ICEberg
ICEberg contains data from 695 references related to integrative and conjugative elements (ICEs), integrative and mobilizable elements (IMEs), cis-mobilizable element (CIMEs). Last Update: May 02, 2018

Categories
reviews in silico analyses experimental studies genome sequencing all
Search
     
References
(1) Delahay RM et al (2018). Phylogeographic diversity and mosaicism of the Helicobacter pylori tfs integrative and conjugative elements. Mob DNA. 9:05. [PubMed:29416569]
(2) Botelho J et al (2018). Two decades of blaVIM-2-producing Pseudomonas aeruginosa dissemination: an interplay between mobile genetic elements and successful clones. J Antimicrob Chemother. 73(4):873-882. [PubMed:29373674]
(3) Pham NP et al (2017). Comparative genomic analysis of Brevibacterium strains: insights into key genetic determinants involved in adaptation to the cheese habitat. BMC Genomics. 18(1):955. [PubMed:29216827]
(4) Husain F et al (2017). Novel large-scale chromosomal transfer in Bacteroides fragilis contributes to its pan-genome and rapid environmental adaptation. Microb Genom. 3(11). [PubMed:29208130]
(5) Castillo A et al (2017). A DNA segment encoding the anticodon stem/loop of tRNA determines the specific recombination of integrative-conjugative elements in Acidithiobacillus species. RNA Biol. :1-8. [PubMed:29168417]
(6) Alamos P et al (2017). Functionality of tRNAs encoded in a mobile genetic element from an acidophilic bacterium. RNA Biol. :1-10. [PubMed:28708455]
(7) Haskett TL et al (2017). Evolutionary persistence of tripartite integrative and conjugative elements. Plasmid. 92:30-36. [PubMed:28669811]
(8) Perrin A et al (2017). Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun. 8:15483. [PubMed:28537263]
(9) Marin MA et al (2017). The invasive Neisseria meningitidis MenC CC103 from Brazil is characterized by an accessory gene repertoire. Sci Rep. 7(1):1617. [PubMed:28487566]
(10) Dahmane N et al (2017). Diversity of Integrative and Conjugative Elements of Streptococcus salivarius and Their Intra- and Interspecies Transfer. Appl Environ Microbiol. 83(13). [PubMed:28432093]
(11) Blesa A et al (2017). The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation. PLoS Genet. 13(3):e1006669. [PubMed:28282376]
(12) Lopez-Perez M et al (2017). Networking in microbes: conjugative elements and plasmids in the genus Alteromonas. BMC Genomics. 18(1):36. [PubMed:28056800]
(13) Zhang Y et al (2017). Emergence of Novel Pathogenic Streptomyces Species by Site-Specific Accretion and cis-Mobilization of Pathogenicity Islands. Mol Plant Microbe Interact. 30(1):72-82. [PubMed:27977935]
(14) Morici E et al (2017). A new mosaic integrative and conjugative element from Streptococcus agalactiae carrying resistance genes for chloramphenicol (catQ) and macrolides [mef(I) and erm(TR)]. J Antimicrob Chemother. 72(1):64-67. [PubMed:27621174]
(15) Ling J et al (2016). Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A. 113(48):13875-13880. [PubMed:27849579]
(16) Huang J et al (2016). Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci. Front Cell Infect Microbiol. 0.331944444. [PubMed:27774436]
(17) Haskett TL et al (2016). Assembly and transfer of tripartite integrative and conjugative genetic elements. Proc Natl Acad Sci U S A. 113(43):12268-12273. [PubMed:27733511]
(18) Rahman M et al (2016). Comparative Genome Analysis of the Daptomycin-Resistant Streptococcus anginosus Strain J4206 Associated with Breakthrough Bacteremia. Genome Biol Evol. 8(11):3446-3459. [PubMed:27678123]
(19) Campisi E et al (2016). Genomic Analysis Reveals Multi-Drug Resistance Clusters in Group B Streptococcus CC17 Hypervirulent Isolates Causing Neonatal Invasive Disease in Southern Mainland China. Front Microbiol. 1.170138889. [PubMed:27574519]
(20) Knight DR et al (2016). A Phenotypically Silent vanB2 Operon Carried on a Tn1549-Like Element in Clostridium difficile. mSphere. 1(4). [PubMed:27536735]
