Browse by ICE    |    Browse by Organism   |    Browse by ICE family
ICE family: Tn916
The Tn916 family was defined by Roberts et al (2009). Elements belonging to the Tn916 family are defined by the following criteria: they must have the general organization shown in the following figure based on the figure from Roberts et al, and they must have a core region (conjugation and regulation module) that is similar in sequence and structure to the original Tn916 at the DNA level. Exceptions are some conjugative transposons, such as Tn1549 which have been previously classified in this family and those with a high degree of protein similarity as described in corresponding references.

#IDICE nameStrainReplicon
145 experimental Tn916Enterococcus faecalis DS16-
247 experimental Tn5251 (part of Tn5253)Streptococcus pneumoniae DP1322-
362 experimental CTn6002Streptococcus cristatus-
481 in_silico ICESpnMalM6Streptococcus pneumoniae Mal M6-
582 in_silico ICESpnH034800032Streptococcus pneumoniae H034800032-
683 in_silico ICESpn23771Streptococcus pneumoniae 23771-
785 in_silico ICESpn11930-2Streptococcus pneumoniae 11930-
886 in_silico ICESpn11928Streptococcus pneumoniae 11928-
987 in_silico ICESpn9409Streptococcus pneumoniae 9409-
1091 experimental Tn1545Streptococcus pneumoniae BM4200-
1199 experimental Tn5381Enterococcus faecalis CH19-
12100 experimental Tn5383Enterococcus faecalis CH116-
13103 experimental Tn5397Clostridium difficile 630NC_009089
14104 experimental Tn6009Klebsiella pneumoniae 41-
15105 experimental Tn916SStreptococcus intermedius 15.3T.2-
16106 experimental Tn919Streptococcus sanguinis FC1-
17125 experimental CW459tet(M)Clostridium perfringens CW459-
18243 experimental ICELlapAA211Lactococcus lactis subsp. lactis plasmid pAA211-
19244 experimental ICELlapAA291Lactococcus lactis subsp. lactis plasmid pAA291-
20245 experimental ICESau8797Staphylococcus aureus 8797-
21246 experimental ICESau21995Staphylococcus aureus 21995-
22247 experimental ICESau35366Staphylococcus aureus 35366-
23248 experimental ICESau7413093Staphylococcus aureus 7413093-4-
24249 experimental ICESau7512166Staphylococcus aureus 7512166-1-
25250 experimental ICESau7312330Staphylococcus aureus 7312330-1-
26251 experimental ICESau9877324Staphylococcus aureus 9877324-3_H39-
27252 experimental ICESau35679Staphylococcus aureus 35679-
28253 experimental ICESau7412791Staphylococcus aureus 7412791-1-
29254 experimental ICESau7215311Staphylococcus aureus 7215311-1-
30255 experimental ICESauSW356Staphylococcus aureus SW356-
31256 experimental ICESau7711730Staphylococcus aureus 7711730-1-
32257 experimental ICESau7413714Staphylococcus aureus 7413714-1-
33258 experimental ICESau7512986Staphylococcus aureus 7512986-1-
34259 experimental ICESau7612628Staphylococcus aureus 7612628-4-
35260 experimental ICESau35414Staphylococcus aureus 35414-
36261 experimental ICESau1591Staphylococcus aureus 1591-
37262 experimental ICESauST398Staphylococcus aureus MRSA_ST398_9b-
38263 experimental ICESau34801Staphylococcus aureus 34801-
39264 experimental ICESau617Staphylococcus aureus 617-
40265 experimental ICESau5377Staphylococcus aureus 5377-
41266 experimental ICESauUSA42Staphylococcus aureus USA42-
42267 experimental ICESau7611280Staphylococcus aureus 7611280-5-
43268 experimental ICESau7215190Staphylococcus aureus 7215190-1-
44269 experimental ICESau22034Staphylococcus aureus 22034-
45270 experimental ICESau5331Staphylococcus aureus 5331-
46271 experimental ICESau4865Staphylococcus aureus 4865-
47272 experimental ICESau4520Staphylococcus aureus 4520-
48303 experimental Tn916(pAM120)Cloning vector pAM120U49939
49304 in_silico ICESga43143-1Streptococcus gallolyticus subsp. gallolyticus ATCC 43143AP012053
50305 in_silico ICESauST398-1Staphylococcus aureus subsp. aureus ST398AM990992
51306 experimental Tn925Enterococcus faecalis plasmid pCF10NC_006827
52307 experimental Tn916(RST11)Staphylococcus rostri RST11-
53308 experimental ICESpaNUF1049Streptococcus parauberis NUF1049-
54309 in_silico ICESag2603VR-1Streptococcus agalactiae 2603V/RNC_004116
