ICEberg
ICEberg contains data from 695 references related to integrative and conjugative elements (ICEs), integrative and mobilizable elements (IMEs), cis-mobilizable element (CIMEs). Last Update: May 02, 2018

Categories
reviews in silico analyses experimental studies genome sequencing all
Search
     
References
(1) Bioteau A et al (2018). Redefinition and unification of the SXT/R391 family of integrative and conjugative elements. Appl Environ Microbiol. . [PubMed:29654185]
(2) Li Y et al (2018). Characterization of the Actinobacillus pleuropneumoniae SXT-related integrative and conjugative element ICEApl2 and analysis of the encoded FloR protein: hydrophobic residues in transmembrane domains contribute dynamically to florfenicol and chloramphenicol efflux. J Antimicrob Chemother. 73(1):57-65. [PubMed:29029160]
(3) Ryan MP et al (2017). Analysis and comparative genomics of R997, the first SXT/R391 integrative and conjugative element (ICE) of the Indian Sub-Continent. Sci Rep. 7(1):8562. [PubMed:28819148]
(4) Bie L et al (2017). Identification and characterization of new members of the SXT/R391 family of integrative and conjugative elements (ICEs) in Proteus mirabilis. Int J Antimicrob Agents. 50(2):242-246. [PubMed:28602701]
(5) Lopez-Perez M et al (2017). Networking in microbes: conjugative elements and plasmids in the genus Alteromonas. BMC Genomics. 18(1):36. [PubMed:28056800]
(6) Badhai J et al (2016). Characterization of Three Novel SXT/R391 Integrating Conjugative Elements ICEMfuInd1a and ICEMfuInd1b, and ICEMprChn1 Identified in the Genomes of Marinomonas fungiae JCM 18476(T) and Marinomonas profundimaris Strain D104. Front Microbiol. 1.608333333. [PubMed:27933056]
(7) Li X et al (2016). SXT/R391 integrative and conjugative elements in Proteus species reveal abundant genetic diversity and multidrug resistance. Sci Rep. 6:37372. [PubMed:27892525]
(8) Carraro N et al (2016). IncA/C Conjugative Plasmids Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-O1/Non-O139 Isolates from Haiti. MBio. 7(4). [PubMed:27435459]
(9) Rodriguez-Blanco A et al (2016). Unveiling the pan-genome of the SXT/R391 family of ICEs: molecular characterisation of new variable regions of SXT/R391-like ICEs detected in Pseudoalteromonas sp. and Vibrio scophthalmi. Antonie Van Leeuwenhoek. 109(8):1141-52. [PubMed:27230650]
(10) Parmeciano Di Noto G et al (2016). Genome analysis of a clinical isolate of Shewanella sp. uncovered an active hybrid integrative and conjugative element carrying an integron platform inserted in a novel genomic locus. Microbiology. 162(8):1335-45. [PubMed:27215217]
(11) Luo P et al (2016). Comparative genomic analysis of six new-found integrative conjugative elements (ICEs) in Vibrio alginolyticus. BMC Microbiol. 0.721527778. [PubMed:27145747]
(12) Wang R et al (2016). Variations in SXT elements in epidemic Vibrio cholerae O1 El Tor strains in China. Sci Rep. 6:22733. [PubMed:26956038]
(13) Lei CW et al (2016). Characterization of SXT/R391 Integrative and Conjugative Elements in Proteus mirabilis Isolates from Food-Producing Animals in China. Antimicrob Agents Chemother. 60(3):1935-8. [PubMed:26824957]
(14) Marin MA et al (2014). Worldwide occurrence of integrative conjugative element encoding multidrug resistance determinants in epidemic Vibrio cholerae O1. PLoS One. 9(9):e108728. [PubMed:25265418]
(15) Spagnoletti M et al (2014). Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage. MBio. 5(4). [PubMed:25139901]
(16) Song Y et al (2013). The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and environment in the Yangtze River Estuary, China. BMC Microbiol. 0.690277778. [PubMed:24074349]