(21) Uchiyama I et al (2016). A Novel Approach to Helicobacter pylori Pan-Genome Analysis for Identification of Genomic Islands. PLoS One. 11(8):e0159419. [PubMed:27504980]
(22) Huang K et al (2016). Characterization of Spectinomycin Resistance in Streptococcus suis Leads to Two Novel Insights into Drug Resistance Formation and Dissemination Mechanism. Antimicrob Agents Chemother. 60(10):6390-2. [PubMed:27458226]
(23) Thibessard A et al (2016). Complete Genome Sequence of Streptomyces ambofaciens DSM 40697, a Paradigm for Genome Plasticity Studies. Genome Announc. 4(3). [PubMed:27257195]
(24) Andrey DO et al (2016). Re-emergence of scarlet fever: old players return?. Expert Rev Anti Infect Ther. 14(8):687-9. [PubMed:27249582]
(25) Fonseca EL et al (2016). Commentary: Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front Microbiol. 0.826388889. [PubMed:27242778]
(26) Panda P et al (2016). Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Front Microbiol. 0.567361111. [PubMed:27065965]
(27) Athey TB et al (2016). Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains. PLoS One. 11(3):e0150908. [PubMed:26954687]
(28) Klima CL et al (2016). Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS One. 11(2):e0149520. [PubMed:26926339]
(29) Mingoia M et al (2016). Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907. J Antimicrob Chemother. 71(3):593-600. [PubMed:26679245]
(30) Naito M et al (2016). The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat. DNA Res. 23(1):11-9. [PubMed:26645327]
(31) Abbott ZD et al (2016). csrT Represents a New Class of csrA-Like Regulatory Genes Associated with Integrative Conjugative Elements of Legionella pneumophila. J Bacteriol. 198(3):553-64. [PubMed:26598366]
(32) Bidet P et al (2016). Genome Analysis of Kingella kingae Strain KWG1 Reveals How a beta-Lactamase Gene Inserted in the Chromosome of This Species. Antimicrob Agents Chemother. 60(1):703-8. [PubMed:26574009]
(33) Chapleau M et al (2016). Identification of genetic and environmental factors stimulating excision from Streptomyces scabiei chromosome of the toxicogenic region responsible for pathogenicity. Mol Plant Pathol. 17(4):501-9. [PubMed:26177341]
(34) Ambroset C et al (2015). New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration. Front Microbiol. 1.279861111. [PubMed:26779141]
(35) Cesbron S et al (2015). Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. Front Plant Sci. 1.031944444. [PubMed:26734033]
(36) Mohammed M et al (2015). Whole genome sequencing provides possible explanations for the difference in phage susceptibility among two Salmonella Typhimurium phage types (DT8 and DT30) associated with a single foodborne outbreak. BMC Res Notes. 0.838888889. [PubMed:26613761]
(37) Kojima KK et al (2015). Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance. BMC Genomics. 1.234027778. [PubMed:26481899]
(38) Douarre PE et al (2015). Host specificity in the diversity and transfer of lsa resistance genes in group B Streptococcus. J Antimicrob Chemother. 70(12):3205-13. [PubMed:26410170]
(39) Morales M et al (2015). Insights into the Evolutionary Relationships of LytA Autolysin and Ply Pneumolysin-Like Genes in Streptococcus pneumoniae and Related Streptococci. Genome Biol Evol. 7(9):2747-61. [PubMed:26349755]
(40) Chen J et al (2015). Characterization of the chromosomal integration of Saccharopolyspora plasmid pCM32 and its application to improve production of spinosyn in Saccharopolyspora spinosa. Appl Microbiol Biotechnol. 99(23):10141-9. [PubMed:26260388]
(41) Martin-Moldes Z et al (2015). Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol. 38(7):462-71. [PubMed:26259823]
