (2014). Integrative conjugative element ICE-betaox confers oxidative stress resistance to Legionella pneumophila in vitro and in macrophages. MBio. 5(3):e01091-14. [PudMed:24781744]
(121) Clewell DB et al (2014). A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity. BMC Genomics. 0.840277778. [PudMed:24767410]
(122) Klima CL et al (2014). Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J Clin Microbiol. 52(2):438-48. [PudMed:24478472]
(123) Brenciani A et al (2014). ICESp1116, the genetic element responsible for erm(B)-mediated, inducible erythromycin resistance in Streptococcus pyogenes, belongs to the TnGBS family of integrative and conjugative elements. Antimicrob Agents Chemother. 58(4):2479-81. [PudMed:24449773]
(124) Guerillot R et al (2014). The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol. 6(2):260-72. [PudMed:24418649]
(125) Bellanger X et al (2014). Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 38(4):720-60. [PudMed:24372381]
(126) Dingle KE et al (2014). Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol Evol. 6(1):36-52. [PudMed:24336451]
(127) Reeve W et al (2013). Complete genome sequence of Mesorhizobium australicum type strain (WSM2073(T)). Stand Genomic Sci. 9(2):410-9. [PudMed:24976896]
(128) Reeve W et al (2013). Complete genome sequence of Mesorhizobium opportunistum type strain WSM2075(T.). Stand Genomic Sci. 9(2):294-303. [PudMed:24976886]
(129) Wee BA et al (2013). A distinct and divergent lineage of genomic island-associated Type IV Secretion Systems in Legionella. PLoS One. 8(12):e82221. [PudMed:24358157]
(130) Olson AB et al (2013). Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics. 1.204861111. [PudMed:24341328]
(131) Goh S et al (2013). Phage varphiC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. MBio. 4(6):e00840-13. [PudMed:24255122]
(132) Acuna LG et al (2013). Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacillus caldus. PLoS One. 8(11):e78237. [PudMed:24250794]
(133) Bjorkeng EK et al (2013). ICESluvan, a 94-kilobase mosaic integrative conjugative element conferring interspecies transfer of VanB-type glycopeptide resistance, a novel bacitracin resistance locus, and a toxin-antitoxin stabilization system. J Bacteriol. 195(23):5381-90. [PudMed:24078615]
(134) Song Y et al (2013). The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and environment in the Yangtze River Estuary, China. BMC Microbiol. 0.690277778. [PudMed:24074349]
(135) Ceccarelli D et al (2013). A new integrative conjugative element detected in Haitian isolates of Vibrio cholerae non-O1/non-O139. Res Microbiol. 164(9):891-893. [PudMed:23994142]
(136) Dordet Frisoni E et al (2013). ICEA of Mycoplasma agalactiae: a new family of self-transmissible integrative elements that confers conjugative properties to the recipient strain. Mol Microbiol. 89(6):1226-39. [PudMed:23888872]
(137) Wyres KL et al (2013). Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974. BMC Genomics. 0.930555556. [PudMed:23879707]
(138) Zubair S et al (2013). Genome Sequence of Streptococcus agalactiae Strain 09mas018883, Isolated from a Swedish Cow. Genome Announc. 1(4). [PudMed:23846269]
(139) Tirumalai MR et al (2013). An ICEBs1-like element may be associated with the extreme radiation and desiccation resistance of Bacillus pumilus SAFR-032 spores. Extremophiles. 17(5):767-74. [PudMed:23812891]
(140) Wasels F et al (2013). Clostridium difficile erm(B)-containing elements and the burden on the in vitro fitness. J Med Microbiol. 62(Pt 9):1461-7. [PudMed:23741023]
(141) Rao C et al (2013). Phylogenetic reconstruction of the Legionella pneumophila Philadelphia-1 laboratory strains through comparative genomics. PLoS One. 8(5):e64129. [PudMed:23717549]
(142) Siebor E et al (2013). Emergence of Salmonella genomic island 1 (SGI1) among Proteus mirabilis clinical isolates in Dijon, France. J Antimicrob Chemother. 68(8):1750-6. [PudMed:23580563]
(143) Butler MI et al (2013). Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS One. 8(2):e57464. [PudMed:23555547]
(144) Guerillot R et al (2013). Modular evolution of TnGBSs, a new family of integrative and conjugative elements associating insertion sequence transposition, plasmid replication, and conjugation for their spreading. J Bacteriol. 195(9):1979-90. [PudMed:23435978]
(145) Lautner M et al (2013). Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila. J Bacteriol. 195(7):1583-97. [PudMed:23354744]
(146) Bertsch D et al (2013). Tn6198, a novel transposon containing the trimethoprim resistance gene dfrG embedded into a Tn916 element in Listeria monocytogenes. J Antimicrob Chemother. 68(5):986-91. [PudMed:23344576]
(147) Puymege A et al (2013). Conjugative transfer and cis-mobilization of a genomic island by an integrative and conjugative element of Streptococcus agalactiae. J Bacteriol. 195(6):1142-51. [PudMed:23275243]
(148) He M et al (2013). Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 45(1):109-13. [PudMed:23222960]
(149) Daccord A et al (2013). Comparative analysis of mobilizable genomic islands. J Bacteriol. 195(3):606-14. [PudMed:23204461]
(150) Bustamante P et al (2012). ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans. J Mol Microbiol Biotechnol. 22(6):399-407. [PudMed:23486178]
(151) Chuzeville S et al (2012). Characterization of a New CAMP Factor Carried by an Integrative and Conjugative Element in Streptococcus agalactiae and Spreading in Streptococci. PLoS One. 7(11):e48918. [PudMed:23152820]
(152) Ramsay JP et al (2012). A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator. Mol Microbiol. . [PudMed:23106190]
(153) Badhai J et al (2012). Presence of SXT integrating conjugative element in marine bacteria isolated from the mucus of the coral Fungia echinata from Andaman Sea. FEMS Microbiol Lett. . [PudMed:23083057]
(154) Diene SM et al (2012). The Rhizome of the Multidrug-Resistant Enterobacter aerogenes Genome Reveals How New "Killer Bugs" Are Created because of a Sympatric Lifestyle. Mol Biol Evol. . [PudMed:23071100]
(155) Boyd DA et al (2012). The VanE operon in Enterococcus faecalis N00-410 is found on a putative integrative and conjugative element, Tn6202. J Antimicrob Chemother. . [PudMed:23034711]
(156) Balado M et al (2012). Integrating conjugative elements of the SXT/R391 family from fish-isolated Vibrios encode restriction-modification systems that confer resistance to bacteriophages. FEMS Microbiol Ecol. . [PudMed:22974320]
(157) Palmieri C et al (2012). Interspecies mobilization of an erm(T)-carrying plasmid of Streptococcus dysgalactiae subsp. equisimilis by a coresident ICE of the ICESa2603 family. J Antimicrob Chemother. . [PudMed:22949621]
(158) Bordeleau E et al (2012). Diversity of integrating conjugative elements in actinobacteria: Coexistence of two mechanistically different DNA-translocation systems. Mob Genet Elements. 2(2):119-124. [PudMed:22934248]
(159) Daccord A et al (2012). Dynamics of the SetCD-Regulated Integration and Excision of Genomic Islands Mobilized by Integrating Conjugative Elements of the SXT/R391 Family. J Bacteriol. 194(21):5794-802. [PudMed:22923590]
(160) Moreno Switt AI et al (2012). Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLoS One. 7(7):e41247. [PudMed:22911766]
(161) Miyazaki R et al (2012). Cellular variability of RpoS expression underlies subpopulation activation of an integrative and conjugative element. PLoS Genet. 8(7):e1002818. [PudMed:22807690]
(162) Le Hello S et al (2012). Early strains of multidrug-resistant Salmonella enterica serovar Kentucky sequence type 198 from Southeast Asia harbor Salmonella genomic island 1-J variants with a novel insertion sequence. Antimicrob Agents Chemother. 56(10):5096-102. [PudMed:22802251]
(163) Hasan NA et al (2012). Genomic diversity of 2010 Haitian cholera outbreak strains. Proc Natl Acad Sci U S A. 109(29):E2010-7. [PudMed:22711841]
(164) Palmieri C et al (2012). Characterization of a Streptococcus suis tet(O/W/32/O)-carrying element transferable to major streptococcal pathogens. Antimicrob Agents Chemother. 56(9):4697-702. [PudMed:22710115]
(165) Qi J et al (2012). Comparative geno-plasticity analysis of Mycoplasma bovis HB0801 (Chinese isolate). PLoS One. 7(5):e38239. [PudMed:22693604]
(166) Ohtsubo Y et al (2012). Conjugal transfer of polychlorinated biphenyl/biphenyl degradation genes in Acidovorax sp. strain KKS102, which are located on an integrative and conjugative element. J Bacteriol. 194(16):4237-48. [PudMed:22685277]
(167) Taviani E et al (2012). Genomic analysis of ICEVchBan8: An atypical genetic element in Vibrio cholerae. FEBS Lett. 586(11):1617-21. [PudMed:22673571]
(168) Tse H et al (2012). Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis. 206(3):341-51. [PudMed:22615319]
(169) Mann RA et al (2012). Comparative analysis of the Hrp pathogenicity island of Rubus- and Spiraeoideae-infecting Erwinia amylovora strains identifies the IT region as a remnant of an integrative conjugative element. Gene. 504(1):6-12. [PudMed:22579880]
(170) Math RK et al (2012). Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One. 7(4):e35784. [PudMed:22563400]
(171) Pande K et al (2012). SXT constin among Vibrio cholerae isolates from a tertiary care hospital. Indian J Med Res. 135:346-50. [PudMed:22561621]
(172) Zheng Q et al (2012). Gain and loss of phototrophic genes revealed by comparison of two Citromicrobium bacterial genomes. PLoS One. 7(4):e35790. [PudMed:22558224]
(173) Lee CA et al (2012). The Bacillus subtilis conjugative transposon ICEBs1 mobilizes plasmids lacking dedicated mobilization functions. J Bacteriol. 194(12):3165-72. [PudMed:22505685]
(174) Hickey WJ et al (2012). The phn Island: A New Genomic Island Encoding Catabolism of Polynuclear Aromatic Hydrocarbons. Front Microbiol. 0.211805556. [PudMed:22493593]
(175) Schwientek P et al (2012). The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics. 0.619444444. [PudMed:22443545]
(176) Rodriguez-Blanco A et al (2012). Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments. Antimicrob Agents Chemother. 56(5):2619-26. [PudMed:22314526]
(177) Bian F et al (2012). Genome sequences of six Pseudoalteromonas strains isolated from Arctic sea ice. J Bacteriol. 194(4):908-9. [PudMed:22275105]
(178) Seth-Smith HM et al (2012). Structure, diversity, and mobility of the Salmonella pathogenicity island 7 family of integrative and conjugative elements within Enterobacteriaceae. J Bacteriol. 194(6):1494-504. [PudMed:22247511]
(179) Shepard SM et al (2012). Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli. J Bacteriol. 194(2):395-405. [PudMed:22081385]
(180) Spagnoletti M et al (2012). Rapid detection by multiplex PCR of Genomic Islands, prophages and Integrative Conjugative Elements in V. cholerae 7th pandemic variants. J Microbiol Methods. 88(1):98-102. [PudMed:22062086]
(181) Gillespie JJ et al (2012). A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol. 194(2):376-94. [PudMed:22056929]
(182) Michael GB et al (2012). ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer. J Antimicrob Chemother. 67(1):91-100. [PudMed:22001176]
(183) Michael GB et al (2012). ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: analysis of the regions that comprise 12 antimicrobial resistance genes. J Antimicrob Chemother. 67(1):84-90. [PudMed:22001175]
(184) Giovanetti E et al (2012). ICESp2905, the erm(TR)-tet(O) element of Streptococcus pyogenes, is formed by two independent integrative and conjugative elements. Antimicrob Agents Chemother. 56(1):591-4. [PudMed:21986826]
(185) Graindorge A et al (2012). Insertion sequence evolutionary patterns highlight convergent genetic inactivations and recent genomic island acquisitions among epidemic Burkholderia cenocepacia. J Med Microbiol. 61(Pt 3):394-409. [PudMed:21980044]
(186) Chu C et al (2012). Salmonella genomic island 1-J variants associated with change in the antibiotic resistance gene cluster in multidrug-resistant Salmonella enterica serovar Virchow isolated from humans, Taiwan, 2004-2006. Clin Microbiol Infect. 18(1):47-53. [PudMed:21615827]
(187) Palmieri C et al (2011). Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front Microbiol. 0.246527778. [PudMed:22275909]