(17) Ceccarelli D et al (2013). A new integrative conjugative element detected in Haitian isolates of Vibrio cholerae non-O1/non-O139. Res Microbiol. 164(9):891-893. [PubMed:23994142]
(18) Daccord A et al (2013). Comparative analysis of mobilizable genomic islands. J Bacteriol. 195(3):606-14. [PubMed:23204461]
(19) Badhai J et al (2012). Presence of SXT integrating conjugative element in marine bacteria isolated from the mucus of the coral Fungia echinata from Andaman Sea. FEMS Microbiol Lett. . [PubMed:23083057]
(20) Balado M et al (2012). Integrating conjugative elements of the SXT/R391 family from fish-isolated Vibrios encode restriction-modification systems that confer resistance to bacteriophages. FEMS Microbiol Ecol. . [PubMed:22974320]
(21) Balado M et al (2012). Integrating conjugative elements of the SXT/R391 family from fish-isolated Vibrios encode restriction-modification systems that confer resistance to bacteriophages. FEMS Microbiol Ecol. . [PubMed:22974320]
(22) Daccord A et al (2012). Dynamics of the SetCD-Regulated Integration and Excision of Genomic Islands Mobilized by Integrating Conjugative Elements of the SXT/R391 Family. J Bacteriol. 194(21):5794-802. [PubMed:22923590]
(23) Taviani E et al (2012). Genomic analysis of ICEVchBan8: An atypical genetic element in Vibrio cholerae. FEBS Lett. 586(11):1617-21. [PubMed:22673571]
(24) Pande K et al (2012). SXT constin among Vibrio cholerae isolates from a tertiary care hospital. Indian J Med Res. 135:346-50. [PubMed:22561621]
(25) Rodriguez-Blanco A et al (2012). Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments. Antimicrob Agents Chemother. 56(5):2619-26. [PubMed:22314526]
(26) Spagnoletti M et al (2012). Rapid detection by multiplex PCR of Genomic Islands, prophages and Integrative Conjugative Elements in V. cholerae 7th pandemic variants. J Microbiol Methods. 88(1):98-102. [PubMed:22062086]
(27) Sjolund-Karlsson M et al (2011). Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg Infect Dis. 17(11):2151-4. [PubMed:22099122]
(28) Mata C et al (2011). Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis. J Antimicrob Chemother. 66(10):2266-70. [PubMed:21752830]
(29) Flannery EL et al (2011). Self-Transmissibility of the Integrative and Conjugative Element ICEPm1 between Clinical Isolates Requires a Functional Integrase, Relaxase, and Type IV Secretion System. J Bacteriol. 193(16):4104-12. [PubMed:21665966]
(30) Chen WY et al (2011). Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae. BMC Mol Biol. 12(1):16. [PubMed:21501469]
(31) Ceccarelli D et al (2011). ICEVchInd5 is prevalent in epidemic Vibrio cholerae O1 El Tor strains isolated in India. Int J Med Microbiol. 301(4):318-24. [PubMed:21276749]
(32) Daccord A et al (2010). Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol Microbiol. 78(3):576-88. [PubMed:20807202]
(33) Harada S et al (2010). Chromosomally encoded blaCMY-2 located on a novel SXT/R391-related integrating conjugative element in a Proteus mirabilis clinical isolate. Antimicrob Agents Chemother. 54(9):3545-50. [PubMed:20566768]
(34) Grim CJ et al (2010). Genome sequence of hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and comparative genomics with V. cholerae. J Bacteriol. 192(13):3524-33. [PubMed:20348258]
(35) Kumar P et al (2010). Characterization of an SXT variant Vibrio cholerae O1 Ogawa isolated from a patient in Trivandrum, India. FEMS Microbiol Lett. 303(2):132-6. [PubMed:20030727]
(36) Bordeleau E et al (2010). Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol. 12(2):510-23. [PubMed:19888998]
(37) Wozniak RA et al (2009). Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet. 5(12):e1000786. [PubMed:20041216]
(38) Garriss G et al (2009). Mobile antibiotic resistance encoding elements promote their own diversity. PLoS Genet. 5(12):e1000775. [PubMed:20019796]
