References |
(1) Delahay RM et al (2018). Phylogeographic diversity and mosaicism of the Helicobacter pylori tfs integrative and conjugative elements. Mob DNA. 9:05. [PubMed:29416569] |
(2) Botelho J et al (2018). Two decades of blaVIM-2-producing Pseudomonas aeruginosa dissemination: an interplay between mobile genetic elements and successful clones. J Antimicrob Chemother. 73(4):873-882. [PubMed:29373674] |
(3) Pham NP et al (2017). Comparative genomic analysis of Brevibacterium strains: insights into key genetic determinants involved in adaptation to the cheese habitat. BMC Genomics. 18(1):955. [PubMed:29216827] |
(4) Husain F et al (2017). Novel large-scale chromosomal transfer in Bacteroides fragilis contributes to its pan-genome and rapid environmental adaptation. Microb Genom. 3(11). [PubMed:29208130] |
(5) Castillo A et al (2017). A DNA segment encoding the anticodon stem/loop of tRNA determines the specific recombination of integrative-conjugative elements in Acidithiobacillus species. RNA Biol. :1-8. [PubMed:29168417] |
(6) Alamos P et al (2017). Functionality of tRNAs encoded in a mobile genetic element from an acidophilic bacterium. RNA Biol. :1-10. [PubMed:28708455] |
(7) Haskett TL et al (2017). Evolutionary persistence of tripartite integrative and conjugative elements. Plasmid. 92:30-36. [PubMed:28669811] |
(8) Perrin A et al (2017). Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun. 8:15483. [PubMed:28537263] |
(9) Marin MA et al (2017). The invasive Neisseria meningitidis MenC CC103 from Brazil is characterized by an accessory gene repertoire. Sci Rep. 7(1):1617. [PubMed:28487566] |
(10) Dahmane N et al (2017). Diversity of Integrative and Conjugative Elements of Streptococcus salivarius and Their Intra- and Interspecies Transfer. Appl Environ Microbiol. 83(13). [PubMed:28432093] |
(11) Blesa A et al (2017). The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation. PLoS Genet. 13(3):e1006669. [PubMed:28282376] |
(12) Lopez-Perez M et al (2017). Networking in microbes: conjugative elements and plasmids in the genus Alteromonas. BMC Genomics. 18(1):36. [PubMed:28056800] |
(13) Zhang Y et al (2017). Emergence of Novel Pathogenic Streptomyces Species by Site-Specific Accretion and cis-Mobilization of Pathogenicity Islands. Mol Plant Microbe Interact. 30(1):72-82. [PubMed:27977935] |
(14) Morici E et al (2017). A new mosaic integrative and conjugative element from Streptococcus agalactiae carrying resistance genes for chloramphenicol (catQ) and macrolides [mef(I) and erm(TR)]. J Antimicrob Chemother. 72(1):64-67. [PubMed:27621174] |
(15) Ling J et al (2016). Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A. 113(48):13875-13880. [PubMed:27849579] |
(16) Huang J et al (2016). Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci. Front Cell Infect Microbiol. 0.331944444. [PubMed:27774436] |
(17) Haskett TL et al (2016). Assembly and transfer of tripartite integrative and conjugative genetic elements. Proc Natl Acad Sci U S A. 113(43):12268-12273. [PubMed:27733511] |
(18) Rahman M et al (2016). Comparative Genome Analysis of the Daptomycin-Resistant Streptococcus anginosus Strain J4206 Associated with Breakthrough Bacteremia. Genome Biol Evol. 8(11):3446-3459. [PubMed:27678123] |
(19) Campisi E et al (2016). Genomic Analysis Reveals Multi-Drug Resistance Clusters in Group B Streptococcus CC17 Hypervirulent Isolates Causing Neonatal Invasive Disease in Southern Mainland China. Front Microbiol. 1.170138889. [PubMed:27574519] |
(20) Knight DR et al (2016). A Phenotypically Silent vanB2 Operon Carried on a Tn1549-Like Element in Clostridium difficile. mSphere. 1(4). [PubMed:27536735] |
(21) Uchiyama I et al (2016). A Novel Approach to Helicobacter pylori Pan-Genome Analysis for Identification of Genomic Islands. PLoS One. 11(8):e0159419. [PubMed:27504980] |
