References |
(1) Morici E et al (2017). A new mosaic integrative and conjugative element from Streptococcus agalactiae carrying resistance genes for chloramphenicol (catQ) and macrolides [mef(I) and erm(TR)]. J Antimicrob Chemother. 72(1):64-67. [PubMed:27621174] |
(2) Del Grosso M et al (2016). ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes. Antimicrob Agents Chemother. 60(7):3906-12. [PubMed:27067338] |
(3) Mingoia M et al (2014). Genetic basis of the association of resistance genes mef(I) (macrolides) and catQ (chloramphenicol) in streptococci. Front Microbiol. 0.727083333. [PubMed:25610433] |
(4) Mingoia M et al (2014). Tn5253 family integrative and conjugative elements carrying mef(I) and catQ determinants in Streptococcus pneumoniae and Streptococcus pyogenes. Antimicrob Agents Chemother. 58(10):5886-93. [PubMed:25070090] |
(5) Croucher NJ et al (2014). Variable recombination dynamics during the emergence, transmission and 'disarming' of a multidrug-resistant pneumococcal clone. BMC Biol. 12:49. [PubMed:24957517] |
(6) Croucher NJ et al (2011). Rapid pneumococcal evolution in response to clinical interventions. Science. 331(6016):430-4. [PubMed:21273480] |
(7) Mingoia M et al (2011). Heterogeneity of Tn5253-like composite elements in clinical Streptococcus pneumoniae isolates. Antimicrob Agents Chemother. 55(4):1453-9. [PubMed:21263055] |
(8) Ding F et al (2009). Genome evolution driven by host adaptations results in a more virulent and antimicrobial-resistant Streptococcus pneumoniae serotype 14. BMC Genomics. 0.526388889. [PubMed:19361343] |
(9) Croucher NJ et al (2009). Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniaeSpain23F ST81. J Bacteriol. 191(5):1480-9. [PubMed:19114491] |
(10) Henderson-Begg SK et al (2009). Diversity of putative Tn5253-like elements in Streptococcus pneumoniae. Int J Antimicrob Agents. 33(4):364-7. [PubMed:19097761] |
(11) Srinivas P et al (2000). Genetic and transcriptional analysis of a regulatory region in streptococcal conjugative transposon Tn5252. Plasmid. 44(3):262-74. [PubMed:11078652] |
(12) Munoz-Najar U et al (1999). An operon that confers UV resistance by evoking the SOS mutagenic response in streptococcal conjugative transposon Tn5252. J Bacteriol. 181(9):2782-8. [PubMed:10217768] |
(13) Sampath J et al (1998). Identification of a DNA cytosine methyltransferase gene in conjugative transposon Tn5252. Plasmid. 39(1):63-76. [PubMed:9473447] |
(14) Srinivas P et al (1997). Site-specific nicking in vitro at ori T by the DNA relaxase of Tn5252. Plasmid. 37(1):42-50. [PubMed:9073581] |
(15) Vijayakumar MN et al (1995). Genetic organization of streptococcal conjugative transposon Tn5252. Dev Biol Stand. 85:63-9. [PubMed:8586242] |
(16) Kilic AO et al (1994). Identification and nucleotide sequence analysis of a transfer-related region in the streptococcal conjugative transposon Tn5252. J Bacteriol. 176(16):5145-50. [PubMed:8051031] |
(17) Vijayakumar MN et al (1993). Nucleotide sequence analysis of the termini and chromosomal locus involved in site-specific integration of the streptococcal conjugative transposon Tn5252. J Bacteriol. 175(9):2713-9. [PubMed:8386725] |
(18) Ayoubi P et al (1991). Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol. 173(5):1617-22. [PubMed:1847905] |