(42) de Andrade Barboza S et al (2015). Complete Genome Sequence of Noninvasive Streptococcus pyogenes M/emm28 Strain STAB10015, Isolated from a Child with Perianal Dermatitis in French Brittany. Genome Announc. 3(4). [PubMed:26184948]
(43) De Maayer P et al (2015). Integrative conjugative elements of the ICEPan family play a potential role in Pantoea ananatis ecological diversification and antibiosis. Front Microbiol. 0.65. [PubMed:26106378]
(44) Fonseca EL et al (2015). Full characterization of the integrative and conjugative element carrying the metallo-beta-lactamase bla SPM-1 and bicyclomycin bcr1 resistance genes found in the pandemic Pseudomonas aeruginosa clone SP/ST277. J Antimicrob Chemother. 70(9):2547-50. [PubMed:26093374]
(45) Carraro N et al (2015). Replication and Active Partition of Integrative and Conjugative Elements (ICEs) of the SXT/R391 Family: The Line between ICEs and Conjugative Plasmids Is Getting Thinner. PLoS Genet. 11(6):e1005298. [PubMed:26061412]
(46) Marini E et al (2015). Recombination between Streptococcus suis ICESsu32457 and Streptococcus agalactiae ICESa2603 yields a hybrid ICE transferable to Streptococcus pyogenes. Vet Microbiol. 178(1-2):99-104. [PubMed:25935120]
(47) Puymege A et al (2015). Analysis of Streptococcus agalactiae pan-genome for prevalence, diversity and functionality of integrative and conjugative or mobilizable elements integrated in the tRNA(Lys CTT) gene. Mol Genet Genomics. 290(5):1727-40. [PubMed:25832353]
(48) Hu Y et al (2015). Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. Antimicrob Agents Chemother. 59(2):1152-61. [PubMed:25487802]
(49) Davies MR et al (2015). Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat Genet. 47(1):84-7. [PubMed:25401300]
(50) Eidam C et al (2015). Analysis and comparative genomics of ICEMh1, a novel integrative and conjugative element (ICE) of Mannheimia haemolytica. J Antimicrob Chemother. 70(1):93-7. [PubMed:25239467]
(51) Reeve W et al (2014). Genome sequence of the Lotus corniculatus microsymbiont Mesorhizobium loti strain R88B. Stand Genomic Sci. 9:03. [PubMed:25780496]
(52) Hilty M et al (2014). Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol Evol. 6(12):3281-94. [PubMed:25480686]
(53) Gillespie JJ et al (2014). Genomic diversification in strains of Rickettsia felis Isolated from different arthropods. Genome Biol Evol. 7(1):35-56. [PubMed:25477419]
(54) Bustamante P et al (2014). Toxin-antitoxin systems in the mobile genome of Acidithiobacillus ferrooxidans. PLoS One. 9(11):e112226. [PubMed:25384039]
(55) Santoro F et al (2014). Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol. 0.579861111. [PubMed:25368607]
(56) Raftis EJ et al (2014). Unusual genome complexity in Lactobacillus salivarius JCM1046. BMC Genomics. 1.160416667. [PubMed:25201645]
(57) Husain F et al (2014). The Ellis Island Effect: A novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Mob Genet Elements. 4:e29801. [PubMed:25165618]
(58) Wasels F et al (2014). Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB. Microb Drug Resist. 20(6):555-60. [PubMed:25055190]
(59) Montilla A et al (2014). Genetic environment of the lnu(B) gene in a Streptococcus agalactiae clinical isolate. Antimicrob Agents Chemother. 58(9):5636-7. [PubMed:24957835]
(60) Huguet-Tapia JC et al (2014). Characterization of the integration and modular excision of the integrative conjugative element PAISt in Streptomyces turgidiscabies Car8. PLoS One. 9(6):e99345. [PubMed:24927117]
(61) Flynn KJ et al (2014). Integrative conjugative element ICE-betaox confers oxidative stress resistance to Legionella pneumophila in vitro and in macrophages. MBio. 5(3):e01091-14. [PubMed:24781744]
(62) Clewell DB et al (2014). A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity. BMC Genomics. 0.840277778. [PubMed:24767410]
(63) Klima CL et al (2014). Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J Clin Microbiol. 52(2):438-48. [PubMed:24478472]