(22) Huang K et al (2016). Characterization of Spectinomycin Resistance in Streptococcus suis Leads to Two Novel Insights into Drug Resistance Formation and Dissemination Mechanism. Antimicrob Agents Chemother. 60(10):6390-2. [PubMed:27458226] |
(23) Thibessard A et al (2016). Complete Genome Sequence of Streptomyces ambofaciens DSM 40697, a Paradigm for Genome Plasticity Studies. Genome Announc. 4(3). [PubMed:27257195] |
(24) Andrey DO et al (2016). Re-emergence of scarlet fever: old players return?. Expert Rev Anti Infect Ther. 14(8):687-9. [PubMed:27249582] |
(25) Fonseca EL et al (2016). Commentary: Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front Microbiol. 0.826388889. [PubMed:27242778] |
(26) Panda P et al (2016). Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Front Microbiol. 0.567361111. [PubMed:27065965] |
(27) Athey TB et al (2016). Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains. PLoS One. 11(3):e0150908. [PubMed:26954687] |
(28) Klima CL et al (2016). Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS One. 11(2):e0149520. [PubMed:26926339] |
(29) Mingoia M et al (2016). Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907. J Antimicrob Chemother. 71(3):593-600. [PubMed:26679245] |
(30) Naito M et al (2016). The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat. DNA Res. 23(1):11-9. [PubMed:26645327] |
(31) Abbott ZD et al (2016). csrT Represents a New Class of csrA-Like Regulatory Genes Associated with Integrative Conjugative Elements of Legionella pneumophila. J Bacteriol. 198(3):553-64. [PubMed:26598366] |
(32) Bidet P et al (2016). Genome Analysis of Kingella kingae Strain KWG1 Reveals How a beta-Lactamase Gene Inserted in the Chromosome of This Species. Antimicrob Agents Chemother. 60(1):703-8. [PubMed:26574009] |
(33) Chapleau M et al (2016). Identification of genetic and environmental factors stimulating excision from Streptomyces scabiei chromosome of the toxicogenic region responsible for pathogenicity. Mol Plant Pathol. 17(4):501-9. [PubMed:26177341] |
(34) Ambroset C et al (2015). New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration. Front Microbiol. 1.279861111. [PubMed:26779141] |
(35) Cesbron S et al (2015). Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. Front Plant Sci. 1.031944444. [PubMed:26734033] |
(36) Mohammed M et al (2015). Whole genome sequencing provides possible explanations for the difference in phage susceptibility among two Salmonella Typhimurium phage types (DT8 and DT30) associated with a single foodborne outbreak. BMC Res Notes. 0.838888889. [PubMed:26613761] |
(37) Kojima KK et al (2015). Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance. BMC Genomics. 1.234027778. [PubMed:26481899] |
(38) Douarre PE et al (2015). Host specificity in the diversity and transfer of lsa resistance genes in group B Streptococcus. J Antimicrob Chemother. 70(12):3205-13. [PubMed:26410170] |
(39) Morales M et al (2015). Insights into the Evolutionary Relationships of LytA Autolysin and Ply Pneumolysin-Like Genes in Streptococcus pneumoniae and Related Streptococci. Genome Biol Evol. 7(9):2747-61. [PubMed:26349755] |
(40) Chen J et al (2015). Characterization of the chromosomal integration of Saccharopolyspora plasmid pCM32 and its application to improve production of spinosyn in Saccharopolyspora spinosa. Appl Microbiol Biotechnol. 99(23):10141-9. [PubMed:26260388] |
(41) Martin-Moldes Z et al (2015). Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol. 38(7):462-71. [PubMed:26259823] |
(42) de Andrade Barboza S et al (2015). Complete Genome Sequence of Noninvasive Streptococcus pyogenes M/emm28 Strain STAB10015, Isolated from a Child with Perianal Dermatitis in French Brittany. Genome Announc. 3(4). [PubMed:26184948] |
(43) De Maayer P et al (2015). Integrative conjugative elements of the ICEPan family play a potential role in Pantoea ananatis ecological diversification and antibiosis. Front Microbiol. 0.65. [PubMed:26106378] |