55310 in_silico ICESpsHKU1003-1Staphylococcus pseudintermedius HKU10-03NC_014925
56312 in_silico ICECloUPII95-1Clostridiales genomosp. BVAB3 str. UPII9-5NC_013895
57314 in_silico ICECdiM68-1Clostridium difficile M68FN668375
58315 in_silico ICESorUo5-1Streptococcus oralis Uo5NC_015291
59316 in_silico ICESpnCGSP14-1Streptococcus pneumoniae CGSP14NC_010582
60318 experimental Tn6085bEnterococcus faecium C68-
61319 experimental Tn6085aEnterococcus faecium C68-
62320 in_silico ICESpnTw19F14-1Streptococcus pneumoniae Taiwan19F-14NC_012469
63321 experimental Tn6003Streptococcus pneumoniae Ar4-
64323 in_silico ICECdiM120-1Clostridium difficile M120FN665653
65324 in_silico ICESpnTCH8341-1Streptococcus pneumoniae TCH8431/19ANC_014251
66325 experimental Tn2010Streptococcus pneumoniae 05P294-
67326 experimental Tn6087Streptococcus oralis F.MI.5-
68327 in_silico ICEFal35896-1Filifactor alocis ATCC 35896CP002390
69328 experimental Tn6084Enterococcus faecium C68-
70329 Tn6079Uncultured bacterium MID12-
71330 experimental Tn3872Streptococcus pyogenes C-105-
72331 in_silico ICESpnH19A6-1Streptococcus pneumoniae Hungary19A-6NC_010380
73383 experimental ICEEfa9830414Enterococcus faecium 9830414-1-
74398 in_silico CTn1Clostridium difficile 630NC_009089
75400 in_silico CTn4Clostridium difficile 630NC_009089
76402 in_silico CTn6Clostridium difficile 630NC_009089
77403 in_silico CTn7Clostridium difficile 630NC_009089
78770 in_silico ICECp1Clostridium perfringens JIR12708
79771 in_silico ICEEfm1Enterococcus faecium-
80842 in_silico ICESz1Streptococcus equi subsp. Zooepidemicus H70
81856 in_silico Tn3702Enterococcus faecalis-
82857 experimental Tn5031Enterococcus faecium-
83858 experimental Tn5032Enterococcus faecium-
84859 experimental Tn5033Enterococcus faecium-
85860 experimental Tn6194 [CTnCD11]Clostridium difficile 2007855-
86862 experimental Tn6198Listeria monocytogenes TTH-2007-
87865 in_silico Tn6263Streptococcus gallolyticus NTS31106099-
88866 in_silico Tn6331Streptococcus gallolyticus NTS31301958-
89869 in_silico Tn918Enterococcus faecalis-
90870 in_silico Tn920Enterococcus faecalis-
experimental Data derived from experimental literature
in_silico Putative ICEs predicted by bioinformatic methods
(1) Kambarev S et al. (2017). Draft Genome Sequences of Two Highly Erythromycin-Resistant Streptococcus gallolyticus subsp. gallolyticus Isolates Containing a Novel Tn916-Like Element, Tn6331. Genome Announc. 5(16). [PudMed:28428309] in_silico
(2) Han X et al. (2015). Functional analysis of a bacitracin resistance determinant located on ICECp1, a novel Tn916-like element from a conjugative plasmid in Clostridium perfringens. Antimicrob Agents Chemother. 59(11):6855-65. [PudMed:26282424] experimental in_silico
(3) Chancey ST et al. (2015). Composite mobile genetic elements disseminating macrolide resistance in Streptococcus pneumoniae. Front Microbiol. 6:26. [PudMed:25709602] in_silico
(4) Wasels F et al. (2014). Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB. Microb Drug Resist. 20(6):555-60. [PudMed:25055190]
(5) Wasels F et al. (2013). Clostridium difficile erm(B)-containing elements and the burden on the in vitro fitness. J Med Microbiol. 62(Pt 9):1461-7. [PudMed:23741023]
(6) Bertsch D et al. (2013). Tn6198, a novel transposon containing the trimethoprim resistance gene dfrG embedded into a Tn916 element in Listeria monocytogenes. J Antimicrob Chemother. 68(5):986-91. [PudMed:23344576]
(7) He M et al. (2013). Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 45(1):109-13. [PudMed:23222960]
(8) Palmieri C et al. (2011). Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front Microbiol. 0.246527778. [PudMed:22275909]
(9) Ciric L, Mullany P, Roberts AP (2011). Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087. J Antimicrob Chemother. 66(10):2235-9. [PudMed:21816764] experimental
(10) Lin IH et al. (2011). Sequencing and comparative genome analysis of two pathogenic Streptococcus gallolyticus subspecies: genome plasticity, adaptation and virulence. PLoS One. 6(5):e20519. [PudMed:21633709]