(64) Brenciani A et al (2014). ICESp1116, the genetic element responsible for erm(B)-mediated, inducible erythromycin resistance in Streptococcus pyogenes, belongs to the TnGBS family of integrative and conjugative elements. Antimicrob Agents Chemother. 58(4):2479-81. [PubMed:24449773]
(65) Guerillot R et al (2014). The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol. 6(2):260-72. [PubMed:24418649]
(66) Reeve W et al (2013). Complete genome sequence of Mesorhizobium australicum type strain (WSM2073(T)). Stand Genomic Sci. 9(2):410-9. [PubMed:24976896]
(67) Reeve W et al (2013). Complete genome sequence of Mesorhizobium opportunistum type strain WSM2075(T.). Stand Genomic Sci. 9(2):294-303. [PubMed:24976886]
(68) Wee BA et al (2013). A distinct and divergent lineage of genomic island-associated Type IV Secretion Systems in Legionella. PLoS One. 8(12):e82221. [PubMed:24358157]
(69) Olson AB et al (2013). Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics. 1.204861111. [PubMed:24341328]
(70) Acuna LG et al (2013). Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacillus caldus. PLoS One. 8(11):e78237. [PubMed:24250794]
(71) Bjorkeng EK et al (2013). ICESluvan, a 94-kilobase mosaic integrative conjugative element conferring interspecies transfer of VanB-type glycopeptide resistance, a novel bacitracin resistance locus, and a toxin-antitoxin stabilization system. J Bacteriol. 195(23):5381-90. [PubMed:24078615]
(72) Wyres KL et al (2013). Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974. BMC Genomics. 0.930555556. [PubMed:23879707]
(73) Tirumalai MR et al (2013). An ICEBs1-like element may be associated with the extreme radiation and desiccation resistance of Bacillus pumilus SAFR-032 spores. Extremophiles. 17(5):767-74. [PubMed:23812891]
(74) Wasels F et al (2013). Clostridium difficile erm(B)-containing elements and the burden on the in vitro fitness. J Med Microbiol. 62(Pt 9):1461-7. [PubMed:23741023]
(75) Rao C et al (2013). Phylogenetic reconstruction of the Legionella pneumophila Philadelphia-1 laboratory strains through comparative genomics. PLoS One. 8(5):e64129. [PubMed:23717549]
(76) Butler MI et al (2013). Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS One. 8(2):e57464. [PubMed:23555547]
(77) Guerillot R et al (2013). Modular evolution of TnGBSs, a new family of integrative and conjugative elements associating insertion sequence transposition, plasmid replication, and conjugation for their spreading. J Bacteriol. 195(9):1979-90. [PubMed:23435978]
(78) Lautner M et al (2013). Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila. J Bacteriol. 195(7):1583-97. [PubMed:23354744]
(79) Puymege A et al (2013). Conjugative transfer and cis-mobilization of a genomic island by an integrative and conjugative element of Streptococcus agalactiae. J Bacteriol. 195(6):1142-51. [PubMed:23275243]
(80) Bustamante P et al (2012). ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans. J Mol Microbiol Biotechnol. 22(6):399-407. [PubMed:23486178]
(81) Chuzeville S et al (2012). Characterization of a New CAMP Factor Carried by an Integrative and Conjugative Element in Streptococcus agalactiae and Spreading in Streptococci. PLoS One. 7(11):e48918. [PubMed:23152820]
(82) Ramsay JP et al (2012). A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator. Mol Microbiol. . [PubMed:23106190]
(83) Boyd DA et al (2012). The VanE operon in Enterococcus faecalis N00-410 is found on a putative integrative and conjugative element, Tn6202. J Antimicrob Chemother. . [PubMed:23034711]
(84) Tse H et al (2012). Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis. 206(3):341-51. [PubMed:22615319]
(85) Shepard SM et al (2012). Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli. J Bacteriol. 194(2):395-405. [PubMed:22081385]