(39) Taviani E et al (2009). Genomic analysis of a novel integrative conjugative element in Vibrio cholerae. FEBS Lett. 583(22):3630-6. [PubMed:19850044]
(40) Flannery EL et al (2009). Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun. 77(11):4887-94. [PubMed:19687197]
(41) Wozniak RA et al (2009). A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genet. 5(3):e1000439. [PubMed:19325886]
(42) Ceccarelli D et al (2008). Identification of the origin of transfer (oriT) and a new gene required for mobilization of the SXT/R391 family of integrating conjugative elements. J Bacteriol. 190(15):5328-38. [PubMed:18539733]
(43) Osorio CR et al (2008). Genomic and functional analysis of ICEPdaSpa1, a fish-pathogen-derived SXT-related integrating conjugative element that can mobilize a virulence plasmid. J Bacteriol. 190(9):3353-61. [PubMed:18326579]
(44) Taviani E et al (2008). Environmental Vibrio spp., isolated in Mozambique, contain a polymorphic group of integrative conjugative elements and class 1 integrons. FEMS Microbiol Ecol. 64(1):45-54. [PubMed:18318712]
(45) Taviani E et al (2008). Environmental Vibrio spp., isolated in Mozambique, contain a polymorphic group of integrative conjugative elements and class 1 integrons. FEMS Microbiol Ecol. 64(1):45-54. [PubMed:18318712]
(46) Marrero J et al (2007). Determinants of entry exclusion within Eex and TraG are cytoplasmic. J Bacteriol. 189(17):6469-73. [PubMed:17573467]
(47) O'Halloran JA et al (2007). The orf4 gene of the enterobacterial ICE, R391, encodes a novel UV-inducible recombination directionality factor, Jef, involved in excision and transfer of the ICE. FEMS Microbiol Lett. 272(1):99-105. [PubMed:17504243]
(48) Marrero J et al (2007). The SXT/R391 family of integrative conjugative elements is composed of two exclusion groups. J Bacteriol. 189(8):3302-5. [PubMed:17307849]
(49) Mead S et al (2007). Characterization of polVR391: a Y-family polymerase encoded by rumA'B from the IncJ conjugative transposon, R391. Mol Microbiol. 63(3):797-810. [PubMed:17302804]
(50) Bani S et al (2007). Molecular characterization of ICEVchVie0 and its disappearance in Vibrio cholerae O1 strains isolated in 2003 in Vietnam. FEMS Microbiol Lett. 266(1):42-8. [PubMed:17233716]
(51) Pembroke JT et al (2006). A novel ICE in the genome of Shewanella putrefaciens W3-18-1: comparison with the SXT/R391 ICE-like elements. FEMS Microbiol Lett. 264(1):80-8. [PubMed:17020552]
(52) McLeod SM et al (2006). Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer. J Bacteriol. 188(16):5704-11. [PubMed:16885438]
(53) Burrus V et al (2006). SXT-related integrating conjugative element in New World Vibrio cholerae. Appl Environ Microbiol. 72(4):3054-7. [PubMed:16598018]
(54) Juiz-Rio S et al (2005). Subtractive hybridization reveals a high genetic diversity in the fish pathogen Photobacterium damselae subsp. piscicida: evidence of a SXT-like element. Microbiology. 151(Pt 8):2659-69. [PubMed:16079344]
(55) Marrero J et al (2005). Interactions between inner membrane proteins in donor and recipient cells limit conjugal DNA transfer. Dev Cell. 8(6):963-70. [PubMed:15935784]
(56) McGrath BM et al (2005). Pre-exposure to UV irradiation increases the transfer frequency of the IncJ conjugative transposon-like elements R391, R392, R705, R706, R997 and pMERPH and is recA+ dependent. FEMS Microbiol Lett. 243(2):461-5. [PubMed:15686850]
(57) Ahmed AM et al (2005). A variant type of Vibrio cholerae SXT element in a multidrug-resistant strain of Vibrio fluvialis. FEMS Microbiol Lett. 242(2):241-7. [PubMed:15621444]
(58) Beaber JW et al (2004). Identification of operators and promoters that control SXT conjugative transfer. J Bacteriol. 186(17):5945-9. [PubMed:15317801]
