References |
(1) Guedon G et al (2017). The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems. Genes (Basel). 8(11). [PubMed:29165361] |
(2) Haskett TL et al (2017). Evolutionary persistence of tripartite integrative and conjugative elements. Plasmid. 92:30-36. [PubMed:28669811] |
(3) Burrus V (2017). Mechanisms of stabilization of integrative and conjugative elements. Curr Opin Microbiol. 38:44-50. [PubMed:28482230] |
(4) Delavat F et al (2017). The hidden life of integrative and conjugative elements. FEMS Microbiol Rev. 41(4):512-537. [PubMed:28369623] |
(5) Johnson CM et al (2015). Integrative and Conjugative Elements (ICEs): What They Do and How They Work. Annu Rev Genet. 49:577-601. [PubMed:26473380] |
(6) Carraro N et al (2014). Biology of Three ICE Families: SXT/R391, ICEBs1, and ICESt1/ICESt3. Microbiol Spectr. 2(6). [PubMed:26104437] |
(7) Santoro F et al (2014). Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol. 0.579861111. [PubMed:25368607] |
(8) Bellanger X et al (2014). Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 38(4):720-60. [PubMed:24372381] |
(9) Reeve W et al (2013). Complete genome sequence of Mesorhizobium australicum type strain (WSM2073(T)). Stand Genomic Sci. 9(2):410-9. [PubMed:24976896] |
(10) Palmieri C et al (2011). Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front Microbiol. 0.246527778. [PubMed:22275909] |
(11) Toleman MA et al (2011). Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol Rev. 35(5):912-35. [PubMed:21729108] |
(12) Ghosh A et al (2011). Antimicrobials & cholera: are we stranded. Indian J Med Res. 133(2):225-31. [PubMed:21415499] |
(13) Wozniak RA et al (2010). Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol. 8(8):552-63. [PubMed:20601965] |
(14) Rajeev L et al (2009). Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev. 73(2):300-9. [PubMed:19487729] |
(15) Roberts AP et al (2009). A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 17(6):251-8. [PubMed:19464182] |
(16) Sobecky PA et al (2009). Horizontal gene transfer in metal and radionuclide contaminated soils. Methods Mol Biol. 532:455-72. [PubMed:19271201] |
(17) Seth-Smith HM (2008). SPI-7: Salmonella's Vi-encoding Pathogenicity Island. J Infect Dev Ctries. 2(4):267-71. [PubMed:19741287] |
(18) Boerlin P et al (2008). Antimicrobial resistance: its emergence and transmission. Anim Health Res Rev. 9(2):115-26. [PubMed:19102787] |
(19) te Poele EM et al (2008). Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek. 94(1):127-43. [PubMed:18523858] |
(20) Burrus V et al (2006). The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid. 55(3):173-83. [PubMed:16530834] |
(21) Schubert S et al (2004). The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol. 294(2-3):83-94. [PubMed:15493818] |
(22) Hastings PJ et al (2004). Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol. 12(9):401-4. [PubMed:15337159] |
(23) Burrus V et al (2004). Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol. 155(5):376-86. [PubMed:15207870] |
(24) She Q et al (2004). Archaeal integrases and mechanisms of gene capture. Biochem Soc Trans. 32(Pt 2):222-6. [PubMed:15046576] |
(25) Gomez-Lus Lafita R (2003). [Evolution of bacterial resistance to antibiotics]. An R Acad Nac Med (Madr). 120(4):717-26; discussion 726-8. [PubMed:15147057] |
(26) van der Meer JR et al (2003). Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol. 14(3):248-54. [PubMed:12849776] |
(27) Beaber JW et al (2002). Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell Mol Life Sci. 59(12):2065-70. [PubMed:12568332] |
(28) Pembroke JT et al (2002). The role of conjugative transposons in the Enterobacteriaceae. Cell Mol Life Sci. 59(12):2055-64. [PubMed:12568331] |
(29) Whittle G et al (2002). The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci. 59(12):2044-54. [PubMed:12568330] |
(30) Burrus V et al (2002). Conjugative transposons: the tip of the iceberg. Mol Microbiol. 46(3):601-10. [PubMed:12410819] |
(31) Teuber M et al (1999). Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek. 76(1-4):115-37. [PubMed:10532375] |
(32) Dunny GM et al (1999). Group II introns and expression of conjugative transfer functions in lactic acid bacteria. Antonie Van Leeuwenhoek. 76(1-4):77-88. [PubMed:10532373] |
(33) Salyers AA et al (1995). Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev. 59(4):579-90. [PubMed:8531886] |
(34) Clewell DB et al (1995). Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3(6):229-36. [PubMed:7648031] |
(35) Speer BS et al (1992). Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev. 5(4):387-99. [PubMed:1423217] |
(36) Salyers AA et al (1992). Chromosomal gene transfer elements of the Bacteroides group. Eur J Clin Microbiol Infect Dis. 11(11):1032-8. [PubMed:1338314] |