(86) Giovanetti E et al (2012). ICESp2905, the erm(TR)-tet(O) element of Streptococcus pyogenes, is formed by two independent integrative and conjugative elements. Antimicrob Agents Chemother. 56(1):591-4. [PubMed:21986826]
(87) Palmieri C et al (2011). Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front Microbiol. 0.246527778. [PubMed:22275909]
(88) Ghinet MG et al (2011). Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS One. 6(11):e27846. [PubMed:22114709]
(89) Godfrey SA, Lovell HC, Mansfield JW, Corry DS, Jackson RW, Arnold DL (2011). The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola. PLoS Pathog. 7(3):e1002010. [PubMed:21483484]
(90) Zhang J et al (2011). Expansion of the known Klebsiella pneumoniae species gene pool by characterization of novel alien DNA islands integrated into tmRNA gene sites. J Microbiol Methods. 84(2):283-9. [PubMed:21182879]
(91) Machielsen R et al (2011). Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in Lactococcus lactis. Appl Environ Microbiol. 77(2):555-63. [PubMed:21115709]
(92) Liu G et al (2010). Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA. PLoS Genet. 6(12):e1001253. [PubMed:21203499]
(93) Roche D et al (2010). ICEEc2, a new integrative and conjugative element belonging to the pKLC102/PAGI-2 family, identified in Escherichia coli strain BEN374. J Bacteriol. 192(19):5026-36. [PubMed:20675467]
(94) Brouwer MS et al (2010). Characterization of the conjugative transposon Tn6000 from Enterococcus casseliflavus 664.1H1 (formerly Enterococcus faecium 664.1H1). FEMS Microbiol Lett. 309(1):71-6. [PubMed:20528943]
(95) Fischer W et al (2010). Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res. 38(18):6089-101. [PubMed:20478826]
(96) Rusniok C et al (2010). Genome sequence of Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. J Bacteriol. 192(8):2266-76. [PubMed:20139183]
(97) Rusniok C et al (2010). Genome sequence of Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. J Bacteriol. 192(8):2266-76. [PubMed:20139183]
(98) Nouvel LX et al (2010). Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity. BMC Genomics. 0.518055556. [PubMed:20122262]
(99) Bordeleau E et al (2010). Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol. 12(2):510-23. [PubMed:19888998]
(100) Putze J et al (2009). Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun. 77(11):4696-703. [PubMed:19720753]
(101) Flannery EL et al (2009). Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun. 77(11):4887-94. [PubMed:19687197]
(102) Holden MT et al (2009). Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog. 5(3):e1000346. [PubMed:19325880]
(103) Brochet M et al (2009). Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol Microbiol. 71(4):948-59. [PubMed:19183283]
(104) Mavrodi DV et al (2009). Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. 9:08. [PubMed:19144133]
(105) Heather Z et al (2008). A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol. 70(5):1274-92. [PubMed:18990191]
(106) Feizabadi MM et al (2008). Transposon Tn5281 is the main distributor of the aminoglycoside modifying enzyme gene among isolates of Enterococcus faecalis in Tehran hospitals. Can J Microbiol. 54(10):887-90. [PubMed:18923558]
(107) Brochet M et al (2008). Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J Bacteriol. 190(20):6913-7. [PubMed:18708498]
(108) Bourgogne A et al (2008). Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol. 9(7):R110. [PubMed:18611278]
(109) Naito M et al (2008). Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 15(4):215-25. [PubMed:18524787]
(110) te Poele EM et al (2008). Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek. 94(1):127-43. [PubMed:18523858]
(111) te Poele EM et al (2008). Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid. 59(3):202-16. [PubMed:18295883]
(112) Glockner G et al (2008). Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol. 298(5-6):411-28. [PubMed:17888731]