(188) Ghinet MG et al (2011). Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS One. 6(11):e27846. [PudMed:22114709]
(189) Sjolund-Karlsson M et al (2011). Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg Infect Dis. 17(11):2151-4. [PudMed:22099122]
(190) Zhang A et al (2011). Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes. BMC Genomics. 0.863194444. [PudMed:22026465]
(191) Carraro N et al (2011). Differential regulation of two closely related integrative and conjugative elements from Streptococcus thermophilus. BMC Microbiol. 0.623611111. [PudMed:22024428]
(192) Miyazaki R et al (2011). How can a dual oriT system contribute to efficient transfer of an integrative and conjugative element. Mob Genet Elements. 1(1):82-84. [PudMed:22016851]
(193) Brouwer MS et al (2011). Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS One. 6(8):e23014. [PudMed:21876735]
(194) Guglielmini J et al (2011). The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7(8):e1002222. [PudMed:21876676]
(195) Siebor E et al (2011). The new variant of Salmonella genomic island 1 (SGI1-V) from a Proteus mirabilis French clinical isolate harbours blaVEB-6 and qnrA1 in the multiple antibiotic resistance region. J Antimicrob Chemother. 66(11):2513-20. [PudMed:21846670]
(196) Ciric L, Mullany P, Roberts AP (2011). Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087. J Antimicrob Chemother. 66(10):2235-9. [PudMed:21816764]
(197) Mata C et al (2011). Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis. J Antimicrob Chemother. 66(10):2266-70. [PudMed:21752830]
(198) Toleman MA et al (2011). Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol Rev. 35(5):912-35. [PudMed:21729108]
(199) Bellanger X et al (2011). Site-specific accretion of an integrative conjugative element together with a related genomic island leads to cis mobilization and gene capture. Mol Microbiol. 81(4):912-25. [PudMed:21722203]
(200) Flannery EL et al (2011). Self-Transmissibility of the Integrative and Conjugative Element ICEPm1 between Clinical Isolates Requires a Functional Integrase, Relaxase, and Type IV Secretion System. J Bacteriol. 193(16):4104-12. [PudMed:21665966]
(201) Nigro SJ et al (2011). GIsul2, a genomic island carrying the sul2 sulphonamide resistance gene and the small mobile element CR2 found in the Enterobacter cloacae subspecies cloacae type strain ATCC 13047 from 1890, Shigella flexneri ATCC 700930 from 1954 and Acinetobacter baumannii ATCC 17978 from 1951. J Antimicrob Chemother. 66(9):2175-6. [PudMed:21653606]
(202) Shu HW et al (2011). Genome Sequence of the Repetitive-Sequence-Rich Mycoplasma fermentans Strain M64. J Bacteriol. 193(16):4302-3. [PudMed:21642450]
(203) Lin IH et al (2011). Sequencing and comparative genome analysis of two pathogenic Streptococcus gallolyticus subspecies: genome plasticity, adaptation and virulence. PLoS One. 6(5):e20519. [PudMed:21633709]
(204) Fricke WF et al (2011). Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol. 193(14):3556-68. [PudMed:21602358]
(205) Chen WY et al (2011). Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae. BMC Mol Biol. 12(1):16. [PudMed:21501469]
(206) Godfrey SA, Lovell HC, Mansfield JW, Corry DS, Jackson RW, Arnold DL (2011). The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola. PLoS Pathog. 7(3):e1002010. [PudMed:21483484]
(207) Sitkiewicz I et al (2011). Lateral gene transfer of streptococcal ICE element RD2 (region of difference 2) encoding secreted proteins. BMC Microbiol. 0.503472222. [PudMed:21457552]
(208) Ghosh A et al (2011). Antimicrobials & cholera: are we stranded. Indian J Med Res. 133(2):225-31. [PudMed:21415499]
(209) Babic A et al (2011). Efficient gene transfer in bacterial cell chains. MBio. 2(2). [PudMed:21406598]
(210) Janis C et al (2011). In vivo regulation of the Vi antigen in Salmonella and induction of immune responses with an in vivo-inducible promoter. Infect Immun. 79(6):2481-8. [PudMed:21402763]
(211) Bi S et al (2011). New variant Salmonella genomic island 1-U in Proteus mirabilis clinical and food isolates from South China. J Antimicrob Chemother. 66(5):1178-9. [PudMed:21393148]
(212) Brenciani A et al (2011). Two distinct genetic elements are responsible for erm(TR)-mediated erythromycin resistance in tetracycline-susceptible and tetracycline-resistant strains of Streptococcus pyogenes. Antimicrob Agents Chemother. 55(5):2106-12. [PudMed:21343455]
(213) Thiaucourt F et al (2011). Mycoplasma mycoides, from "mycoides Small Colony" to "capri". A microevolutionary perspective. BMC Genomics. 0.579166667. [PudMed:21324191]
(214) Wannaprasat W et al (2011). Class 1 integrons and virulence genes in Salmonella enterica isolates from pork and humans. Int J Antimicrob Agents. 37(5):457-61. [PudMed:21295950]
(215) Ceccarelli D et al (2011). ICEVchInd5 is prevalent in epidemic Vibrio cholerae O1 El Tor strains isolated in India. Int J Med Microbiol. 301(4):318-24. [PudMed:21276749]
(216) Croucher NJ et al (2011). Rapid pneumococcal evolution in response to clinical interventions. Science. 331(6016):430-4. [PudMed:21273480]
(217) Mingoia M et al (2011). Heterogeneity of Tn5253-like composite elements in clinical Streptococcus pneumoniae isolates. Antimicrob Agents Chemother. 55(4):1453-9. [PudMed:21263055]
(218) Miyazaki R et al (2011). A dual functional origin of transfer in the ICEclc genomic island of Pseudomonas knackmussii B13. Mol Microbiol. 79(3):743-58. [PudMed:21255116]
(219) Cookson AL et al (2011). Transposition of Tn916 in the four replicons of the Butyrivibrio proteoclasticus B316(T) genome. FEMS Microbiol Lett. 316(2):144-51. [PudMed:21204937]
(220) Zhang J et al (2011). Expansion of the known Klebsiella pneumoniae species gene pool by characterization of novel alien DNA islands integrated into tmRNA gene sites. J Microbiol Methods. 84(2):283-9. [PudMed:21182879]
(221) Top J et al (2011). The recombinase IntA is required for excision of esp-containing ICEEfm1 in Enterococcus faecium. J Bacteriol. 193(4):1003-6. [PudMed:21148730]
(222) Wise KS et al (2011). Complete genome sequence of Mycoplasma bovis type strain PG45 (ATCC 25523). Infect Immun. 79(2):982-3. [PudMed:21134966]
(223) Machielsen R et al (2011). Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in Lactococcus lactis. Appl Environ Microbiol. 77(2):555-63. [PudMed:21115709]
(224) Galloway-Pena JR et al (2011). Diversity of the fsr-gelE region of the Enterococcus faecalis genome but conservation in strains with partial deletions of the fsr operon. Appl Environ Microbiol. 77(2):442-51. [PudMed:21097591]
(225) Park J et al (2011). Characterization of the Bacteroides CTnDOT regulatory protein RteC. J Bacteriol. 193(1):91-7. [PudMed:21037014]
(226) Bose B et al (2011). Regulation of horizontal gene transfer in Bacillus subtilis by activation of a conserved site-specific protease. J Bacteriol. 193(1):22-9. [PudMed:21036995]
(227) Li Y et al (2011). Molecular characterization of erm(B)- and mef(E)-mediated erythromycin-resistant Streptococcus pneumoniae in China and complete DNA sequence of Tn2010. J Appl Microbiol. 110(1):254-65. [PudMed:20961364]
(228) Parvathi A et al (2011). Comparative virulence genotyping and antimicrobial susceptibility profiling of environmental and clinical Salmonella enterica from Cochin, India. Curr Microbiol. 62(1):21-6. [PudMed:20490498]
(229) Liu G et al (2010). Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA. PLoS Genet. 6(12):e1001253. [PudMed:21203499]
(230) Douard G et al (2010). The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family. PLoS One. 5(12):e15302. [PudMed:21187963]
(231) Smits WK et al (2010). The transcriptional regulator Rok binds A+T-rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis. PLoS Genet. 6(11):e1001207. [PudMed:21085634]
(232) Hall RM (2010). Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol. 5(10):1525-38. [PudMed:21073312]
(233) Maurya P et al (2010). Status of Vi gene, its expression and Salmonella Pathogenicity Island (SPI-7) in Salmonella Typhi in India. Southeast Asian J Trop Med Public Health. 41(4):913-9. [PudMed:21073066]
(234) Haenni M et al (2010). Diversity and mobility of integrative and conjugative elements in bovine isolates of Streptococcus agalactiae, S. dysgalactiae subsp. dysgalactiae, and S. uberis. Appl Environ Microbiol. 76(24):7957-65. [PudMed:20952646]
(235) Foucault ML et al (2010). Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc Natl Acad Sci U S A. 107(39):16964-9. [PudMed:20833818]
(236) Daccord A et al (2010). Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol Microbiol. 78(3):576-88. [PudMed:20807202]
(237) Jasni AS et al (2010). Demonstration of conjugative transposon (Tn5397)-mediated horizontal gene transfer between Clostridium difficile and Enterococcus faecalis. Antimicrob Agents Chemother. 54(11):4924-6. [PudMed:20713671]
(238) Doublet B et al (2010). European clinical isolate of Proteus mirabilis harbouring the Salmonella genomic island 1 variant SGI1-O. J Antimicrob Chemother. 65(10):2260-2. [PudMed:20682564]
(239) Roche D et al (2010). ICEEc2, a new integrative and conjugative element belonging to the pKLC102/PAGI-2 family, identified in Escherichia coli strain BEN374. J Bacteriol. 192(19):5026-36. [PudMed:20675467]
(240) Peed L et al (2010). Genetic and functional analyses of the mob operon on conjugative transposon CTn341 from Bacteroides spp. J Bacteriol. 192(18):4643-50. [PudMed:20639338]
(241) Wozniak RA et al (2010). Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol. 8(8):552-63. [PudMed:20601965]
(242) Rice LB et al (2010). Multiple copies of functional, Tet(M)-encoding Tn916-like elements in a clinical Enterococcus faecium isolate. Plasmid. 64(3):150-5. [PudMed:20600284]
(243) Harada S et al (2010). Chromosomally encoded blaCMY-2 located on a novel SXT/R391-related integrating conjugative element in a Proteus mirabilis clinical isolate. Antimicrob Agents Chemother. 54(9):3545-50. [PudMed:20566768]
(244) Schijffelen MJ et al (2010). Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genomics. 0.719444444. [PudMed:20546576]
(245) Brouwer MS et al (2010). Characterization of the conjugative transposon Tn6000 from Enterococcus casseliflavus 664.1H1 (formerly Enterococcus faecium 664.1H1). FEMS Microbiol Lett. 309(1):71-6. [PudMed:20528943]
(246) Wood MM et al (2010). CTnDOT integrase interactions with attachment site DNA and control of directionality of the recombination reaction. J Bacteriol. 192(15):3934-43. [PudMed:20511494]
(247) Gaillard M et al (2010). Transcriptome analysis of the mobile genome ICEclc in Pseudomonas knackmussii B13. BMC Microbiol. 0.522916667. [PudMed:20504315]
(248) Gibson DG et al (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 329(5987):52-6. [PudMed:20488990]
(249) Santoro F et al (2010). Nucleotide sequence and functional analysis of the tet (M)-carrying conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMS Microbiol Lett. 308(2):150-8. [PudMed:20487027]
(250) Fischer W et al (2010). Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res. 38(18):6089-101. [PudMed:20478826]
(251) Janssen PJ et al (2010). The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One. 5(5):e10433. [PudMed:20463976]
(252) Stegmann R, Perreten V (2010). Antibiotic resistance profile of Staphylococcus rostri, a new species isolated from healthy pigs. Vet Microbiol. 145(1-2). [PudMed:20399039]
(253) van Schaik W et al (2010). Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics. 0.624305556. [PudMed:20398277]
(254) He M et al (2010). Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A. 107(16):7527-32. [PudMed:20368420]
(255) Carter MQ et al (2010). The Pseudomonas aeruginosa pathogenicity island PAPI-1 is transferred via a novel type IV pilus. J Bacteriol. 192(13):3249-58. [PudMed:20363934]
(256) Grim CJ et al (2010). Genome sequence of hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and comparative genomics with V. cholerae. J Bacteriol. 192(13):3524-33. [PudMed:20348258]
(257) Hannan S et al (2010). Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. FEMS Immunol Med Microbiol. 59(3):345-9. [PudMed:20337719]
(258) Denapaite D et al (2010). The genome of Streptococcus mitis B6--what is a commensal. PLoS One. 5(2):e9426. [PudMed:20195536]