(11) Croucher NJ et al. (2011). Rapid pneumococcal evolution in response to clinical interventions. Science. 331(6016):430-4. [PudMed:21273480] experimental
(12) Cookson AL et al. (2011). Transposition of Tn916 in the four replicons of the Butyrivibrio proteoclasticus B316(T) genome. FEMS Microbiol Lett. 316(2):144-51. [PudMed:21204937] experimental
(13) Top J et al. (2011). The recombinase IntA is required for excision of esp-containing ICEEfm1 in Enterococcus faecium. J Bacteriol. 193(4):1003-6. [PudMed:21148730]
(14) Li Y et al. (2011). Molecular characterization of erm(B)- and mef(E)-mediated erythromycin-resistant Streptococcus pneumoniae in China and complete DNA sequence of Tn2010. J Appl Microbiol. 110(1):254-65. [PudMed:20961364] experimental
(15) Haenni M et al. (2010). Diversity and mobility of integrative and conjugative elements in bovine isolates of Streptococcus agalactiae, S. dysgalactiae subsp. dysgalactiae, and S. uberis. Appl Environ Microbiol. 76(24):7957-65. [PudMed:20952646] experimental
(16) Foucault ML et al. (2010). Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc Natl Acad Sci U S A. 107(39):16964-9. [PudMed:20833818] experimental
(17) Jasni AS et al. (2010). Demonstration of conjugative transposon (Tn5397)-mediated horizontal gene transfer between Clostridium difficile and Enterococcus faecalis. Antimicrob Agents Chemother. 54(11):4924-6. [PudMed:20713671] experimental
(18) Rice LB et al. (2010). Multiple copies of functional, Tet(M)-encoding Tn916-like elements in a clinical Enterococcus faecium isolate. Plasmid. 64(3):150-5. [PudMed:20600284] experimental
(19) Schijffelen MJ et al. (2010). Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genomics. 0.719444444. [PudMed:20546576]
(20) Santoro F et al. (2010). Nucleotide sequence and functional analysis of the tet (M)-carrying conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMS Microbiol Lett. 308(2):150-8. [PudMed:20487027] experimental
(21) Stegmann R, Perreten V (2010). Antibiotic resistance profile of Staphylococcus rostri, a new species isolated from healthy pigs. Vet Microbiol. 145(1-2). [PudMed:20399039] experimental
(22) van Schaik W et al. (2010). Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics. 0.624305556. [PudMed:20398277]
(23) He M et al. (2010). Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A. 107(16):7527-32. [PudMed:20368420]
(24) Hannan S et al. (2010). Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. FEMS Immunol Med Microbiol. 59(3):345-9. [PudMed:20337719] experimental
(25) Tsvetkova K et al. (2010). Analysis of the mobilization functions of the vancomycin resistance transposon Tn1549, a member of a new family of conjugative elements. J Bacteriol. 192(3):702-13. [PudMed:19966009] experimental
(26) Boguslawska J et al. (2009). Intra- and interspecies conjugal transfer of Tn916-like elements from Lactococcus lactis in vitro and in vivo. Appl Environ Microbiol. 75(19):6352-60. [PudMed:19666731] experimental
(27) de Vries LE et al. (2009). Diversity of the tetracycline resistance gene tet(M) and identification of Tn916- and Tn5801-like (Tn6014) transposons in Staphylococcus aureus from humans and animals. J Antimicrob Chemother. 64(3):490-500. [PudMed:19531603] experimental
(28) Devirgiliis C et al. (2009). Characterization of the Tn916 conjugative transposon in a food-borne strain of Lactobacillus paracasei. Appl Environ Microbiol. 75(12):3866-71. [PudMed:19395574] experimental
(29) Ding F et al. (2009). Genome evolution driven by host adaptations results in a more virulent and antimicrobial-resistant Streptococcus pneumoniae serotype 14. BMC Genomics. 0.526388889. [PudMed:19361343]
(30) Meng F et al. (2009). Structural characterization of Tn916-like element in Streptococcus parauberis serotype II strains isolated from diseased Japanese flounder. Lett Appl Microbiol. 48(6):770-6. [PudMed:19344360] experimental
(31) Holden MT et al. (2009). Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog. 5(3):e1000346. [PudMed:19325880]