(113) Beres SB et al (2007). Contribution of exogenous genetic elements to the group A Streptococcus metagenome. PLoS One. 2(8):e800. [PubMed:17726530]
(114) Hecht DW et al (2007). Characterization of BctA, a mating apparatus protein required for transfer of the Bacteroides fragilis conjugal element BTF-37. Res Microbiol. 158(7):600-7. [PubMed:17720457]
(115) Song B et al (2007). Integration site selection by the Bacteroides conjugative transposon CTnBST. J Bacteriol. 189(18):6594-601. [PubMed:17616597]
(116) te Poele EM et al (2007). Prevalence and distribution of nucleotide sequences typical for pMEA-like accessory genetic elements in the genus Amycolatopsis. FEMS Microbiol Ecol. 61(2):285-94. [PubMed:17535299]
(117) Schlesinger DJ et al (2007). Possible origins of CTnBST, a conjugative transposon found recently in a human colonic Bacteroides strain. Appl Environ Microbiol. 73(13):4226-33. [PubMed:17483268]
(118) Oliynyk M et al (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol. 25(4):447-53. [PubMed:17369815]
(119) Rice LB et al (2007). Interaction of related Tn916-like transposons: analysis of excision events promoted by Tn916 and Tn5386 integrases. J Bacteriol. 189(10):3909-17. [PubMed:17322310]
(120) Belhocine K et al (2007). Conjugative transfer of the Lactococcus lactis sex factor and pRS01 plasmid to Enterococcus faecalis. FEMS Microbiol Lett. 269(2):289-94. [PubMed:17263841]
(121) Brenciani A et al (2007). Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother. 51(4):1209-16. [PubMed:17261630]
(122) Wesslund NA et al (2007). Integration and excision of a newly discovered bacteroides conjugative transposon, CTnBST. J Bacteriol. 189(3):1072-82. [PubMed:17122349]
(123) Nougayrede JP et al (2006). Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 313(5788):848-51. [PubMed:16902142]
(124) Roberts AP et al (2006). Characterization of the ends and target site of a novel tetracycline resistance-encoding conjugative transposon from Enterococcus faecium 664.1H1. J Bacteriol. 188(12):4356-61. [PubMed:16740942]
(125) Pitman AR, Jackson RW, Mansfield JW, Kaitell V, Thwaites R, Arnold DL (2005). Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Curr Biol. 15(24):2230-5. [PubMed:16360685]
(126) Rice LB et al (2005). Tn5386, a novel Tn916-like mobile element in Enterococcus faecium D344R that interacts with Tn916 to yield a large genomic deletion. J Bacteriol. 187(19):6668-77. [PubMed:16166528]
(127) Hosted TJ Jr et al (2005). Characterization of the Micromonospora rosaria pMR2 plasmid and development of a high G+C codon optimized integrase for site-specific integration. Plasmid. 54(3):249-58. [PubMed:16024079]
(128) Takeuchi K et al (2005). Drug resistance of Enterococcus faecium clinical isolates and the conjugative transfer of gentamicin and erythromycin resistance traits. FEMS Microbiol Lett. 243(2):347-54. [PubMed:15686834]
(129) Franco AA (2004). The Bacteroides fragilis pathogenicity island is contained in a putative novel conjugative transposon. J Bacteriol. 186(18):6077-92. [PubMed:15342577]
(130) Melville CM et al (2004). The Butyrivibrio fibrisolvens tet(W) gene is carried on the novel conjugative transposon TnB1230, which contains duplicated nitroreductase coding sequences. J Bacteriol. 186(11):3656-9. [PubMed:15150255]
(131) Gupta A et al (2003). A new Bacteroides conjugative transposon that carries an ermB gene. Appl Environ Microbiol. 69(11):6455-63. [PubMed:14602600]
(132) Wang Y et al (2003). A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in gram-positive bacteria. Appl Environ Microbiol. 69(8):4595-603. [PubMed:12902247]
(133) Dahl KH et al (2003). Transferable vanB2 Tn5382-containing elements in fecal streptococcal strains from veal calves. Antimicrob Agents Chemother. 47(8):2579-83. [PubMed:12878522]