(44) Fonseca EL et al (2015). Full characterization of the integrative and conjugative element carrying the metallo-beta-lactamase bla SPM-1 and bicyclomycin bcr1 resistance genes found in the pandemic Pseudomonas aeruginosa clone SP/ST277. J Antimicrob Chemother. 70(9):2547-50. [PubMed:26093374] |
(45) Carraro N et al (2015). Replication and Active Partition of Integrative and Conjugative Elements (ICEs) of the SXT/R391 Family: The Line between ICEs and Conjugative Plasmids Is Getting Thinner. PLoS Genet. 11(6):e1005298. [PubMed:26061412] |
(46) Marini E et al (2015). Recombination between Streptococcus suis ICESsu32457 and Streptococcus agalactiae ICESa2603 yields a hybrid ICE transferable to Streptococcus pyogenes. Vet Microbiol. 178(1-2):99-104. [PubMed:25935120] |
(47) Puymege A et al (2015). Analysis of Streptococcus agalactiae pan-genome for prevalence, diversity and functionality of integrative and conjugative or mobilizable elements integrated in the tRNA(Lys CTT) gene. Mol Genet Genomics. 290(5):1727-40. [PubMed:25832353] |
(48) Hu Y et al (2015). Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. Antimicrob Agents Chemother. 59(2):1152-61. [PubMed:25487802] |
(49) Davies MR et al (2015). Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat Genet. 47(1):84-7. [PubMed:25401300] |
(50) Eidam C et al (2015). Analysis and comparative genomics of ICEMh1, a novel integrative and conjugative element (ICE) of Mannheimia haemolytica. J Antimicrob Chemother. 70(1):93-7. [PubMed:25239467] |
(51) Reeve W et al (2014). Genome sequence of the Lotus corniculatus microsymbiont Mesorhizobium loti strain R88B. Stand Genomic Sci. 9:03. [PubMed:25780496] |
(52) Hilty M et al (2014). Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol Evol. 6(12):3281-94. [PubMed:25480686] |
(53) Gillespie JJ et al (2014). Genomic diversification in strains of Rickettsia felis Isolated from different arthropods. Genome Biol Evol. 7(1):35-56. [PubMed:25477419] |
(54) Bustamante P et al (2014). Toxin-antitoxin systems in the mobile genome of Acidithiobacillus ferrooxidans. PLoS One. 9(11):e112226. [PubMed:25384039] |
(55) Santoro F et al (2014). Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol. 0.579861111. [PubMed:25368607] |
(56) Raftis EJ et al (2014). Unusual genome complexity in Lactobacillus salivarius JCM1046. BMC Genomics. 1.160416667. [PubMed:25201645] |
(57) Husain F et al (2014). The Ellis Island Effect: A novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Mob Genet Elements. 4:e29801. [PubMed:25165618] |
(58) Wasels F et al (2014). Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB. Microb Drug Resist. 20(6):555-60. [PubMed:25055190] |
(59) Montilla A et al (2014). Genetic environment of the lnu(B) gene in a Streptococcus agalactiae clinical isolate. Antimicrob Agents Chemother. 58(9):5636-7. [PubMed:24957835] |
(60) Huguet-Tapia JC et al (2014). Characterization of the integration and modular excision of the integrative conjugative element PAISt in Streptomyces turgidiscabies Car8. PLoS One. 9(6):e99345. [PubMed:24927117] |
(61) Flynn KJ et al (2014). Integrative conjugative element ICE-betaox confers oxidative stress resistance to Legionella pneumophila in vitro and in macrophages. MBio. 5(3):e01091-14. [PubMed:24781744] |
(62) Clewell DB et al (2014). A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity. BMC Genomics. 0.840277778. [PubMed:24767410] |
(63) Klima CL et al (2014). Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J Clin Microbiol. 52(2):438-48. [PubMed:24478472] |
(64) Brenciani A et al (2014). ICESp1116, the genetic element responsible for erm(B)-mediated, inducible erythromycin resistance in Streptococcus pyogenes, belongs to the TnGBS family of integrative and conjugative elements. Antimicrob Agents Chemother. 58(4):2479-81. [PubMed:24449773] |