(259) Rusniok C et al (2010). Genome sequence of Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. J Bacteriol. 192(8):2266-76. [PudMed:20139183]
(260) Harrison EM et al (2010). Pathogenicity islands PAPI-1 and PAPI-2 contribute individually and synergistically to the virulence of Pseudomonas aeruginosa strain PA14. Infect Immun. 78(4):1437-46. [PudMed:20123716]
(261) Nouvel LX et al (2010). Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity. BMC Genomics. 0.518055556. [PudMed:20122262]
(262) Paauw A et al (2010). Evolution in quantum leaps: multiple combinatorial transfers of HPI and other genetic modules in Enterobacteriaceae. PLoS One. 5(1):e8662. [PudMed:20084283]
(263) Kumar P et al (2010). Characterization of an SXT variant Vibrio cholerae O1 Ogawa isolated from a patient in Trivandrum, India. FEMS Microbiol Lett. 303(2):132-6. [PudMed:20030727]
(264) Tsvetkova K et al (2010). Analysis of the mobilization functions of the vancomycin resistance transposon Tn1549, a member of a new family of conjugative elements. J Bacteriol. 192(3):702-13. [PudMed:19966009]
(265) Laprise J et al (2010). Homology-dependent interactions determine the order of strand exchange by IntDOT recombinase. Nucleic Acids Res. 38(3):958-69. [PudMed:19952068]
(266) Kim HB et al (2010). Transferable quinolone resistance in Vibrio cholerae. Antimicrob Agents Chemother. 54(2):799-803. [PudMed:19949057]
(267) Lee CA et al (2010). Autonomous plasmid-like replication of a conjugative transposon. Mol Microbiol. 75(2):268-79. [PudMed:19943900]
(268) Bordeleau E et al (2010). Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol. 12(2):510-23. [PudMed:19888998]
(269) Wilson NL et al (2010). Unusual class 1 integron configuration found in Salmonella genomic island 2 from Salmonella enterica serovar Emek. Antimicrob Agents Chemother. 54(1):513-6. [PudMed:19884375]
(270) Berkmen MB et al (2010). Polar positioning of a conjugation protein from the integrative and conjugative element ICEBs1 of Bacillus subtilis. J Bacteriol. 192(1):38-45. [PudMed:19734305]
(271) Wozniak RA et al (2009). Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet. 5(12):e1000786. [PudMed:20041216]
(272) Kiiru JN et al (2009). Molecular characterisation of Vibrio cholerae O1 strains carrying an SXT/R391-like element from cholera outbreaks in Kenya: 1994-2007. BMC Microbiol. 0.565972222. [PudMed:20040104]
(273) Garriss G et al (2009). Mobile antibiotic resistance encoding elements promote their own diversity. PLoS Genet. 5(12):e1000775. [PudMed:20019796]
(274) Ryan MP et al (2009). Novel Tn4371-ICE like element in Ralstonia pickettii and genome mining for comparative elements. BMC Microbiol. 0.543055556. [PudMed:19941653]
(275) Taviani E et al (2009). Genomic analysis of a novel integrative conjugative element in Vibrio cholerae. FEBS Lett. 583(22):3630-6. [PudMed:19850044]
(276) Putze J et al (2009). Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun. 77(11):4696-703. [PudMed:19720753]
(277) Jeters RT et al (2009). Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides conjugative transposon CTnDOT. J Bacteriol. 191(20):6374-82. [PudMed:19700528]
(278) Flannery EL et al (2009). Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun. 77(11):4887-94. [PudMed:19687197]
(279) Lyras D et al (2009). tISCpe8, an IS1595-family lincomycin resistance element located on a conjugative plasmid in Clostridium perfringens. J Bacteriol. 191(20):6345-51. [PudMed:19684139]
(280) Ramsay JP et al (2009). A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol. 73(6):1141-55. [PudMed:19682258]
(281) Boguslawska J et al (2009). Intra- and interspecies conjugal transfer of Tn916-like elements from Lactococcus lactis in vitro and in vivo. Appl Environ Microbiol. 75(19):6352-60. [PudMed:19666731]
(282) Smyth DS et al (2009). Integrative and sequence characteristics of a novel genetic element, ICE6013, in Staphylococcus aureus. J Bacteriol. 191(19):5964-75. [PudMed:19648240]
(283) Lechner M et al (2009). Genomic island excisions in Bordetella petrii. BMC Microbiol. 0.472916667. [PudMed:19615092]
(284) Holden MT et al (2009). Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One. 4(7):e6072. [PudMed:19603075]
(285) de Vries LE et al (2009). Diversity of the tetracycline resistance gene tet(M) and identification of Tn916- and Tn5801-like (Tn6014) transposons in Staphylococcus aureus from humans and animals. J Antimicrob Chemother. 64(3):490-500. [PudMed:19531603]
(286) Rajeev L et al (2009). Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev. 73(2):300-9. [PudMed:19487729]
(287) Roberts AP et al (2009). A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 17(6):251-8. [PudMed:19464182]
(288) Wu KM et al (2009). Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol. 191(14):4492-501. [PudMed:19447910]
(289) Sentchilo V et al (2009). Intracellular excision and reintegration dynamics of the ICEclc genomic island of Pseudomonas knackmussii sp. strain B13. Mol Microbiol. 72(5):1293-306. [PudMed:19432799]
(290) Devirgiliis C et al (2009). Characterization of the Tn916 conjugative transposon in a food-borne strain of Lactobacillus paracasei. Appl Environ Microbiol. 75(12):3866-71. [PudMed:19395574]
(291) Han X et al (2009). Identification of a novel variant of staphylococcal cassette chromosome mec, type II.5, and Its truncated form by insertion of putative conjugative transposon Tn6012. Antimicrob Agents Chemother. 53(6):2616-9. [PudMed:19364875]
(292) Ding F et al (2009). Genome evolution driven by host adaptations results in a more virulent and antimicrobial-resistant Streptococcus pneumoniae serotype 14. BMC Genomics. 0.526388889. [PudMed:19361343]
(293) Meng F et al (2009). Structural characterization of Tn916-like element in Streptococcus parauberis serotype II strains isolated from diseased Japanese flounder. Lett Appl Microbiol. 48(6):770-6. [PudMed:19344360]
(294) Djordjevic SP et al (2009). Emergence and evolution of multiply antibiotic-resistant Salmonella enterica serovar Paratyphi B D-tartrate-utilizing strains containing SGI1. Antimicrob Agents Chemother. 53(6):2319-26. [PudMed:19332668]
(295) Wozniak RA et al (2009). A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genet. 5(3):e1000439. [PudMed:19325886]
(296) Holden MT et al (2009). Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog. 5(3):e1000346. [PudMed:19325880]
(297) Sobecky PA et al (2009). Horizontal gene transfer in metal and radionuclide contaminated soils. Methods Mol Biol. 532:455-72. [PudMed:19271201]
(298) Ghosh S et al (2009). Sphingobacterium sp. strain PM2-P1-29 harbours a functional tet(X) gene encoding for the degradation of tetracycline. J Appl Microbiol. 106(4):1336-42. [PudMed:19187139]
(299) Brochet M et al (2009). Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol Microbiol. 71(4):948-59. [PudMed:19183283]
(300) Bellanger X et al (2009). Conjugative transfer of the integrative conjugative elements ICESt1 and ICESt3 from Streptococcus thermophilus. J Bacteriol. 191(8):2764-75. [PudMed:19181800]
(301) Davies MR et al (2009). A novel integrative conjugative element mediates genetic transfer from group G Streptococcus to other {beta}-hemolytic Streptococci. J Bacteriol. 191(7):2257-65. [PudMed:19168609]
(302) Pugliese N et al (2009). SXT-related integrating conjugative element and IncC plasmids in Vibrio cholerae O1 strains in Eastern Africa. J Antimicrob Chemother. 63(3):438-42. [PudMed:19155226]
(303) Mavrodi DV et al (2009). Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. 9:08. [PudMed:19144133]
(304) Croucher NJ et al (2009). Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniaeSpain23F ST81. J Bacteriol. 191(5):1480-9. [PudMed:19114491]
(305) Henderson-Begg SK et al (2009). Diversity of putative Tn5253-like elements in Streptococcus pneumoniae. Int J Antimicrob Agents. 33(4):364-7. [PudMed:19097761]
(306) Winstanley C et al (2009). Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res. 19(1):12-23. [PudMed:19047519]
(307) Doublet B et al (2009). Truncated tni module adjacent to the complex integron of salmonella genomic island 1 in Salmonella enterica serovar Virchow. Antimicrob Agents Chemother. 53(2):824-7. [PudMed:19015337]
(308) Song B et al (2009). An unexpected effect of tetracycline concentration: growth phase-associated excision of the Bacteroides mobilizable transposon NBU1. J Bacteriol. 191(3):1078-82. [PudMed:18952794]
(309) Holden MT et al (2009). The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 191(1):261-77. [PudMed:18931103]
(310) Seth-Smith HM (2008). SPI-7: Salmonella's Vi-encoding Pathogenicity Island. J Infect Dev Ctries. 2(4):267-71. [PudMed:19741287]
(311) Boerlin P et al (2008). Antimicrobial resistance: its emergence and transmission. Anim Health Res Rev. 9(2):115-26. [PudMed:19102787]
(312) Heather Z et al (2008). A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol. 70(5):1274-92. [PudMed:18990191]
(313) Feizabadi MM et al (2008). Transposon Tn5281 is the main distributor of the aminoglycoside modifying enzyme gene among isolates of Enterococcus faecalis in Tehran hospitals. Can J Microbiol. 54(10):887-90. [PudMed:18923558]
(314) Serfiotis-Mitsa D et al (2008). The Orf18 gene product from conjugative transposon Tn916 is an ArdA antirestriction protein that inhibits type I DNA restriction-modification systems. J Mol Biol. 383(5):970-81. [PudMed:18838147]
(315) Bose B et al (2008). A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol Microbiol. 70(3):570-82. [PudMed:18761623]
(316) Brochet M et al (2008). Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J Bacteriol. 190(20):6913-7. [PudMed:18708498]
(317) Doublet B et al (2008). Novel insertion sequence- and transposon-mediated genetic rearrangements in genomic island SGI1 of Salmonella enterica serovar Kentucky. Antimicrob Agents Chemother. 52(10):3745-54. [PudMed:18676889]
(318) Fouts DE et al (2008). Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet. 4(7):e1000141. [PudMed:18654632]
(319) Bourgogne A et al (2008). Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol. 9(7):R110. [PudMed:18611278]
(320) Soge OO et al (2008). A novel transposon, Tn6009, composed of a Tn916 element linked with a Staphylococcus aureus mer operon. J Antimicrob Chemother. 62(4):674-80. [PudMed:18583328]
(321) Ceccarelli D et al (2008). Identification of the origin of transfer (oriT) and a new gene required for mobilization of the SXT/R391 family of integrating conjugative elements. J Bacteriol. 190(15):5328-38. [PudMed:18539733]
(322) Naito M et al (2008). Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 15(4):215-25. [PudMed:18524787]
(323) te Poele EM et al (2008). Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek. 94(1):127-43. [PudMed:18523858]
(324) Nakayama K et al (2008). The Whole-genome sequencing of the obligate intracellular bacterium Orientia tsutsugamushi revealed massive gene amplification during reductive genome evolution. DNA Res. 15(4):185-99. [PudMed:18508905]
(325) Shen X et al (2008). Macrolide-resistance mechanisms in Streptococcus pneumoniae isolates from Chinese children in association with genes of tetM and integrase of conjugative transposons 1545. Microb Drug Resist. 14(2):155-61. [PudMed:18479199]
(326) Gaillard M et al (2008). Host and invader impact of transfer of the clc genomic island into Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci U S A. 105(19):7058-63. [PudMed:18448680]
(327) Levings RS et al (2008). SGI2, a relative of Salmonella genomic island SGI1 with an independent origin. Antimicrob Agents Chemother. 52(7):2529-37. [PudMed:18443113]
(328) Ye C et al (2008). Spread of Streptococcus suis sequence type 7, China. Emerg Infect Dis. 14(5):787-91. [PudMed:18439362]
(329) Baker S et al (2008). Mobilization of the incQ plasmid R300B with a chromosomal conjugation system in Salmonella enterica serovar typhi. J Bacteriol. 190(11):4084-7. [PudMed:18390666]
(330) Osorio CR et al (2008). Genomic and functional analysis of ICEPdaSpa1, a fish-pathogen-derived SXT-related integrating conjugative element that can mobilize a virulence plasmid. J Bacteriol. 190(9):3353-61. [PudMed:18326579]