(32) Serfiotis-Mitsa D et al. (2008). The Orf18 gene product from conjugative transposon Tn916 is an ArdA antirestriction protein that inhibits type I DNA restriction-modification systems. J Mol Biol. 383(5):970-81. [PudMed:18838147] experimental
(33) Soge OO et al. (2008). A novel transposon, Tn6009, composed of a Tn916 element linked with a Staphylococcus aureus mer operon. J Antimicrob Chemother. 62(4):674-80. [PudMed:18583328] experimental
(34) Shen X et al. (2008). Macrolide-resistance mechanisms in Streptococcus pneumoniae isolates from Chinese children in association with genes of tetM and integrase of conjugative transposons 1545. Microb Drug Resist. 14(2):155-61. [PudMed:18479199] experimental
(35) Ye C et al. (2008). Spread of Streptococcus suis sequence type 7, China. Emerg Infect Dis. 14(5):787-91. [PudMed:18439362] experimental
(36) Florez AB et al. (2008). Identification of tet(M) in two Lactococcus lactis strains isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of tetracycline resistance to lactococci and enterococci. Int J Food Microbiol. 121(2):189-94. [PudMed:18068255] experimental
(37) Warburton PJ et al. (2007). Demonstration of in vivo transfer of doxycycline resistance mediated by a novel transposon. J Antimicrob Chemother. 60(5):973-80. [PudMed:17855723] experimental
(38) Rossi-Fedele G et al. (2007). A preliminary study investigating the survival of tetracycline resistant Enterococcus faecalis after root canal irrigation with high concentrations of tetracycline. Int Endod J. 40(10):772-7. [PudMed:17697106] experimental
(39) Cochetti I et al. (2007). New Tn916-related elements causing erm(B)-mediated erythromycin resistance in tetracycline-susceptible pneumococci. J Antimicrob Chemother. 60(1):127-31. [PudMed:17483548] experimental
(40) Chen C et al. (2007). A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One. 2(3):e315. [PudMed:17375201]
(41) Rice LB et al. (2007). Interaction of related Tn916-like transposons: analysis of excision events promoted by Tn916 and Tn5386 integrases. J Bacteriol. 189(10):3909-17. [PudMed:17322310] experimental
(42) Brenciani A et al. (2007). Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother. 51(4):1209-16. [PudMed:17261630] experimental
(43) Rossi-Fedele G et al. (2006). Incidence and behaviour of Tn916-like elements within tetracycline-resistant bacteria isolated from root canals. Oral Microbiol Immunol. 21(4):218-22. [PudMed:16842505] experimental
(44) Sebaihia M et al. (2006). The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet. 38(7):779-86. [PudMed:16804543]
(45) Wang H et al. (2006). The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site. J Bacteriol. 188(13):4871-8. [PudMed:16788196] experimental
(46) Agerso Y et al. (2006). Identification of Tn5397-like and Tn916-like transposons and diversity of the tetracycline resistance gene tet(M) in enterococci from humans, pigs and poultry. J Antimicrob Chemother. 57(5):832-9. [PudMed:16565159] experimental
(47) Rocco JM et al. (2006). The integrase of the conjugative transposon Tn916 directs strand- and sequence-specific cleavage of the origin of conjugal transfer, oriT, by the endonuclease Orf20. J Bacteriol. 188(6):2207-13. [PudMed:16513750] experimental
(48) Abbani M et al. (2005). The structure of the excisionase (Xis) protein from conjugative transposon Tn916 provides insights into the regulation of heterobivalent tyrosine recombinases. J Mol Biol. 347(1):11-25. [PudMed:15733914] experimental
(49) Hussain HA et al. (2005). Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites. J Med Microbiol. 54(Pt 2):137-41. [PudMed:15673506] experimental
(50) Hirt H et al. (2005). Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. J Bacteriol. 187(3):1044-54. [PudMed:15659682] experimental
(51) Lancaster H et al. (2004). Characterization of Tn916S, a Tn916-like element containing the tetracycline resistance determinant tet(S). J Bacteriol. 186(13):4395-8. [PudMed:15205444] experimental
(52) Gorfe AA et al. (2004). The role of flexibility and hydration on the sequence-specific DNA recognition by the Tn916 integrase protein: a molecular dynamics analysis. J Mol Recognit. 17(2):120-31. [PudMed:15027032] experimental