(65) Guerillot R et al (2014). The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol. 6(2):260-72. [PubMed:24418649] |
(66) Reeve W et al (2013). Complete genome sequence of Mesorhizobium australicum type strain (WSM2073(T)). Stand Genomic Sci. 9(2):410-9. [PubMed:24976896] |
(67) Reeve W et al (2013). Complete genome sequence of Mesorhizobium opportunistum type strain WSM2075(T.). Stand Genomic Sci. 9(2):294-303. [PubMed:24976886] |
(68) Wee BA et al (2013). A distinct and divergent lineage of genomic island-associated Type IV Secretion Systems in Legionella. PLoS One. 8(12):e82221. [PubMed:24358157] |
(69) Olson AB et al (2013). Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics. 1.204861111. [PubMed:24341328] |
(70) Acuna LG et al (2013). Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacillus caldus. PLoS One. 8(11):e78237. [PubMed:24250794] |
(71) Bjorkeng EK et al (2013). ICESluvan, a 94-kilobase mosaic integrative conjugative element conferring interspecies transfer of VanB-type glycopeptide resistance, a novel bacitracin resistance locus, and a toxin-antitoxin stabilization system. J Bacteriol. 195(23):5381-90. [PubMed:24078615] |
(72) Wyres KL et al (2013). Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974. BMC Genomics. 0.930555556. [PubMed:23879707] |
(73) Tirumalai MR et al (2013). An ICEBs1-like element may be associated with the extreme radiation and desiccation resistance of Bacillus pumilus SAFR-032 spores. Extremophiles. 17(5):767-74. [PubMed:23812891] |
(74) Wasels F et al (2013). Clostridium difficile erm(B)-containing elements and the burden on the in vitro fitness. J Med Microbiol. 62(Pt 9):1461-7. [PubMed:23741023] |
(75) Rao C et al (2013). Phylogenetic reconstruction of the Legionella pneumophila Philadelphia-1 laboratory strains through comparative genomics. PLoS One. 8(5):e64129. [PubMed:23717549] |
(76) Butler MI et al (2013). Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS One. 8(2):e57464. [PubMed:23555547] |
(77) Guerillot R et al (2013). Modular evolution of TnGBSs, a new family of integrative and conjugative elements associating insertion sequence transposition, plasmid replication, and conjugation for their spreading. J Bacteriol. 195(9):1979-90. [PubMed:23435978] |
(78) Lautner M et al (2013). Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila. J Bacteriol. 195(7):1583-97. [PubMed:23354744] |
(79) Puymege A et al (2013). Conjugative transfer and cis-mobilization of a genomic island by an integrative and conjugative element of Streptococcus agalactiae. J Bacteriol. 195(6):1142-51. [PubMed:23275243] |
(80) Bustamante P et al (2012). ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans. J Mol Microbiol Biotechnol. 22(6):399-407. [PubMed:23486178] |
(81) Chuzeville S et al (2012). Characterization of a New CAMP Factor Carried by an Integrative and Conjugative Element in Streptococcus agalactiae and Spreading in Streptococci. PLoS One. 7(11):e48918. [PubMed:23152820] |
(82) Ramsay JP et al (2012). A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator. Mol Microbiol. . [PubMed:23106190] |
(83) Boyd DA et al (2012). The VanE operon in Enterococcus faecalis N00-410 is found on a putative integrative and conjugative element, Tn6202. J Antimicrob Chemother. . [PubMed:23034711] |
(84) Tse H et al (2012). Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis. 206(3):341-51. [PubMed:22615319] |
(85) Shepard SM et al (2012). Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli. J Bacteriol. 194(2):395-405. [PubMed:22081385] |
(86) Giovanetti E et al (2012). ICESp2905, the erm(TR)-tet(O) element of Streptococcus pyogenes, is formed by two independent integrative and conjugative elements. Antimicrob Agents Chemother. 56(1):591-4. [PubMed:21986826] |