(331) Taviani E et al (2008). Environmental Vibrio spp., isolated in Mozambique, contain a polymorphic group of integrative conjugative elements and class 1 integrons. FEMS Microbiol Ecol. 64(1):45-54. [PudMed:18318712]
(332) te Poele EM et al (2008). Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid. 59(3):202-16. [PudMed:18295883]
(333) Mathee K et al (2008). Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A. 105(8):3100-5. [PudMed:18287045]
(334) Mohapatra H et al (2008). Vibrio cholerae non-O1, non-O139 strains isolated before 1992 from Varanasi, India are multiple drug resistant, contain intSXT, dfr18 and aadA5 genes. Environ Microbiol. 10(4):866-73. [PudMed:18201198]
(335) Saha SK et al (2008). Direct detection of the multidrug resistance genome of Haemophilus influenzae in cerebrospinal fluid of children: implications for treatment of meningitis. Pediatr Infect Dis J. 27(1):49-53. [PudMed:18162938]
(336) Camilli R et al (2008). New genetic element carrying the erythromycin resistance determinant erm(TR) in Streptococcus pneumoniae. Antimicrob Agents Chemother. 52(2):619-25. [PudMed:18070957]
(337) Florez AB et al (2008). Identification of tet(M) in two Lactococcus lactis strains isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of tetracycline resistance to lactococci and enterococci. Int J Food Microbiol. 121(2):189-94. [PudMed:18068255]
(338) Boyd DA et al (2008). Salmonella genomic island 1 (SGI1), variant SGI1-I, and new variant SGI1-O in proteus mirabilis clinical and food isolates from China. Antimicrob Agents Chemother. 52(1):340-4. [PudMed:18025121]
(339) Lin TL et al (2008). Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess. J Bacteriol. 190(2):515-26. [PudMed:17981959]
(340) Bellanger X et al (2008). Regulation of excision of integrative and potentially conjugative elements from Streptococcus thermophilus: role of the arp1 repressor. J Mol Microbiol Biotechnol. 14(1-3):16-21. [PudMed:17957106]
(341) Glockner G et al (2008). Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol. 298(5-6):411-28. [PudMed:17888731]
(342) Lee CA et al (2007). Identification and characterization of int (integrase), xis (excisionase) and chromosomal attachment sites of the integrative and conjugative element ICEBs1 of Bacillus subtilis. Mol Microbiol. 66(6):1356-69. [PudMed:18005101]
(343) Juhas M et al (2007). Sequence and functional analyses of Haemophilus spp. genomic islands. Genome Biol. 8(11):R237. [PudMed:17996041]
(344) Warburton PJ et al (2007). Demonstration of in vivo transfer of doxycycline resistance mediated by a novel transposon. J Antimicrob Chemother. 60(5):973-80. [PudMed:17855723]
(345) Eppinger M et al (2007). The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet. 3(8):e142. [PudMed:17784789]
(346) Kim HG et al (2007). Methylophaga aminisulfidivorans sp. nov., a restricted facultatively methylotrophic marine bacterium. Int J Syst Evol Microbiol. 57(Pt 9):2096-101. [PudMed:17766878]
(347) Rajeev L et al (2007). The bacteroides NBU1 integrase performs a homology-independent strand exchange to form a holliday junction intermediate. J Biol Chem. 282(43):31228-37. [PudMed:17766246]
(348) Beres SB et al (2007). Contribution of exogenous genetic elements to the group A Streptococcus metagenome. PLoS One. 2(8):e800. [PudMed:17726530]
(349) Malanowska K et al (2007). CTnDOT integrase performs ordered homology-dependent and homology-independent strand exchanges. Nucleic Acids Res. 35(17):5861-73. [PudMed:17720706]
(350) Hecht DW et al (2007). Characterization of BctA, a mating apparatus protein required for transfer of the Bacteroides fragilis conjugal element BTF-37. Res Microbiol. 158(7):600-7. [PudMed:17720457]
(351) Rossi-Fedele G et al (2007). A preliminary study investigating the survival of tetracycline resistant Enterococcus faecalis after root canal irrigation with high concentrations of tetracycline. Int Endod J. 40(10):772-7. [PudMed:17697106]
(352) Lee CA et al (2007). Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of Bacillus subtilis. J Bacteriol. 189(20):7254-61. [PudMed:17693500]
(353) Song B et al (2007). Integration site selection by the Bacteroides conjugative transposon CTnBST. J Bacteriol. 189(18):6594-601. [PudMed:17616597]
(354) Xu J et al (2007). Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5(7):e156. [PudMed:17579514]
(355) Marrero J et al (2007). Determinants of entry exclusion within Eex and TraG are cytoplasmic. J Bacteriol. 189(17):6469-73. [PudMed:17573467]
(356) Moon K et al (2007). Unexpected effect of a Bacteroides conjugative transposon, CTnDOT, on chromosomal gene expression in its bacterial host. Mol Microbiol. 64(6):1562-71. [PudMed:17555438]
(357) te Poele EM et al (2007). Prevalence and distribution of nucleotide sequences typical for pMEA-like accessory genetic elements in the genus Amycolatopsis. FEMS Microbiol Ecol. 61(2):285-94. [PudMed:17535299]
(358) Dimopoulou ID et al (2007). Diversity of antibiotic resistance integrative and conjugative elements among haemophili. J Med Microbiol. 56(Pt 6):838-46. [PudMed:17510272]
(359) O'Halloran JA et al (2007). The orf4 gene of the enterobacterial ICE, R391, encodes a novel UV-inducible recombination directionality factor, Jef, involved in excision and transfer of the ICE. FEMS Microbiol Lett. 272(1):99-105. [PudMed:17504243]
(360) Ferreira LQ et al (2007). Association between the cfxA gene and transposon Tn4555 in Bacteroides distasonis strains and other Bacteroides species. Curr Microbiol. 54(5):348-53. [PudMed:17486409]
(361) Cochetti I et al (2007). New Tn916-related elements causing erm(B)-mediated erythromycin resistance in tetracycline-susceptible pneumococci. J Antimicrob Chemother. 60(1):127-31. [PudMed:17483548]
(362) Schlesinger DJ et al (2007). Possible origins of CTnBST, a conjugative transposon found recently in a human colonic Bacteroides strain. Appl Environ Microbiol. 73(13):4226-33. [PudMed:17483268]
(363) Achard A et al (2007). Characterization of a small mobilizable transposon, MTnSag1, in Streptococcus agalactiae. J Bacteriol. 189(11):4328-31. [PudMed:17416666]
(364) Chen C et al (2007). A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One. 2(3):e315. [PudMed:17375201]
(365) Oliynyk M et al (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol. 25(4):447-53. [PudMed:17369815]
(366) Rice LB et al (2007). Interaction of related Tn916-like transposons: analysis of excision events promoted by Tn916 and Tn5386 integrases. J Bacteriol. 189(10):3909-17. [PudMed:17322310]
(367) Marrero J et al (2007). The SXT/R391 family of integrative conjugative elements is composed of two exclusion groups. J Bacteriol. 189(8):3302-5. [PudMed:17307849]
(368) Mead S et al (2007). Characterization of polVR391: a Y-family polymerase encoded by rumA'B from the IncJ conjugative transposon, R391. Mol Microbiol. 63(3):797-810. [PudMed:17302804]
(369) Vo AT et al (2007). A novel Salmonella genomic island 1 and rare integron types in Salmonella Typhimurium isolates from horses in The Netherlands. J Antimicrob Chemother. 59(4):594-9. [PudMed:17293368]
(370) Dichiara JM et al (2007). IntDOT interactions with core- and arm-type sites of the conjugative transposon CTnDOT. J Bacteriol. 189(7):2692-701. [PudMed:17277054]
(371) Belhocine K et al (2007). Conjugative transfer of the Lactococcus lactis sex factor and pRS01 plasmid to Enterococcus faecalis. FEMS Microbiol Lett. 269(2):289-94. [PudMed:17263841]
(372) Brenciani A et al (2007). Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother. 51(4):1209-16. [PudMed:17261630]
(373) Bani S et al (2007). Molecular characterization of ICEVchVie0 and its disappearance in Vibrio cholerae O1 strains isolated in 2003 in Vietnam. FEMS Microbiol Lett. 266(1):42-8. [PudMed:17233716]
(374) Wesslund NA et al (2007). Integration and excision of a newly discovered bacteroides conjugative transposon, CTnBST. J Bacteriol. 189(3):1072-82. [PudMed:17122349]
(375) Bellanger X et al (2007). Derepression of excision of integrative and potentially conjugative elements from Streptococcus thermophilus by DNA damage response: implication of a cI-related repressor. J Bacteriol. 189(4):1478-81. [PudMed:17114247]
(376) Levings RS et al (2007). SGI1-K, a variant of the SGI1 genomic island carrying a mercury resistance region, in Salmonella enterica serovar Kentucky. Antimicrob Agents Chemother. 51(1):317-23. [PudMed:17088481]
(377) Thomson NR et al (2006). The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet. 2(12):e206. [PudMed:17173484]
(378) Ramsay JP et al (2006). Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol Microbiol. 62(3):723-34. [PudMed:17076666]
(379) Chain PS et al (2006). Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A. 103(42):15280-7. [PudMed:17030797]
(380) Pembroke JT et al (2006). A novel ICE in the genome of Shewanella putrefaciens W3-18-1: comparison with the SXT/R391 ICE-like elements. FEMS Microbiol Lett. 264(1):80-8. [PudMed:17020552]
(381) Nougayrede JP et al (2006). Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 313(5788):848-51. [PudMed:16902142]
(382) McLeod SM et al (2006). Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer. J Bacteriol. 188(16):5704-11. [PudMed:16885438]
(383) Rajeev L et al (2006). Characterization of the integrase of NBU1, a Bacteroides mobilizable transposon. Mol Microbiol. 61(4):978-90. [PudMed:16859497]
(384) Goranov AI et al (2006). Characterization of the global transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis. J Bacteriol. 188(15):5595-605. [PudMed:16855250]
(385) Rossi-Fedele G et al (2006). Incidence and behaviour of Tn916-like elements within tetracycline-resistant bacteria isolated from root canals. Oral Microbiol Immunol. 21(4):218-22. [PudMed:16842505]
(386) Sebaihia M et al (2006). The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet. 38(7):779-86. [PudMed:16804543]
(387) Ohtsubo Y et al (2006). Identification of a response regulator gene for catabolite control from a PCB-degrading beta-proteobacteria, Acidovorax sp. KKS102. Mol Microbiol. 60(6):1563-75. [PudMed:16796688]
(388) Wang H et al (2006). The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site. J Bacteriol. 188(13):4871-8. [PudMed:16788196]
(389) Roberts AP et al (2006). Characterization of the ends and target site of a novel tetracycline resistance-encoding conjugative transposon from Enterococcus faecium 664.1H1. J Bacteriol. 188(12):4356-61. [PudMed:16740942]
(390) Marenda M et al (2006). A new integrative conjugative element occurs in Mycoplasma agalactiae as chromosomal and free circular forms. J Bacteriol. 188(11):4137-41. [PudMed:16707706]
(391) Malanowska K et al (2006). Characterization of a conjugative transposon integrase, IntDOT. Mol Microbiol. 60(5):1228-40. [PudMed:16689798]
(392) Burrus V et al (2006). SXT-related integrating conjugative element in New World Vibrio cholerae. Appl Environ Microbiol. 72(4):3054-7. [PudMed:16598018]
(393) Agerso Y et al (2006). Identification of Tn5397-like and Tn916-like transposons and diversity of the tetracycline resistance gene tet(M) in enterococci from humans, pigs and poultry. J Antimicrob Chemother. 57(5):832-9. [PudMed:16565159]
(394) Burrus V et al (2006). The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid. 55(3):173-83. [PudMed:16530834]
(395) Rocco JM et al (2006). The integrase of the conjugative transposon Tn916 directs strand- and sequence-specific cleavage of the origin of conjugal transfer, oriT, by the endonuclease Orf20. J Bacteriol. 188(6):2207-13. [PudMed:16513750]
(396) Gaillard M et al (2006). The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol. 188(5):1999-2013. [PudMed:16484212]
(397) Whittle G et al (2006). A bacteroides conjugative transposon, CTnERL, can transfer a portion of itself by conjugation without excising from the chromosome. J Bacteriol. 188(3):1169-74. [PudMed:16428422]
(398) Pitman AR, Jackson RW, Mansfield JW, Kaitell V, Thwaites R, Arnold DL (2005). Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Curr Biol. 15(24):2230-5. [PudMed:16360685]
(399) Lavigne JP et al (2005). The IncP island in the genome of Brucella suis 1330 was acquired by site-specific integration. Infect Immun. 73(11):7779-83. [PudMed:16239585]