(134) Brassinga AK et al (2003). A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol. 185(15):4630-7. [PubMed:12867476]
(135) Paulsen IT et al (2003). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science. 299(5615):2071-4. [PubMed:12663927]
(136) Possoz C et al (2003). Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor). Mol Microbiol. 47(5):1385-93. [PubMed:12603742]
(137) Ajdic D et al (2002). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 99(22):14434-9. [PubMed:12397186]
(138) Burrus V et al (2002). The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid. 48(2):77-97. [PubMed:12383726]
(139) Glaser P et al (2002). Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol. 45(6):1499-513. [PubMed:12354221]
(140) Glaser P et al (2002). Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol. 45(6):1499-513. [PubMed:12354221]
(141) Dimopoulou ID et al (2002). Site-specific recombination with the chromosomal tRNA(Leu) gene by the large conjugative Haemophilus resistance plasmid. Antimicrob Agents Chemother. 46(5):1602-3. [PubMed:11959612]
(142) Vedantam G et al (2002). Isolation and characterization of BTF-37: chromosomal DNA captured from Bacteroides fragilis that confers self-transferability and expresses a pilus-like structure in Bacteroides spp. and Escherichia coli. J Bacteriol. 184(3):728-38. [PubMed:11790742]
(143) Nishi A et al (2000). A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J Bacteriol. 182(7):1949-55. [PubMed:10715002]
(144) Chung WO et al (1999). Mobile elements carrying ermF and tetQ genes in gram-positive and gram-negative bacteria. J Antimicrob Chemother. 44(3):329-35. [PubMed:10511399]
(145) Sezonov G et al (1998). Replicase, excisionase, and integrase genes of the Streptomyces element pSAM2 constitute an operon positively regulated by the pra gene. J Bacteriol. 180(12):3056-61. [PubMed:9620953]
(146) Rice LB et al (1998). Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J Bacteriol. 180(3):714-21. [PubMed:9457879]
(147) Seoane A et al (1997). Targets for pSAM2 integrase-mediated site-specific integration in the Mycobacterium smegmatis chromosome. Microbiology. 143 ( Pt 10):3375-80. [PubMed:9353939]
(148) Hochhut B et al (1997). CTnscr94, a conjugative transposon found in enterobacteria. J Bacteriol. 179(7):2097-102. [PubMed:9079891]
(149) Cooper AJ et al (1996). The erythromycin resistance gene from the Bacteroides conjugal transposon Tcr Emr 7853 is nearly identical to ermG from Bacillus sphaericus. Antimicrob Agents Chemother. 40(2):506-8. [PubMed:8834912]
(150) Mills DA et al (1996). Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J Bacteriol. 178(12):3531-8. [PubMed:8655550]
(151) Vrijbloed JW et al (1995). Identification of the minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica. Mol Microbiol. 18(1):21-31. [PubMed:8596458]
(152) De Vos WM et al (1995). Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276. Dev Biol Stand. 85:617-25. [PubMed:8586240]
(153) Broadbent JR et al (1995). Characteristics of Tn5307 exchange and intergeneric transfer of genes associated with nisin production. Appl Microbiol Biotechnol. 44(1-2):139-46. [PubMed:8579827]
(154) Vrijbloed JW et al (1995). Transformation of the methylotrophic actinomycete Amycolatopis methanolica with plasmid DNA: stimulatory effect of a pMEA300-encoded gene. Plasmid. 34(2):96-104. [PubMed:8559807]
(155) Sezonov G et al (1995). Characterization of pra, a gene for replication control in pSAM2, the integrating element of Streptomyces ambofaciens. Mol Microbiol. 17(3):533-44. [PubMed:8559072]
(156) Rauch PJ et al (1994). Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol. 176(8):2165-71. [PubMed:8157585]
(157) Hagege J et al (1994). Identification of a gene encoding the replication initiator protein of the Streptomyces integrating element, pSAM2. Plasmid. 31(2):166-83. [PubMed:8029324]