(87) Palmieri C et al (2011). Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front Microbiol. 0.246527778. [PubMed:22275909] |
(88) Ghinet MG et al (2011). Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS One. 6(11):e27846. [PubMed:22114709] |
(89) Godfrey SA, Lovell HC, Mansfield JW, Corry DS, Jackson RW, Arnold DL (2011). The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola. PLoS Pathog. 7(3):e1002010. [PubMed:21483484] |
(90) Zhang J et al (2011). Expansion of the known Klebsiella pneumoniae species gene pool by characterization of novel alien DNA islands integrated into tmRNA gene sites. J Microbiol Methods. 84(2):283-9. [PubMed:21182879] |
(91) Machielsen R et al (2011). Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in Lactococcus lactis. Appl Environ Microbiol. 77(2):555-63. [PubMed:21115709] |
(92) Liu G et al (2010). Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA. PLoS Genet. 6(12):e1001253. [PubMed:21203499] |
(93) Roche D et al (2010). ICEEc2, a new integrative and conjugative element belonging to the pKLC102/PAGI-2 family, identified in Escherichia coli strain BEN374. J Bacteriol. 192(19):5026-36. [PubMed:20675467] |
(94) Brouwer MS et al (2010). Characterization of the conjugative transposon Tn6000 from Enterococcus casseliflavus 664.1H1 (formerly Enterococcus faecium 664.1H1). FEMS Microbiol Lett. 309(1):71-6. [PubMed:20528943] |
(95) Fischer W et al (2010). Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res. 38(18):6089-101. [PubMed:20478826] |
(96) Rusniok C et al (2010). Genome sequence of Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. J Bacteriol. 192(8):2266-76. [PubMed:20139183] |
(97) Rusniok C et al (2010). Genome sequence of Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. J Bacteriol. 192(8):2266-76. [PubMed:20139183] |
(98) Nouvel LX et al (2010). Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity. BMC Genomics. 0.518055556. [PubMed:20122262] |
(99) Bordeleau E et al (2010). Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol. 12(2):510-23. [PubMed:19888998] |
(100) Putze J et al (2009). Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun. 77(11):4696-703. [PubMed:19720753] |
(101) Flannery EL et al (2009). Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun. 77(11):4887-94. [PubMed:19687197] |
(102) Holden MT et al (2009). Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog. 5(3):e1000346. [PubMed:19325880] |
(103) Brochet M et al (2009). Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol Microbiol. 71(4):948-59. [PubMed:19183283] |
(104) Mavrodi DV et al (2009). Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. 9:08. [PubMed:19144133] |
(105) Heather Z et al (2008). A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol. 70(5):1274-92. [PubMed:18990191] |
(106) Feizabadi MM et al (2008). Transposon Tn5281 is the main distributor of the aminoglycoside modifying enzyme gene among isolates of Enterococcus faecalis in Tehran hospitals. Can J Microbiol. 54(10):887-90. [PubMed:18923558] |
(107) Brochet M et al (2008). Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J Bacteriol. 190(20):6913-7. [PubMed:18708498] |
(108) Bourgogne A et al (2008). Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol. 9(7):R110. [PubMed:18611278] |
(109) Naito M et al (2008). Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 15(4):215-25. [PubMed:18524787] |
(110) te Poele EM et al (2008). Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek. 94(1):127-43. [PubMed:18523858] |
(111) te Poele EM et al (2008). Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid. 59(3):202-16. [PubMed:18295883] |
(112) Glockner G et al (2008). Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol. 298(5-6):411-28. [PubMed:17888731] |
(113) Beres SB et al (2007). Contribution of exogenous genetic elements to the group A Streptococcus metagenome. PLoS One. 2(8):e800. [PubMed:17726530] |