(400) Rice LB et al (2005). Tn5386, a novel Tn916-like mobile element in Enterococcus faecium D344R that interacts with Tn916 to yield a large genomic deletion. J Bacteriol. 187(19):6668-77. [PudMed:16166528]
(401) Baker S et al (2005). Detection of Vi-negative Salmonella enterica serovar typhi in the peripheral blood of patients with typhoid fever in the Faisalabad region of Pakistan. J Clin Microbiol. 43(9):4418-25. [PudMed:16145086]
(402) Pembroke JT et al (2005). Pulsed field gel electrophoresis to rapidly detect the presence of IncJ conjugative transposon-like elements. Lett Appl Microbiol. 41(3):258-61. [PudMed:16108917]
(403) Auchtung JM et al (2005). Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc Natl Acad Sci U S A. 102(35):12554-9. [PudMed:16105942]
(404) Juiz-Rio S et al (2005). Subtractive hybridization reveals a high genetic diversity in the fish pathogen Photobacterium damselae subsp. piscicida: evidence of a SXT-like element. Microbiology. 151(Pt 8):2659-69. [PudMed:16079344]
(405) Moon K et al (2005). Regulation of excision genes of the Bacteroides conjugative transposon CTnDOT. J Bacteriol. 187(16):5732-41. [PudMed:16077120]
(406) Faucher SP et al (2005). Selective capture of Salmonella enterica serovar typhi genes expressed in macrophages that are absent from the Salmonella enterica serovar Typhimurium genome. Infect Immun. 73(8):5217-21. [PudMed:16041043]
(407) Hosted TJ Jr et al (2005). Characterization of the Micromonospora rosaria pMR2 plasmid and development of a high G+C codon optimized integrase for site-specific integration. Plasmid. 54(3):249-58. [PudMed:16024079]
(408) Harrison A et al (2005). Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype d, strain KW20. J Bacteriol. 187(13):4627-36. [PudMed:15968074]
(409) Levings RS et al (2005). The genomic island SGI1, containing the multiple antibiotic resistance region of Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed in other S. enterica serovars. J Bacteriol. 187(13):4401-9. [PudMed:15968049]
(410) Marrero J et al (2005). Interactions between inner membrane proteins in donor and recipient cells limit conjugal DNA transfer. Dev Cell. 8(6):963-70. [PudMed:15935784]
(411) DiChiara JM et al (2005). In vitro analysis of sequence requirements for the excision reaction of the Bacteroides conjugative transposon, CTnDOT. Mol Microbiol. 56(4):1035-48. [PudMed:15853888]
(412) Lopez-Lopez A et al (2005). Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environ Microbiol. 7(5):649-59. [PudMed:15819847]
(413) Bacic M et al (2005). Genetic and structural analysis of the Bacteroides conjugative transposon CTn341. J Bacteriol. 187(8):2858-69. [PudMed:15805532]
(414) Wang Y et al (2005). Translational control of tetracycline resistance and conjugation in the Bacteroides conjugative transposon CTnDOT. J Bacteriol. 187(8):2673-80. [PudMed:15805513]
(415) Toma C et al (2005). Vibrio cholerae SXT element, Laos. Emerg Infect Dis. 11(2):346-7. [PudMed:15759340]
(416) Abbani M et al (2005). The structure of the excisionase (Xis) protein from conjugative transposon Tn916 provides insights into the regulation of heterobivalent tyrosine recombinases. J Mol Biol. 347(1):11-25. [PudMed:15733914]
(417) McGrath BM et al (2005). Pre-exposure to UV irradiation increases the transfer frequency of the IncJ conjugative transposon-like elements R391, R392, R705, R706, R997 and pMERPH and is recA+ dependent. FEMS Microbiol Lett. 243(2):461-5. [PudMed:15686850]
(418) Takeuchi K et al (2005). Drug resistance of Enterococcus faecium clinical isolates and the conjugative transfer of gentamicin and erythromycin resistance traits. FEMS Microbiol Lett. 243(2):347-54. [PudMed:15686834]
(419) Hussain HA et al (2005). Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites. J Med Microbiol. 54(Pt 2):137-41. [PudMed:15673506]
(420) Hirt H et al (2005). Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. J Bacteriol. 187(3):1044-54. [PudMed:15659682]
(421) Belhocine K et al (2005). Conjugative transfer of the Lactococcus lactis chromosomal sex factor promotes dissemination of the Ll.LtrB group II intron. J Bacteriol. 187(3):930-9. [PudMed:15659671]
(422) Ahmed AM et al (2005). A variant type of Vibrio cholerae SXT element in a multidrug-resistant strain of Vibrio fluvialis. FEMS Microbiol Lett. 242(2):241-7. [PudMed:15621444]
(423) Mohd-Zain Z et al (2004). Transferable antibiotic resistance elements in Haemophilus influenzae share a common evolutionary origin with a diverse family of syntenic genomic islands. J Bacteriol. 186(23):8114-22. [PudMed:15547285]
(424) Schubert S et al (2004). The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol. 294(2-3):83-94. [PudMed:15493818]
(425) Doublet B et al (2004). Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 3'-N-aminoglycoside acetyltransferase gene cassette, aac(3)-Id, in Salmonella enterica serovar newport. Antimicrob Agents Chemother. 48(10):3806-12. [PudMed:15388438]
(426) Franco AA (2004). The Bacteroides fragilis pathogenicity island is contained in a putative novel conjugative transposon. J Bacteriol. 186(18):6077-92. [PudMed:15342577]
(427) Hastings PJ et al (2004). Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol. 12(9):401-4. [PudMed:15337159]
(428) Sutanto Y et al (2004). Factors required in vitro for excision of the Bacteroides conjugative transposon, CTnDOT. Plasmid. 52(2):119-30. [PudMed:15336489]
(429) Beaber JW et al (2004). Identification of operators and promoters that control SXT conjugative transfer. J Bacteriol. 186(17):5945-9. [PudMed:15317801]
(430) Ehara M et al (2004). Drug susceptibility and its genetic basis in epidemic Vibrio cholerae O1 in Vietnam. Epidemiol Infect. 132(4):595-600. [PudMed:15310160]
(431) Adams V et al (2004). DNA binding properties of TnpX indicate that different synapses are formed in the excision and integration of the Tn4451 family. Mol Microbiol. 53(4):1195-207. [PudMed:15306021]
(432) Banks DJ et al (2004). Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J Infect Dis. 190(4):727-38. [PudMed:15272401]
(433) Collyn F et al (2004). YAPI, a new Yersinia pseudotuberculosis pathogenicity island. Infect Immun. 72(8):4784-90. [PudMed:15271940]
(434) McGrath BM et al (2004). Detailed analysis of the insertion site of the mobile elements R997, pMERPH, R392, R705 and R391 in E. coli K12. FEMS Microbiol Lett. 237(1):19-26. [PudMed:15268933]
(435) Doublet B et al (2004). Salmonella genomic island 1 multidrug resistance gene clusters in Salmonella enterica serovar Agona isolated in Belgium in 1992 to 2002. Antimicrob Agents Chemother. 48(7):2510-7. [PudMed:15215102]
(436) Iwanaga M et al (2004). Antibiotic resistance conferred by a class I integron and SXT constin in Vibrio cholerae O1 strains isolated in Laos. Antimicrob Agents Chemother. 48(7):2364-9. [PudMed:15215082]
(437) Burrus V et al (2004). Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol. 155(5):376-86. [PudMed:15207870]
(438) Lancaster H et al (2004). Characterization of Tn916S, a Tn916-like element containing the tetracycline resistance determinant tet(S). J Bacteriol. 186(13):4395-8. [PudMed:15205444]
(439) Melville CM et al (2004). The Butyrivibrio fibrisolvens tet(W) gene is carried on the novel conjugative transposon TnB1230, which contains duplicated nitroreductase coding sequences. J Bacteriol. 186(11):3656-9. [PudMed:15150255]
(440) Sabater-Munoz B et al (2004). Evolution of the leucine gene cluster in Buchnera aphidicola: insights from chromosomal versions of the cluster. J Bacteriol. 186(9):2646-54. [PudMed:15090505]
(441) Burrus V et al (2004). Formation of SXT tandem arrays and SXT-R391 hybrids. J Bacteriol. 186(9):2636-45. [PudMed:15090504]
(442) Wang Y et al (2004). Regulation of a Bacteroides operon that controls excision and transfer of the conjugative transposon CTnDOT. J Bacteriol. 186(9):2548-57. [PudMed:15090494]
(443) Pavlovic G et al (2004). Evolution of genomic islands by deletion and tandem accretion by site-specific recombination: ICESt1-related elements from Streptococcus thermophilus. Microbiology. 150(Pt 4):759-74. [PudMed:15073287]
(444) She Q et al (2004). Archaeal integrases and mechanisms of gene capture. Biochem Soc Trans. 32(Pt 2):222-6. [PudMed:15046576]
(445) Gorfe AA et al (2004). The role of flexibility and hydration on the sequence-specific DNA recognition by the Tn916 integrase protein: a molecular dynamics analysis. J Mol Recognit. 17(2):120-31. [PudMed:15027032]
(446) Lyras D et al (2004). The large resolvase TnpX is the only transposon-encoded protein required for transposition of the Tn4451/3 family of integrative mobilizable elements. Mol Microbiol. 51(6):1787-800. [PudMed:15009902]
(447) Huys G et al (2004). Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol. 70(3):1555-62. [PudMed:15006778]
(448) He J et al (2004). The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A. 101(8):2530-5. [PudMed:14983043]
(449) Brown JS et al (2004). A locus contained within a variable region of pneumococcal pathogenicity island 1 contributes to virulence in mice. Infect Immun. 72(3):1587-93. [PudMed:14977965]
(450) Bahl MI et al (2004). Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl Environ Microbiol. 70(2):758-64. [PudMed:14766552]
(451) Schubert S et al (2004). A novel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity island. Mol Microbiol. 51(3):837-48. [PudMed:14731283]
(452) Leavis H et al (2004). A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J Bacteriol. 186(3):672-82. [PudMed:14729692]
(453) Boltner D et al (2004). Structural comparison of the integrative and conjugative elements R391, pMERPH, R997, and SXT. Plasmid. 51(1):12-23. [PudMed:14711525]
(454) Klockgether J et al (2004). Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol. 186(2):518-34. [PudMed:14702321]
(455) Beaber JW et al (2004). SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 427(6969):72-4. [PudMed:14688795]
(456) Gomez-Lus Lafita R (2003). [Evolution of bacterial resistance to antibiotics]. An R Acad Nac Med (Madr). 120(4):717-26; discussion 726-8. [PudMed:15147057]
(457) Banks DJ et al (2003). Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus. J Infect Dis. 188(12):1898-908. [PudMed:14673771]
(458) Roberts AP et al (2003). Development of an integrative vector for the expression of antisense RNA in Clostridium difficile. J Microbiol Methods. 55(3):617-24. [PudMed:14607405]
(459) Gupta A et al (2003). A new Bacteroides conjugative transposon that carries an ermB gene. Appl Environ Microbiol. 69(11):6455-63. [PudMed:14602600]
(460) Santagati M et al (2003). The novel conjugative transposon tn1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microb Drug Resist. 9(3):243-7. [PudMed:12959402]
(461) Pickard D et al (2003). Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J Bacteriol. 185(17):5055-65. [PudMed:12923078]
(462) Burrus V et al (2003). Control of SXT integration and excision. J Bacteriol. 185(17):5045-54. [PudMed:12923077]
(463) Toussaint A et al (2003). The biphenyl- and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl Environ Microbiol. 69(8):4837-45. [PudMed:12902278]
(464) Wang Y et al (2003). A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in gram-positive bacteria. Appl Environ Microbiol. 69(8):4595-603. [PudMed:12902247]
(465) Dahl KH et al (2003). Transferable vanB2 Tn5382-containing elements in fecal streptococcal strains from veal calves. Antimicrob Agents Chemother. 47(8):2579-83. [PudMed:12878522]
(466) Brassinga AK et al (2003). A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol. 185(15):4630-7. [PudMed:12867476]
(467) van der Meer JR et al (2003). Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol. 14(3):248-54. [PudMed:12849776]
(468) Sentchilo V et al (2003). Characterization of two alternative promoters for integrase expression in the clc genomic island of Pseudomonas sp. strain B13. Mol Microbiol. 49(1):93-104. [PudMed:12823813]
(469) Paulsen IT et al (2003). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science. 299(5615):2071-4. [PudMed:12663927]
(470) Possoz C et al (2003). Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor). Mol Microbiol. 47(5):1385-93. [PudMed:12603742]
(471) Muller TA et al (2003). Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. Environ Microbiol. 5(3):163-73. [PudMed:12588296]