(59) McGrath BM et al (2004). Detailed analysis of the insertion site of the mobile elements R997, pMERPH, R392, R705 and R391 in E. coli K12. FEMS Microbiol Lett. 237(1):19-26. [PubMed:15268933]
(60) Iwanaga M et al (2004). Antibiotic resistance conferred by a class I integron and SXT constin in Vibrio cholerae O1 strains isolated in Laos. Antimicrob Agents Chemother. 48(7):2364-9. [PubMed:15215082]
(61) Sabater-Munoz B et al (2004). Evolution of the leucine gene cluster in Buchnera aphidicola: insights from chromosomal versions of the cluster. J Bacteriol. 186(9):2646-54. [PubMed:15090505]
(62) Burrus V et al (2004). Formation of SXT tandem arrays and SXT-R391 hybrids. J Bacteriol. 186(9):2636-45. [PubMed:15090504]
(63) Boltner D et al (2004). Structural comparison of the integrative and conjugative elements R391, pMERPH, R997, and SXT. Plasmid. 51(1):12-23. [PubMed:14711525]
(64) Beaber JW et al (2004). SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 427(6969):72-4. [PubMed:14688795]
(65) Burrus V et al (2003). Control of SXT integration and excision. J Bacteriol. 185(17):5045-54. [PubMed:12923077]
(66) Boltner D et al (2002). R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J Bacteriol. 184(18):5158-69. [PubMed:12193633]
(67) Thungapathra M et al (2002). Occurrence of antibiotic resistance gene cassettes aac(6')-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob Agents Chemother. 46(9):2948-55. [PubMed:12183252]
(68) Beaber JW et al (2002). Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol. 184(15):4259-69. [PubMed:12107144]
(69) Dalsgaard A et al (2001). Vibrio cholerae O1 outbreak isolates in Mozambique and South Africa in 1998 are multiple-drug resistant, contain the SXT element and the aadA2 gene located on class 1 integrons. J Antimicrob Chemother. 48(6):827-38. [PubMed:11733467]
(70) Hochhut B et al (2001). Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother. 45(11):2991-3000. [PubMed:11600347]
(71) Hochhut B et al (2001). Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J Bacteriol. 183(4):1124-32. [PubMed:11157923]
(72) Hochhut B et al (2000). Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J Bacteriol. 182(7):2043-7. [PubMed:10715015]
(73) Murphy DB et al (1999). Monitoring of chromosomal insertions of the IncJ elements R391 and R997 in Escherichia coli K-12. FEMS Microbiol Lett. 174(2):355-61. [PubMed:10339829]
(74) Hochhut B et al (1999). Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol. 32(1):99-110. [PubMed:10216863]
(75) Waldor MK et al (1996). A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol. 178(14):4157-65. [PubMed:8763944]
(76) Murphy DB et al (1995). Transfer of the IncJ plasmid R391 to recombination deficient Escherichia coli K12: evidence that R391 behaves as a conjugal transposon. FEMS Microbiol Lett. 134(2-3):153-8. [PubMed:8586262]
(77) Peters SE et al (1991). Novel mercury resistance determinants carried by IncJ plasmids pMERPH and R391. Mol Gen Genet. 228(1-2):294-9. [PubMed:1886614]
(78) Matthew M et al (1979). Types of beta-lactamase determined by plasmids in gram-negative bacteria. J Bacteriol. 138(3):657-62. [PubMed:378931]
(79) Yokota T et al (1977). Temperature-sensitive R plasmid obtained from naturally isolated drug-resistant Vibrio cholerae (biotype El Tor). Antimicrob Agents Chemother. 11(1):13-20. [PubMed:319746]
(80) Hedges RW (1975). R factors from Proteus mirabilis and P. vulgaris. J Gen Microbiol. 87(2):301-11. [PubMed:1095684]
(81) Hedges RW (1974). R factors from Providence. J Gen Microbiol. 81(1):171-81. [PubMed:4362618]
(82) Coetzee JN et al (1972). R factors from Proteus rettgeri. J Gen Microbiol. 72(3):543-52. [PubMed:4564689]