(114) Hecht DW et al (2007). Characterization of BctA, a mating apparatus protein required for transfer of the Bacteroides fragilis conjugal element BTF-37. Res Microbiol. 158(7):600-7. [PubMed:17720457] |
(115) Song B et al (2007). Integration site selection by the Bacteroides conjugative transposon CTnBST. J Bacteriol. 189(18):6594-601. [PubMed:17616597] |
(116) te Poele EM et al (2007). Prevalence and distribution of nucleotide sequences typical for pMEA-like accessory genetic elements in the genus Amycolatopsis. FEMS Microbiol Ecol. 61(2):285-94. [PubMed:17535299] |
(117) Schlesinger DJ et al (2007). Possible origins of CTnBST, a conjugative transposon found recently in a human colonic Bacteroides strain. Appl Environ Microbiol. 73(13):4226-33. [PubMed:17483268] |
(118) Oliynyk M et al (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol. 25(4):447-53. [PubMed:17369815] |
(119) Rice LB et al (2007). Interaction of related Tn916-like transposons: analysis of excision events promoted by Tn916 and Tn5386 integrases. J Bacteriol. 189(10):3909-17. [PubMed:17322310] |
(120) Belhocine K et al (2007). Conjugative transfer of the Lactococcus lactis sex factor and pRS01 plasmid to Enterococcus faecalis. FEMS Microbiol Lett. 269(2):289-94. [PubMed:17263841] |
(121) Brenciani A et al (2007). Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother. 51(4):1209-16. [PubMed:17261630] |
(122) Wesslund NA et al (2007). Integration and excision of a newly discovered bacteroides conjugative transposon, CTnBST. J Bacteriol. 189(3):1072-82. [PubMed:17122349] |
(123) Nougayrede JP et al (2006). Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 313(5788):848-51. [PubMed:16902142] |
(124) Roberts AP et al (2006). Characterization of the ends and target site of a novel tetracycline resistance-encoding conjugative transposon from Enterococcus faecium 664.1H1. J Bacteriol. 188(12):4356-61. [PubMed:16740942] |
(125) Pitman AR, Jackson RW, Mansfield JW, Kaitell V, Thwaites R, Arnold DL (2005). Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Curr Biol. 15(24):2230-5. [PubMed:16360685] |
(126) Rice LB et al (2005). Tn5386, a novel Tn916-like mobile element in Enterococcus faecium D344R that interacts with Tn916 to yield a large genomic deletion. J Bacteriol. 187(19):6668-77. [PubMed:16166528] |
(127) Hosted TJ Jr et al (2005). Characterization of the Micromonospora rosaria pMR2 plasmid and development of a high G+C codon optimized integrase for site-specific integration. Plasmid. 54(3):249-58. [PubMed:16024079] |
(128) Takeuchi K et al (2005). Drug resistance of Enterococcus faecium clinical isolates and the conjugative transfer of gentamicin and erythromycin resistance traits. FEMS Microbiol Lett. 243(2):347-54. [PubMed:15686834] |
(129) Franco AA (2004). The Bacteroides fragilis pathogenicity island is contained in a putative novel conjugative transposon. J Bacteriol. 186(18):6077-92. [PubMed:15342577] |
(130) Melville CM et al (2004). The Butyrivibrio fibrisolvens tet(W) gene is carried on the novel conjugative transposon TnB1230, which contains duplicated nitroreductase coding sequences. J Bacteriol. 186(11):3656-9. [PubMed:15150255] |
(131) Gupta A et al (2003). A new Bacteroides conjugative transposon that carries an ermB gene. Appl Environ Microbiol. 69(11):6455-63. [PubMed:14602600] |
(132) Wang Y et al (2003). A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in gram-positive bacteria. Appl Environ Microbiol. 69(8):4595-603. [PubMed:12902247] |
(133) Dahl KH et al (2003). Transferable vanB2 Tn5382-containing elements in fecal streptococcal strains from veal calves. Antimicrob Agents Chemother. 47(8):2579-83. [PubMed:12878522] |
(134) Brassinga AK et al (2003). A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol. 185(15):4630-7. [PubMed:12867476] |