(472) Beaber JW et al (2002). Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell Mol Life Sci. 59(12):2065-70. [PudMed:12568332]
(473) Pembroke JT et al (2002). The role of conjugative transposons in the Enterobacteriaceae. Cell Mol Life Sci. 59(12):2055-64. [PudMed:12568331]
(474) Whittle G et al (2002). The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci. 59(12):2044-54. [PudMed:12568330]
(475) Adams V et al (2002). The clostridial mobilisable transposons. Cell Mol Life Sci. 59(12):2033-43. [PudMed:12568329]
(476) Taraskina AE et al (2002). Drift of tetM determinant in urogenital microbiocenosis containing mycoplasmas during treatment with a tetracycline antibiotic. Bull Exp Biol Med. 134(1):60-3. [PudMed:12459871]
(477) Sutanto Y et al (2002). Characterization of Exc, a novel protein required for the excision of Bacteroides conjugative transposon. Mol Microbiol. 46(5):1239-46. [PudMed:12453211]
(478) Calcutt MJ et al (2002). Molecular genetic analysis of ICEF, an integrative conjugal element that is present as a repetitive sequence in the chromosome of Mycoplasma fermentans PG18. J Bacteriol. 184(24):6929-41. [PudMed:12446643]
(479) Larbig KD et al (2002). Gene islands integrated into tRNA(Gly) genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol. 184(23):6665-80. [PudMed:12426355]
(480) Burrus V et al (2002). Conjugative transposons: the tip of the iceberg. Mol Microbiol. 46(3):601-10. [PudMed:12410819]
(481) Ajdic D et al (2002). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 99(22):14434-9. [PudMed:12397186]
(482) Burrus V et al (2002). The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid. 48(2):77-97. [PudMed:12383726]
(483) Collyn F et al (2002). Yersinia pseudotuberculosis harbors a type IV pilus gene cluster that contributes to pathogenicity. Infect Immun. 70(11):6196-205. [PudMed:12379698]
(484) Glaser P et al (2002). Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol. 45(6):1499-513. [PudMed:12354221]
(485) Tettelin H et al (2002). Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U S A. 99(19):12391-6. [PudMed:12200547]
(486) Boltner D et al (2002). R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J Bacteriol. 184(18):5158-69. [PudMed:12193633]
(487) Thungapathra M et al (2002). Occurrence of antibiotic resistance gene cassettes aac(6')-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob Agents Chemother. 46(9):2948-55. [PudMed:12183252]
(488) Cheng Q et al (2002). Development of an in vitro integration assay for the Bacteroides conjugative transposon CTnDOT. J Bacteriol. 184(17):4829-37. [PudMed:12169608]
(489) Beaber JW et al (2002). Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol. 184(15):4259-69. [PudMed:12107144]
(490) Whittle G et al (2002). Characterization of genes involved in modulation of conjugal transfer of the Bacteroides conjugative transposon CTnDOT. J Bacteriol. 184(14):3839-47. [PudMed:12081954]
(491) Boyd D et al (2002). Characterization of variant Salmonella genomic island 1 multidrug resistance regions from serovars Typhimurium DT104 and Agona. Antimicrob Agents Chemother. 46(6):1714-22. [PudMed:12019080]
(492) Sullivan JT et al (2002). Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol. 184(11):3086-95. [PudMed:12003951]
(493) Dimopoulou ID et al (2002). Site-specific recombination with the chromosomal tRNA(Leu) gene by the large conjugative Haemophilus resistance plasmid. Antimicrob Agents Chemother. 46(5):1602-3. [PudMed:11959612]
(494) Billington SJ et al (2002). Widespread distribution of a tet W determinant among tetracycline-resistant isolates of the animal pathogen Arcanobacterium pyogenes. Antimicrob Agents Chemother. 46(5):1281-7. [PudMed:11959557]
(495) Hansen-Wester I et al (2002). Genome-based identification of chromosomal regions specific for Salmonella spp. Infect Immun. 70(5):2351-60. [PudMed:11953370]
(496) Connolly KM et al (2002). Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol. 184(8):2088-99. [PudMed:11914339]
(497) Bass KA et al (2002). Isolation and characterization of cLV25, a Bacteroides fragilis chromosomal transfer factor resembling multiple Bacteroides sp. mobilizable transposons. J Bacteriol. 184(7):1895-904. [PudMed:11889096]
(498) Salanoubat M et al (2002). Genome sequence of the plant pathogen Ralstonia solanacearum. Nature. 415(6871):497-502. [PudMed:11823852]
(499) Vedantam G et al (2002). Isolation and characterization of BTF-37: chromosomal DNA captured from Bacteroides fragilis that confers self-transferability and expresses a pilus-like structure in Bacteroides spp. and Escherichia coli. J Bacteriol. 184(3):728-38. [PudMed:11790742]
(500) Bonheyo GT et al (2001). Transfer region of a Bacteroides conjugative transposon contains regulatory as well as structural genes. Plasmid. 46(3):202-9. [PudMed:11735369]
(501) Dalsgaard A et al (2001). Vibrio cholerae O1 outbreak isolates in Mozambique and South Africa in 1998 are multiple-drug resistant, contain the SXT element and the aadA2 gene located on class 1 integrons. J Antimicrob Chemother. 48(6):827-38. [PudMed:11733467]
(502) Parkhill J et al (2001). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature. 413(6858):848-52. [PudMed:11677608]
(503) Hochhut B et al (2001). Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother. 45(11):2991-3000. [PudMed:11600347]
(504) Wang J et al (2001). Production of two proteins encoded by the Bacteroides mobilizable transposon NBU1 correlates with time-dependent accumulation of the excised NBu1 circular form. J Bacteriol. 183(21):6335-43. [PudMed:11591678]
(505) Hinerfeld D et al (2001). Xis protein of the conjugative transposon Tn916 plays dual opposing roles in transposon excision. Mol Microbiol. 41(6):1459-67. [PudMed:11580848]
(506) Farrow KA et al (2001). Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology. 147(Pt 10):2717-28. [PudMed:11577151]
(507) Boyd D et al (2001). Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol. 183(19):5725-32. [PudMed:11544236]
(508) Smith CJ et al (2001). Analysis of a Bacteroides conjugative transposon using a novel "targeted capture" model system. Plasmid. 46(1):47-56. [PudMed:11535035]
(509) Cheng Q et al (2001). Identification of genes required for excision of CTnDOT, a Bacteroides conjugative transposon. Mol Microbiol. 41(3):625-32. [PudMed:11532130]
(510) Whittle G et al (2001). Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl Environ Microbiol. 67(8):3488-95. [PudMed:11472924]
(511) Ohtsubo Y et al (2001). BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation in Pseudomonas sp. KKS102. J Biol Chem. 276(39):36146-54. [PudMed:11459836]
(512) Kuroda M et al (2001). Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 357(9264):1225-40. [PudMed:11418146]
(513) Roberts AP et al (2001). Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology. 147(Pt 5):1243-51. [PudMed:11320127]
(514) Hinerfeld D et al (2001). Specific binding of integrase to the origin of transfer (oriT) of the conjugative transposon Tn916. J Bacteriol. 183(9):2947-51. [PudMed:11292817]
(515) Burrus V et al (2001). Characterization of a novel type II restriction-modification system, Sth368I, encoded by the integrative element ICESt1 of Streptococcus thermophilus CNRZ368. Appl Environ Microbiol. 67(4):1522-8. [PudMed:11282600]
(516) Hochhut B et al (2001). Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J Bacteriol. 183(4):1124-32. [PudMed:11157923]
(517) Kaneko T et al (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7(6):331-8. [PudMed:11214968]
(518) Seral C et al (2000). [Presence of conjugative transposon Tn1545 in strains of Streptococcus pneumoniae with mef(A), erm(B), tet(M), catpC194 and aph3'-III genes]. Enferm Infecc Microbiol Clin. 18(10):506-11. [PudMed:11198001]
(519) Srinivas P et al (2000). Genetic and transcriptional analysis of a regulatory region in streptococcal conjugative transposon Tn5252. Plasmid. 44(3):262-74. [PudMed:11078652]
(520) Wang H et al (2000). The large resolvase TndX is required and sufficient for integration and excision of derivatives of the novel conjugative transposon Tn5397. J Bacteriol. 182(23):6577-83. [PudMed:11073898]
(521) Lyras D et al (2000). Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX. Mol Microbiol. 38(3):588-601. [PudMed:11069682]
(522) Blaiotta G et al (2000). Conditions for conjugative transposon transfer in Lactococcus lactis. Lett Appl Microbiol. 31(5):343-8. [PudMed:11069634]
(523) Wang H et al (2000). DNA sequence of the insertional hot spot of Tn916 in the Clostridium difficile genome and discovery of a Tn916-like element in an environmental isolate integrated in the same hot spot. FEMS Microbiol Lett. 192(1):15-20. [PudMed:11040422]
(524) Boyd DA et al (2000). Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhymurium DT104. FEMS Microbiol Lett. 189(2):285-91. [PudMed:10930753]
(525) Cheng Q et al (2000). Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J Bacteriol. 182(14):4035-43. [PudMed:10869083]
(526) Wang J et al (2000). Characterization of a Bacteroides mobilizable transposon, NBU2, which carries a functional lincomycin resistance gene. J Bacteriol. 182(12):3559-71. [PudMed:10852890]
(527) Wang H et al (2000). Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX. J Bacteriol. 182(13):3775-83. [PudMed:10850994]
(528) Garnier F et al (2000). Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology. 146 ( Pt 6):1481-9. [PudMed:10846226]
(529) Burrus V et al (2000). Characterization of a novel integrative element, ICESt1, in the lactic acid bacterium Streptococcus thermophilus. Appl Environ Microbiol. 66(4):1749-53. [PudMed:10742276]
(530) Hochhut B et al (2000). Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J Bacteriol. 182(7):2043-7. [PudMed:10715015]
(531) Nishi A et al (2000). A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J Bacteriol. 182(7):1949-55. [PudMed:10715002]
(532) Pethel B et al (2000). Coupling sequences flanking Tn916 do not determine the affinity of binding of integrase to the transposon ends and adjacent bacterial DNA. Plasmid. 43(2):123-9. [PudMed:10686130]
(533) Shoemaker NB et al (2000). Multiple gene products and sequences required for excision of the mobilizable integrated Bacteroides element NBU1. J Bacteriol. 182(4):928-36. [PudMed:10648516]
(534) Farrow KA et al (2000). The macrolide-lincosamide-streptogramin B resistance determinant from Clostridium difficile 630 contains two erm(B) genes. Antimicrob Agents Chemother. 44(2):411-3. [PudMed:10639372]
(535) Smidt H et al (1999). Random transposition by Tn916 in Desulfitobacterium dehalogenans allows for isolation and characterization of halorespiration-deficient mutants. J Bacteriol. 181(22):6882-8. [PudMed:10559152]
(536) Teuber M et al (1999). Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek. 76(1-4):115-37. [PudMed:10532375]
(537) Dunny GM et al (1999). Group II introns and expression of conjugative transfer functions in lactic acid bacteria. Antonie Van Leeuwenhoek. 76(1-4):77-88. [PudMed:10532373]
(538) Chung WO et al (1999). Mobile elements carrying ermF and tetQ genes in gram-positive and gram-negative bacteria. J Antimicrob Chemother. 44(3):329-35. [PudMed:10511399]
(539) Jia Y et al (1999). Interactions of the integrase protein of the conjugative transposon Tn916 with its specific DNA binding sites. J Bacteriol. 181(19):6114-23. [PudMed:10498726]
(540) Roberts AP et al (1999). Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett. 177(1):63-6. [PudMed:10436923]
(541) Murphy DB et al (1999). Monitoring of chromosomal insertions of the IncJ elements R391 and R997 in Escherichia coli K-12. FEMS Microbiol Lett. 174(2):355-61. [PudMed:10339829]
(542) Waters VL (1999). Conjugative transfer in the dissemination of beta-lactam and aminoglycoside resistance. Front Biosci. 4:D433-56. [PudMed:10228095]
(543) Marra D et al (1999). Excision of the conjugative transposon Tn916 in Lactococcus lactis. Appl Environ Microbiol. 65(5):2230-1. [PudMed:10224024]
(544) O'Keeffe T et al (1999). In situ inversion of the conjugative transposon Tn916 in Enterococcus faecium DPC3675. FEMS Microbiol Lett. 173(1):265-71. [PudMed:10220904]