(158) Vrijbloed JW et al (1994). A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. J Bacteriol. 176(22):7087-90. [PubMed:7961475]
(159) Nikolich MP et al (1994). Characterization of a new type of Bacteroides conjugative transposon, Tcr Emr 7853. J Bacteriol. 176(21):6606-12. [PubMed:7961412]
(160) Mills DA et al (1994). Genetic analysis of regions of the Lactococcus lactis subsp. lactis plasmid pRS01 involved in conjugative transfer. Appl Environ Microbiol. 60(12):4413-20. [PubMed:7811081]
(161) Brasch MA et al (1993). Localization and nucleotide sequences of genes mediating site-specific recombination of the SLP1 element in Streptomyces lividans. J Bacteriol. 175(10):3067-74. [PubMed:8387993]
(162) Hagege J et al (1993). Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J Bacteriol. 175(17):5529-38. [PubMed:8366038]
(163) Hagege J et al (1993). Mode and origin of replication of pSAM2, a conjugative integrating element of Streptomyces ambofaciens. Mol Microbiol. 10(4):799-812. [PubMed:7934842]
(164) Vogtli M et al (1992). The chromosomal integration site for the Streptomyces plasmid SLP1 is a functional tRNA(Tyr) gene essential for cell viability. Mol Microbiol. 6(20):3041-50. [PubMed:1479893]
(165) Bar-Nir D et al (1992). tDNA(ser) sequences are involved in the excision of Streptomyces griseus plasmid pSG1. Gene. 122(1):71-6. [PubMed:1452039]
(166) Rauch PJ et al (1992). Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol. 174(4):1280-7. [PubMed:1310502]
(167) Katz L et al (1991). Site-specific recombination in Escherichia coli between the att sites of plasmid pSE211 from Saccharopolyspora erythraea. Mol Gen Genet. 227(1):155-9. [PubMed:2046656]
(168) Horn N et al (1991). Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet. 228(1-2):129-35. [PubMed:1679523]
(169) Brown DP et al (1990). Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. 172(4):1877-88. [PubMed:2180909]
(170) Halula M et al (1990). Tn5030: a conjugative transposon conferring clindamycin resistance in Bacteroides species. Rev Infect Dis. 12 Suppl 2:S235-42. [PubMed:2154843]
(171) Sosio M et al (1989). Excision of pIJ408 from the chromosome of Streptomyces glaucescens and its transfer into Streptomyces lividans. Mol Gen Genet. 218(1):169-76. [PubMed:2779515]
(172) Boccard F et al (1989). The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J. 8(3):973-80. [PubMed:2721504]
(173) Boccard F et al (1989). Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces. Plasmid. 21(1):59-70. [PubMed:2657820]
(174) Kuhstoss S et al (1989). Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2. J Bacteriol. 171(1):16-23. [PubMed:2536654]
(175) Lee SC et al (1988). Analysis of recombination occurring at SLP1 att sites. J Bacteriol. 170(12):5806-13. [PubMed:3056916]
(176) Madon J et al (1987). Site-specific integration and excision of pMEA100 in Nocardia mediterranei. Mol Gen Genet. 209(2):257-64. [PubMed:2823074]
(177) Miyoshi YK et al (1986). Multicopy derivative of pock-forming plasmid pSA1 in Streptomyces azureus. J Bacteriol. 168(1):452-4. [PubMed:3759910]
(178) Moretti P et al (1985). Isolation and characterization of an extrachromosomal element from Nocardia mediterranei. Plasmid. 14(2):126-33. [PubMed:2999850]
(179) Cohen A et al (1985). The integrated and free states of Streptomyces griseus plasmid pSG1. Plasmid. 13(1):41-50. [PubMed:2986187]
(180) Pernodet JL et al (1984). Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2. Mol Gen Genet. 198(1):35-41. [PubMed:6596483]
(181) Hopwood DA et al (1984). Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans. Plasmid. 11(1):1-16. [PubMed:6369354]
(182) Omer CA et al (1984). Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site. Mol Gen Genet. 196(3):429-38. [PubMed:6094971]
(183) Bibb MJ et al (1981). Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet. 184(2):230-40. [PubMed:6948998]