(135) Paulsen IT et al (2003). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science. 299(5615):2071-4. [PubMed:12663927] |
(136) Possoz C et al (2003). Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor). Mol Microbiol. 47(5):1385-93. [PubMed:12603742] |
(137) Ajdic D et al (2002). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 99(22):14434-9. [PubMed:12397186] |
(138) Burrus V et al (2002). The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid. 48(2):77-97. [PubMed:12383726] |
(139) Glaser P et al (2002). Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol. 45(6):1499-513. [PubMed:12354221] |
(140) Glaser P et al (2002). Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol. 45(6):1499-513. [PubMed:12354221] |
(141) Dimopoulou ID et al (2002). Site-specific recombination with the chromosomal tRNA(Leu) gene by the large conjugative Haemophilus resistance plasmid. Antimicrob Agents Chemother. 46(5):1602-3. [PubMed:11959612] |
(142) Vedantam G et al (2002). Isolation and characterization of BTF-37: chromosomal DNA captured from Bacteroides fragilis that confers self-transferability and expresses a pilus-like structure in Bacteroides spp. and Escherichia coli. J Bacteriol. 184(3):728-38. [PubMed:11790742] |
(143) Nishi A et al (2000). A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J Bacteriol. 182(7):1949-55. [PubMed:10715002] |
(144) Chung WO et al (1999). Mobile elements carrying ermF and tetQ genes in gram-positive and gram-negative bacteria. J Antimicrob Chemother. 44(3):329-35. [PubMed:10511399] |
(145) Sezonov G et al (1998). Replicase, excisionase, and integrase genes of the Streptomyces element pSAM2 constitute an operon positively regulated by the pra gene. J Bacteriol. 180(12):3056-61. [PubMed:9620953] |
(146) Rice LB et al (1998). Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J Bacteriol. 180(3):714-21. [PubMed:9457879] |
(147) Seoane A et al (1997). Targets for pSAM2 integrase-mediated site-specific integration in the Mycobacterium smegmatis chromosome. Microbiology. 143 ( Pt 10):3375-80. [PubMed:9353939] |
(148) Hochhut B et al (1997). CTnscr94, a conjugative transposon found in enterobacteria. J Bacteriol. 179(7):2097-102. [PubMed:9079891] |
(149) Cooper AJ et al (1996). The erythromycin resistance gene from the Bacteroides conjugal transposon Tcr Emr 7853 is nearly identical to ermG from Bacillus sphaericus. Antimicrob Agents Chemother. 40(2):506-8. [PubMed:8834912] |
(150) Mills DA et al (1996). Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J Bacteriol. 178(12):3531-8. [PubMed:8655550] |
(151) Vrijbloed JW et al (1995). Identification of the minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica. Mol Microbiol. 18(1):21-31. [PubMed:8596458] |
(152) De Vos WM et al (1995). Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276. Dev Biol Stand. 85:617-25. [PubMed:8586240] |
(153) Broadbent JR et al (1995). Characteristics of Tn5307 exchange and intergeneric transfer of genes associated with nisin production. Appl Microbiol Biotechnol. 44(1-2):139-46. [PubMed:8579827] |
(154) Vrijbloed JW et al (1995). Transformation of the methylotrophic actinomycete Amycolatopis methanolica with plasmid DNA: stimulatory effect of a pMEA300-encoded gene. Plasmid. 34(2):96-104. [PubMed:8559807] |
(155) Sezonov G et al (1995). Characterization of pra, a gene for replication control in pSAM2, the integrating element of Streptomyces ambofaciens. Mol Microbiol. 17(3):533-44. [PubMed:8559072] |
(156) Rauch PJ et al (1994). Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol. 176(8):2165-71. [PubMed:8157585] |
(157) Hagege J et al (1994). Identification of a gene encoding the replication initiator protein of the Streptomyces integrating element, pSAM2. Plasmid. 31(2):166-83. [PubMed:8029324] |
(158) Vrijbloed JW et al (1994). A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. J Bacteriol. 176(22):7087-90. [PubMed:7961475] |