(545) Munoz-Najar U et al (1999). An operon that confers UV resistance by evoking the SOS mutagenic response in streptococcal conjugative transposon Tn5252. J Bacteriol. 181(9):2782-8. [PudMed:10217768]
(546) Hochhut B et al (1999). Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol. 32(1):99-110. [PudMed:10216863]
(547) Wojciak JM et al (1999). NMR structure of the Tn916 integrase-DNA complex. Nat Struct Biol. 6(4):366-73. [PudMed:10201406]
(548) Vedantam G et al (1999). Bacteroides fragilis transfer factor Tn5520: the smallest bacterial mobilizable transposon containing single integrase and mobilization genes that function in Escherichia coli. J Bacteriol. 181(8):2564-71. [PudMed:10198023]
(549) Marra D et al (1999). Regulation of excision of the conjugative transposon Tn916. Mol Microbiol. 31(2):609-21. [PudMed:10027977]
(550) Merlin C et al (1999). Tn4371: A modular structure encoding a phage-like integrase, a Pseudomonas-like catabolic pathway, and RP4/Ti-like transfer functions. Plasmid. 41(1):40-54. [PudMed:9887305]
(551) Ravatn R et al (1998). Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. Strain B13. J Bacteriol. 180(21):5505-14. [PudMed:9791097]
(552) McDougal LK et al (1998). Detection of Tn917-like sequences within a Tn916-like conjugative transposon (Tn3872) in erythromycin-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 42(9):2312-8. [PudMed:9736555]
(553) Connolly KM et al (1998). Site-specific DNA binding using a variation of the double stranded RNA binding motif. Nat Struct Biol. 5(7):546-50. [PudMed:9665166]
(554) Lyras D et al (1998). Chloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringens. Antimicrob Agents Chemother. 42(7):1563-7. [PudMed:9660983]
(555) Sezonov G et al (1998). Replicase, excisionase, and integrase genes of the Streptomyces element pSAM2 constitute an operon positively regulated by the pra gene. J Bacteriol. 180(12):3056-61. [PudMed:9620953]
(556) Celli J et al (1998). Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol Microbiol. 28(1):103-17. [PudMed:9593300]
(557) Sullivan JT et al (1998). Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A. 95(9):5145-9. [PudMed:9560243]
(558) Crellin PK et al (1998). Tn4451 from Clostridium perfringens is a mobilizable transposon that encodes the functional Mob protein, TnpZ. Mol Microbiol. 27(3):631-42. [PudMed:9489674]
(559) Sampath J et al (1998). Identification of a DNA cytosine methyltransferase gene in conjugative transposon Tn5252. Plasmid. 39(1):63-76. [PudMed:9473447]
(560) Rice LB et al (1998). Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J Bacteriol. 180(3):714-21. [PudMed:9457879]
(561) Nelson KE et al (1997). Tn916 transposition in Haemophilus influenzae Rd: preferential insertion into noncoding DNA. Microb Comp Genomics. 2(4):313-21. [PudMed:9689229]
(562) Seoane A et al (1997). Targets for pSAM2 integrase-mediated site-specific integration in the Mycobacterium smegmatis chromosome. Microbiology. 143 ( Pt 10):3375-80. [PudMed:9353939]
(563) Manganelli R et al (1997). The joint of Tn916 circular intermediates is a homoduplex in Enterococcus faecalis. Plasmid. 38(2):71-8. [PudMed:9339464]
(564) Cooper AJ et al (1997). Construction and characterization of a Bacteroides thetaiotaomicron recA mutant: transfer of Bacteroides integrated conjugative elements is RecA independent. J Bacteriol. 179(20):6221-7. [PudMed:9335266]
(565) Rudy C et al (1997). Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res. 25(20):4061-6. [PudMed:9321658]
(566) Crellin PK et al (1997). The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451. J Bacteriol. 179(16):5148-56. [PudMed:9260958]
(567) Celli J et al (1997). Use of an excision reporter plasmid to study the intracellular mobility of the conjugative transposon Tn916 in gram-positive bacteria. Microbiology. 143 ( Pt 4):1253-61. [PudMed:9141688]
(568) Tribble GD et al (1997). The Bacteroides mobilizable transposon Tn4555 integrates by a site-specific recombination mechanism similar to that of the gram-positive bacterial element Tn916. J Bacteriol. 179(8):2731-9. [PudMed:9098073]
(569) Rudy CK et al (1997). DNA binding by the Xis protein of the conjugative transposon Tn916. J Bacteriol. 179(8):2567-72. [PudMed:9098054]
(570) Hochhut B et al (1997). CTnscr94, a conjugative transposon found in enterobacteria. J Bacteriol. 179(7):2097-102. [PudMed:9079891]
(571) Srinivas P et al (1997). Site-specific nicking in vitro at ori T by the DNA relaxase of Tn5252. Plasmid. 37(1):42-50. [PudMed:9073581]
(572) Taylor KL et al (1997). Specific DNA cleavage mediated by the integrase of conjugative transposon Tn916. J Bacteriol. 179(4):1117-25. [PudMed:9023193]
(573) Jaworski DD et al (1996). Analyses of traA, int-Tn, and xis-Tn mutations in the conjugative transposon Tn916 in Enterococcus faecalis. Plasmid. 36(3):201-8. [PudMed:9007015]
(574) Mullany P et al (1996). A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene. 174(1):145-50. [PudMed:8863741]
(575) Cooper AJ et al (1996). The erythromycin resistance gene from the Bacteroides conjugal transposon Tcr Emr 7853 is nearly identical to ermG from Bacillus sphaericus. Antimicrob Agents Chemother. 40(2):506-8. [PudMed:8834912]
(576) Manganelli R et al (1996). Conjugative transposon Tn916: evidence for excision with formation of 5'-protruding termini. J Bacteriol. 178(19):5813-6. [PudMed:8824634]
(577) Showsh SA et al (1996). Functional comparison of conjugative transposons Tn916 and Tn925. Plasmid. 35(3):164-73. [PudMed:8812783]
(578) Smith CJ et al (1996). A gene product related to Tral is required for the mobilization of Bacteroides mobilizable transposons and plasmids. Mol Microbiol. 20(4):741-50. [PudMed:8793871]
(579) Waldor MK et al (1996). A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol. 178(14):4157-65. [PudMed:8763944]
(580) Hedberg PJ et al (1996). Identification and characterization of the genes of Enterococcus faecalis plasmid pCF10 involved in replication and in negative control of pheromone-inducible conjugation. Plasmid. 35(1):46-57. [PudMed:8693026]
(581) Shoemaker NB et al (1996). NBU1, a mobilizable site-specific integrated element from Bacteroides spp., can integrate nonspecifically in Escherichia coli. J Bacteriol. 178(12):3601-7. [PudMed:8655560]
(582) Shoemaker NB et al (1996). The Bacteroides mobilizable insertion element, NBU1, integrates into the 3' end of a Leu-tRNA gene and has an integrase that is a member of the lambda integrase family. J Bacteriol. 178(12):3594-600. [PudMed:8655559]
(583) Mills DA et al (1996). Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J Bacteriol. 178(12):3531-8. [PudMed:8655550]
(584) Provvedi R et al (1996). Characterization of conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMS Microbiol Lett. 135(2-3):231-6. [PudMed:8595862]
(585) Vrijbloed JW et al (1995). Identification of the minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica. Mol Microbiol. 18(1):21-31. [PudMed:8596458]
(586) Murphy DB et al (1995). Transfer of the IncJ plasmid R391 to recombination deficient Escherichia coli K12: evidence that R391 behaves as a conjugal transposon. FEMS Microbiol Lett. 134(2-3):153-8. [PudMed:8586262]
(587) Vijayakumar MN et al (1995). Genetic organization of streptococcal conjugative transposon Tn5252. Dev Biol Stand. 85:63-9. [PudMed:8586242]
(588) De Vos WM et al (1995). Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276. Dev Biol Stand. 85:617-25. [PudMed:8586240]
(589) Davidson BE et al (1995). Genomic organization of Lactococci. Dev Biol Stand. 85:411-22. [PudMed:8586212]
(590) Clewell DB et al (1995). The conjugative transposon Tn916 of Enterococcus faecalis: structural analysis and some key factors involved in movement. Dev Biol Stand. 85:11-7. [PudMed:8586160]
(591) Broadbent JR et al (1995). Characteristics of Tn5307 exchange and intergeneric transfer of genes associated with nisin production. Appl Microbiol Biotechnol. 44(1-2):139-46. [PudMed:8579827]
(592) Vrijbloed JW et al (1995). Transformation of the methylotrophic actinomycete Amycolatopis methanolica with plasmid DNA: stimulatory effect of a pMEA300-encoded gene. Plasmid. 34(2):96-104. [PudMed:8559807]
(593) Sezonov G et al (1995). Characterization of pra, a gene for replication control in pSAM2, the integrating element of Streptomyces ambofaciens. Mol Microbiol. 17(3):533-44. [PudMed:8559072]
(594) Salyers AA et al (1995). Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev. 59(4):579-90. [PudMed:8531886]
(595) Murphy CG et al (1995). Requirements for strand- and site-specific cleavage within the oriT region of Tn4399, a mobilizing transposon from Bacteroides fragilis. J Bacteriol. 177(11):3158-65. [PudMed:7768814]
(596) Mullany P et al (1995). Transfer of macrolide-lincosamide-streptogramin B (MLS) resistance in Clostridium difficile is linked to a gene homologous with toxin A and is mediated by a conjugative transposon, Tn5398. J Antimicrob Chemother. 35(2):305-15. [PudMed:7759394]
(597) Lu F et al (1995). Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J Bacteriol. 177(8):1938-46. [PudMed:7721684]
(598) Li LY et al (1995). Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol. 177(17):4992-9. [PudMed:7665476]
(599) Clewell DB et al (1995). Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3(6):229-36. [PudMed:7648031]
(600) Immonen T et al (1995). The codon usage of the nisZ operon in Lactococcus lactis N8 suggests a non-lactococcal origin of the conjugative nisin-sucrose transposon. DNA Seq. 5(4):203-18. [PudMed:7626780]
(601) Li LY et al (1995). The mobilization regions of two integrated Bacteroides elements, NBU1 and NBU2, have only a single mobilization protein and may be on a cassette. J Bacteriol. 177(14):3940-5. [PudMed:7608064]
(602) Jaworski DD et al (1995). A functional origin of transfer (oriT) on the conjugative transposon Tn916. J Bacteriol. 177(22):6644-51. [PudMed:7592445]
(603) Bannam TL et al (1995). Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule. Mol Microbiol. 16(3):535-51. [PudMed:7565113]
(604) Manganelli R et al (1995). Dosage of Tn916 circular intermediates in Enterococcus faecalis. Plasmid. 34(1):48-57. [PudMed:7480170]
(605) Jaworski DD et al (1994). Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J Bacteriol. 176(11):3328-35. [PudMed:8195088]
(606) Rauch PJ et al (1994). Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol. 176(8):2165-71. [PudMed:8157585]
(607) Lu F et al (1994). Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 13(7):1541-8. [PudMed:8156992]
(608) Kilic AO et al (1994). Identification and nucleotide sequence analysis of a transfer-related region in the streptococcal conjugative transposon Tn5252. J Bacteriol. 176(16):5145-50. [PudMed:8051031]
(609) Hagege J et al (1994). Identification of a gene encoding the replication initiator protein of the Streptomyces integrating element, pSAM2. Plasmid. 31(2):166-83. [PudMed:8029324]
(610) Vrijbloed JW et al (1994). A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. J Bacteriol. 176(22):7087-90. [PudMed:7961475]
(611) Nikolich MP et al (1994). Characterization of a new type of Bacteroides conjugative transposon, Tcr Emr 7853. J Bacteriol. 176(21):6606-12. [PudMed:7961412]
(612) Godon JJ et al (1994). The Lactococcus lactis sex-factor aggregation gene cluA. Mol Microbiol. 12(4):655-63. [PudMed:7934889]
(613) Flannagan SE et al (1994). Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid. 32(3):350-4. [PudMed:7899523]
(614) Shoemaker NB et al (1994). An unusual type of cointegrate formation between a Bacteroides plasmid and the excised circular form of an integrated element (NBU1). Plasmid. 32(3):312-7. [PudMed:7899516]
(615) Mills DA et al (1994). Genetic analysis of regions of the Lactococcus lactis subsp. lactis plasmid pRS01 involved in conjugative transfer. Appl Environ Microbiol. 60(12):4413-20. [PudMed:7811081]
(616) Nakayama J et al (1994). The prgQ gene of the Enterococcus faecalis tetracycline resistance plasmid pCF10 encodes a peptide inhibitor, iCF10. J Bacteriol. 176(23):7405-8. [PudMed:7545961]
(617) Li LY et al (1993). Characterization of the mobilization region of a Bacteroides insertion element (NBU1) that is excised and transferred by Bacteroides conjugative transposons. J Bacteriol. 175(20):6588-98. [PudMed:8407836]