(159) Nikolich MP et al (1994). Characterization of a new type of Bacteroides conjugative transposon, Tcr Emr 7853. J Bacteriol. 176(21):6606-12. [PubMed:7961412] |
(160) Mills DA et al (1994). Genetic analysis of regions of the Lactococcus lactis subsp. lactis plasmid pRS01 involved in conjugative transfer. Appl Environ Microbiol. 60(12):4413-20. [PubMed:7811081] |
(161) Brasch MA et al (1993). Localization and nucleotide sequences of genes mediating site-specific recombination of the SLP1 element in Streptomyces lividans. J Bacteriol. 175(10):3067-74. [PubMed:8387993] |
(162) Hagege J et al (1993). Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J Bacteriol. 175(17):5529-38. [PubMed:8366038] |
(163) Hagege J et al (1993). Mode and origin of replication of pSAM2, a conjugative integrating element of Streptomyces ambofaciens. Mol Microbiol. 10(4):799-812. [PubMed:7934842] |
(164) Vogtli M et al (1992). The chromosomal integration site for the Streptomyces plasmid SLP1 is a functional tRNA(Tyr) gene essential for cell viability. Mol Microbiol. 6(20):3041-50. [PubMed:1479893] |
(165) Bar-Nir D et al (1992). tDNA(ser) sequences are involved in the excision of Streptomyces griseus plasmid pSG1. Gene. 122(1):71-6. [PubMed:1452039] |
(166) Rauch PJ et al (1992). Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol. 174(4):1280-7. [PubMed:1310502] |
(167) Katz L et al (1991). Site-specific recombination in Escherichia coli between the att sites of plasmid pSE211 from Saccharopolyspora erythraea. Mol Gen Genet. 227(1):155-9. [PubMed:2046656] |
(168) Horn N et al (1991). Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet. 228(1-2):129-35. [PubMed:1679523] |
(169) Brown DP et al (1990). Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. 172(4):1877-88. [PubMed:2180909] |
(170) Halula M et al (1990). Tn5030: a conjugative transposon conferring clindamycin resistance in Bacteroides species. Rev Infect Dis. 12 Suppl 2:S235-42. [PubMed:2154843] |
(171) Sosio M et al (1989). Excision of pIJ408 from the chromosome of Streptomyces glaucescens and its transfer into Streptomyces lividans. Mol Gen Genet. 218(1):169-76. [PubMed:2779515] |
(172) Boccard F et al (1989). The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J. 8(3):973-80. [PubMed:2721504] |
(173) Boccard F et al (1989). Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces. Plasmid. 21(1):59-70. [PubMed:2657820] |
(174) Kuhstoss S et al (1989). Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2. J Bacteriol. 171(1):16-23. [PubMed:2536654] |
(175) Lee SC et al (1988). Analysis of recombination occurring at SLP1 att sites. J Bacteriol. 170(12):5806-13. [PubMed:3056916] |
(176) Madon J et al (1987). Site-specific integration and excision of pMEA100 in Nocardia mediterranei. Mol Gen Genet. 209(2):257-64. [PubMed:2823074] |
(177) Miyoshi YK et al (1986). Multicopy derivative of pock-forming plasmid pSA1 in Streptomyces azureus. J Bacteriol. 168(1):452-4. [PubMed:3759910] |
(178) Moretti P et al (1985). Isolation and characterization of an extrachromosomal element from Nocardia mediterranei. Plasmid. 14(2):126-33. [PubMed:2999850] |
(179) Cohen A et al (1985). The integrated and free states of Streptomyces griseus plasmid pSG1. Plasmid. 13(1):41-50. [PubMed:2986187] |
(180) Pernodet JL et al (1984). Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2. Mol Gen Genet. 198(1):35-41. [PubMed:6596483] |
(181) Hopwood DA et al (1984). Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans. Plasmid. 11(1):1-16. [PubMed:6369354] |
(182) Omer CA et al (1984). Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site. Mol Gen Genet. 196(3):429-38. [PubMed:6094971] |
(183) Bibb MJ et al (1981). Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet. 184(2):230-40. [PubMed:6948998] |