(618) Shoemaker NB et al (1993). Excision, transfer, and integration of NBU1, a mobilizable site-selective insertion element. J Bacteriol. 175(20):6578-87. [PudMed:8407835]
(619) Murphy CG et al (1993). Characterization of a "mobilization cassette" in transposon Tn4399 from Bacteroides fragilis. J Bacteriol. 175(18):5814-23. [PudMed:8397185]
(620) Brasch MA et al (1993). Localization and nucleotide sequences of genes mediating site-specific recombination of the SLP1 element in Streptomyces lividans. J Bacteriol. 175(10):3067-74. [PudMed:8387993]
(621) Vijayakumar MN et al (1993). Nucleotide sequence analysis of the termini and chromosomal locus involved in site-specific integration of the streptococcal conjugative transposon Tn5252. J Bacteriol. 175(9):2713-9. [PudMed:8386725]
(622) Smith CJ et al (1993). Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp. J Bacteriol. 175(9):2682-91. [PudMed:8386723]
(623) Springael D et al (1993). Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol. 175(6):1674-81. [PudMed:8383664]
(624) Hagege J et al (1993). Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J Bacteriol. 175(17):5529-38. [PudMed:8366038]
(625) Ruhfel RE et al (1993). Cloning and characterization of a region of the Enterococcus faecalis conjugative plasmid, pCF10, encoding a sex pheromone-binding function. J Bacteriol. 175(16):5253-9. [PudMed:8349565]
(626) Su YA et al (1993). Characterization of the left 4 kb of conjugative transposon Tn916: determinants involved in excision. Plasmid. 30(3):234-50. [PudMed:8302931]
(627) Hagege J et al (1993). Mode and origin of replication of pSAM2, a conjugative integrating element of Streptomyces ambofaciens. Mol Microbiol. 10(4):799-812. [PudMed:7934842]
(628) Vogtli M et al (1992). The chromosomal integration site for the Streptomyces plasmid SLP1 is a functional tRNA(Tyr) gene essential for cell viability. Mol Microbiol. 6(20):3041-50. [PudMed:1479893]
(629) Bar-Nir D et al (1992). tDNA(ser) sequences are involved in the excision of Streptomyces griseus plasmid pSG1. Gene. 122(1):71-6. [PudMed:1452039]
(630) Speer BS et al (1992). Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev. 5(4):387-99. [PudMed:1423217]
(631) Salyers AA et al (1992). Chromosomal gene transfer elements of the Bacteroides group. Eur J Clin Microbiol Infect Dis. 11(11):1032-8. [PudMed:1338314]
(632) Rice LB et al (1992). Tn5381, a conjugative transposon identifiable as a circular form in Enterococcus faecalis. J Bacteriol. 174(22):7308-15. [PudMed:1331026]
(633) Su YA et al (1992). Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother. 36(4):769-78. [PudMed:1323953]
(634) Rauch PJ et al (1992). Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol. 174(4):1280-7. [PudMed:1310502]
(635) Bedzyk LA et al (1992). Insertion and excision of Bacteroides conjugative chromosomal elements. J Bacteriol. 174(1):166-72. [PudMed:1309516]
(636) Katz L et al (1991). Site-specific recombination in Escherichia coli between the att sites of plasmid pSE211 from Saccharopolyspora erythraea. Mol Gen Genet. 227(1):155-9. [PudMed:2046656]
(637) Kao SM et al (1991). Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J Bacteriol. 173(23):7650-64. [PudMed:1938961]
(638) Peters SE et al (1991). Novel mercury resistance determinants carried by IncJ plasmids pMERPH and R391. Mol Gen Genet. 228(1-2):294-9. [PudMed:1886614]
(639) Torres OR et al (1991). The conjugative transposon Tn925: enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis. Mol Gen Genet. 225(3):395-400. [PudMed:1850085]
(640) Doucet-Populaire F et al (1991). Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother. 35(1):185-7. [PudMed:1849709]
(641) Guffanti AA et al (1991). Transfer of Tn925 and plasmids between Bacillus subtilis and alkaliphilic Bacillus firmus OF4 during Tn925-mediated conjugation. J Bacteriol. 173(5):1686-9. [PudMed:1847906]
(642) Ayoubi P et al (1991). Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol. 173(5):1617-22. [PudMed:1847905]
(643) Bertram J et al (1991). Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J Bacteriol. 173(2):443-8. [PudMed:1846142]
(644) Norgren M et al (1991). The presence of conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element. J Bacteriol. 173(1):319-24. [PudMed:1846138]
(645) Horn N et al (1991). Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet. 228(1-2):129-35. [PudMed:1679523]
(646) Flannagan SE et al (1991). Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons. J Bacteriol. 173(22):7136-41. [PudMed:1657880]
(647) Stephens DS et al (1991). Insertion of Tn916 in Neisseria meningitidis resulting in loss of group B capsular polysaccharide. Infect Immun. 59(11):4097-102. [PudMed:1657783]
(648) Storrs MJ et al (1991). Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J Bacteriol. 173(14):4347-52. [PudMed:1648556]
(649) Mullany P et al (1991). Transfer of Tn916 and Tn916 delta E into Clostridium difficile: demonstration of a hot-spot for these elements in the C. difficile genome. FEMS Microbiol Lett. 63(2-3):191-4. [PudMed:1647998]
(650) Brown DP et al (1990). Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. 172(4):1877-88. [PudMed:2180909]
(651) Horaud T et al (1990). Tn3702, a conjugative transposon in Enterococcus faecalis. FEMS Microbiol Lett. 60(1-2):189-94. [PudMed:2178139]
(652) Kathariou S et al (1990). Transposition of Tn916 to different sites in the chromosome of Neisseria meningitidis: a genetic tool for meningococcal mutagenesis. Mol Microbiol. 4(5):729-35. [PudMed:2167422]
(653) Stevens AM et al (1990). The region of a Bacteroides conjugal chromosomal tetracycline resistance element which is responsible for production of plasmidlike forms from unlinked chromosomal DNA might also be involved in transfer of the element. J Bacteriol. 172(8):4271-9. [PudMed:2165473]
(654) Trieu-Cuot P et al (1990). Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545. Nucleic Acids Res. 18(12):3660. [PudMed:2163525]
(655) Halula M et al (1990). Tn5030: a conjugative transposon conferring clindamycin resistance in Bacteroides species. Rev Infect Dis. 12 Suppl 2:S235-42. [PudMed:2154843]
(656) Poyart-Salmeron C et al (1990). The integration-excision system of the conjugative transposon Tn 1545 is structurally and functionally related to those of lambdoid phages. Mol Microbiol. 4(9):1513-21. [PudMed:1962839]
(657) Sosio M et al (1989). Excision of pIJ408 from the chromosome of Streptomyces glaucescens and its transfer into Streptomyces lividans. Mol Gen Genet. 218(1):169-76. [PudMed:2779515]
(658) Boccard F et al (1989). The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J. 8(3):973-80. [PudMed:2721504]
(659) Boccard F et al (1989). Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces. Plasmid. 21(1):59-70. [PudMed:2657820]
(660) Woolley RC et al (1989). Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum. Plasmid. 22(2):169-74. [PudMed:2560219]
(661) Fletcher HM et al (1989). Transposon-916-like elements in clinical isolates of Enterococcus faecium. J Gen Microbiol. 135(11):3067-77. [PudMed:2559146]
(662) Caparon MG et al (1989). Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell. 59(6):1027-34. [PudMed:2557157]
(663) Poyart-Salmeron C et al (1989). Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J. 8(8):2425-33. [PudMed:2551683]
(664) Hecht DW et al (1989). Characterization of the termini and transposition products of Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. Proc Natl Acad Sci U S A. 86(14):5340-4. [PudMed:2546154]
(665) Hecht DW et al (1989). Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. J Bacteriol. 171(7):3603-8. [PudMed:2544548]
(666) Kuhstoss S et al (1989). Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2. J Bacteriol. 171(1):16-23. [PudMed:2536654]
(667) Valentine PJ et al (1988). Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol. 170(3):1319-24. [PudMed:3343220]
(668) Murray BE et al (1988). Plasmids and pheromone response of the beta-lactamase producer Streptococcus (Enterococcus) faecalis HH22. Antimicrob Agents Chemother. 32(4):547-51. [PudMed:3132094]
(669) Lee SC et al (1988). Analysis of recombination occurring at SLP1 att sites. J Bacteriol. 170(12):5806-13. [PudMed:3056916]
(670) Abraham LJ et al (1988). The Clostridium perfringens chloramphenicol resistance transposon Tn4451 excises precisely in Escherichia coli. Plasmid. 19(2):164-8. [PudMed:2901770]
(671) Hill C et al (1988). Cloning and characterization of the tetracycline resistance determinant of and several promoters from within the conjugative transposon Tn919. Appl Environ Microbiol. 54(5):1230-6. [PudMed:2839111]
(672) Scott JR et al (1988). An intermediate in transposition of the conjugative transposon Tn916. Proc Natl Acad Sci U S A. 85(13):4809-13. [PudMed:2838847]
(673) Clewell DB et al (1988). Sequence analysis of termini of conjugative transposon Tn916. J Bacteriol. 170(7):3046-52. [PudMed:2838457]
(674) Shoemaker NB et al (1988). Tetracycline-dependent appearance of plasmidlike forms in Bacteroides uniformis 0061 mediated by conjugal Bacteroides tetracycline resistance elements. J Bacteriol. 170(4):1651-7. [PudMed:2832373]
(675) Senghas E et al (1988). Genetic organization of the bacterial conjugative transposon Tn916. J Bacteriol. 170(1):245-9. [PudMed:2826394]
(676) Christie PJ et al (1987). Two conjugation systems associated with Streptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis. J Bacteriol. 169(6):2529-36. [PudMed:3034859]
(677) Abraham LJ et al (1987). Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens. J Bacteriol. 169(4):1579-84. [PudMed:2881919]
(678) Madon J et al (1987). Site-specific integration and excision of pMEA100 in Nocardia mediterranei. Mol Gen Genet. 209(2):257-64. [PudMed:2823074]
(679) Miyoshi YK et al (1986). Multicopy derivative of pock-forming plasmid pSA1 in Streptomyces azureus. J Bacteriol. 168(1):452-4. [PudMed:3759910]
(680) Moretti P et al (1985). Isolation and characterization of an extrachromosomal element from Nocardia mediterranei. Plasmid. 14(2):126-33. [PudMed:2999850]
(681) Cohen A et al (1985). The integrated and free states of Streptomyces griseus plasmid pSG1. Plasmid. 13(1):41-50. [PudMed:2986187]
(682) Fitzgerald GF et al (1985). A conjugative transposon (Tn919) in Streptococcus sanguis. Infect Immun. 47(2):415-20. [PudMed:2981772]
(683) Pernodet JL et al (1984). Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2. Mol Gen Genet. 198(1):35-41. [PudMed:6596483]
(684) Hopwood DA et al (1984). Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans. Plasmid. 11(1):1-16. [PudMed:6369354]
(685) Gawron-Burke C et al (1984). Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria. J Bacteriol. 159(1):214-21. [PudMed:6330031]
(686) Hartley DL et al (1984). Disseminated tetracycline resistance in oral streptococci: implication of a conjugative transposon. Infect Immun. 45(1):13-7. [PudMed:6329954]
(687) Omer CA et al (1984). Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site. Mol Gen Genet. 196(3):429-38. [PudMed:6094971]
(688) Bibb MJ et al (1981). Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet. 184(2):230-40. [PudMed:6948998]
(689) Franke AE et al (1981). Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of "conjugal" transfer in the absence of a conjugative plasmid. J Bacteriol. 145(1):494-502. [PudMed:6257641]
(690) Achtman M et al (1980). A genetic analysis of F sex factor cistrons needed for surface exclusion in Escherichia coli. J Mol Biol. 138(4):779-95. [PudMed:6997497]
(691) Matthew M et al (1979). Types of beta-lactamase determined by plasmids in gram-negative bacteria. J Bacteriol. 138(3):657-62. [PudMed:378931]
(692) Yokota T et al (1977). Temperature-sensitive R plasmid obtained from naturally isolated drug-resistant Vibrio cholerae (biotype El Tor). Antimicrob Agents Chemother. 11(1):13-20. [PudMed:319746]
(693) Hedges RW (1975). R factors from Proteus mirabilis and P. vulgaris. J Gen Microbiol. 87(2):301-11. [PudMed:1095684]
(694) Hedges RW (1974). R factors from Providence. J Gen Microbiol. 81(1):171-81. [PudMed:4362618]
(695) Coetzee JN et al (1972). R factors from Proteus rettgeri. J Gen Microbiol. 72(3):543-52. [PudMed:4564689]