(53) Huys G et al. (2004). Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol. 70(3):1555-62. [PudMed:15006778] experimental
(54) Bahl MI et al. (2004). Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl Environ Microbiol. 70(2):758-64. [PudMed:14766552] experimental
(55) Leavis H et al. (2004). A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J Bacteriol. 186(3):672-82. [PudMed:14729692]
(56) Roberts AP et al. (2003). Development of an integrative vector for the expression of antisense RNA in Clostridium difficile. J Microbiol Methods. 55(3):617-24. [PudMed:14607405] experimental
(57) Taraskina AE et al. (2002). Drift of tetM determinant in urogenital microbiocenosis containing mycoplasmas during treatment with a tetracycline antibiotic. Bull Exp Biol Med. 134(1):60-3. [PudMed:12459871] experimental
(58) Burrus V et al. (2002). The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid. 48(2):77-97. [PudMed:12383726] experimental in_silico
(59) Tettelin H et al. (2002). Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U S A. 99(19):12391-6. [PudMed:12200547]
(60) Connolly KM et al. (2002). Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J Bacteriol. 184(8):2088-99. [PudMed:11914339] experimental
(61) Hinerfeld D et al. (2001). Xis protein of the conjugative transposon Tn916 plays dual opposing roles in transposon excision. Mol Microbiol. 41(6):1459-67. [PudMed:11580848] experimental
(62) Roberts AP et al. (2001). Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology. 147(Pt 5):1243-51. [PudMed:11320127] experimental
(63) Hinerfeld D et al. (2001). Specific binding of integrase to the origin of transfer (oriT) of the conjugative transposon Tn916. J Bacteriol. 183(9):2947-51. [PudMed:11292817] experimental
(64) Seral C et al. (2000). [Presence of conjugative transposon Tn1545 in strains of Streptococcus pneumoniae with mef(A), erm(B), tet(M), catpC194 and aph3'-III genes]. Enferm Infecc Microbiol Clin. 18(10):506-11. [PudMed:11198001] experimental
(65) Wang H et al. (2000). The large resolvase TndX is required and sufficient for integration and excision of derivatives of the novel conjugative transposon Tn5397. J Bacteriol. 182(23):6577-83. [PudMed:11073898] experimental
(66) Wang H et al. (2000). DNA sequence of the insertional hot spot of Tn916 in the Clostridium difficile genome and discovery of a Tn916-like element in an environmental isolate integrated in the same hot spot. FEMS Microbiol Lett. 192(1):15-20. [PudMed:11040422] experimental
(67) Wang H et al. (2000). Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX. J Bacteriol. 182(13):3775-83. [PudMed:10850994] experimental
(68) Garnier F et al. (2000). Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology. 146 ( Pt 6):1481-9. [PudMed:10846226] experimental
(69) Pethel B et al. (2000). Coupling sequences flanking Tn916 do not determine the affinity of binding of integrase to the transposon ends and adjacent bacterial DNA. Plasmid. 43(2):123-9. [PudMed:10686130] experimental
(70) Smidt H et al. (1999). Random transposition by Tn916 in Desulfitobacterium dehalogenans allows for isolation and characterization of halorespiration-deficient mutants. J Bacteriol. 181(22):6882-8. [PudMed:10559152] experimental
(71) Jia Y et al. (1999). Interactions of the integrase protein of the conjugative transposon Tn916 with its specific DNA binding sites. J Bacteriol. 181(19):6114-23. [PudMed:10498726] experimental
(72) Roberts AP et al. (1999). Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett. 177(1):63-6. [PudMed:10436923] experimental
(73) Waters VL (1999). Conjugative transfer in the dissemination of beta-lactam and aminoglycoside resistance. Front Biosci. 4:D433-56. [PudMed:10228095] experimental
(74) Marra D et al. (1999). Excision of the conjugative transposon Tn916 in Lactococcus lactis. Appl Environ Microbiol. 65(5):2230-1. [PudMed:10224024] experimental
(75) O'Keeffe T et al. (1999). In situ inversion of the conjugative transposon Tn916 in Enterococcus faecium DPC3675. FEMS Microbiol Lett. 173(1):265-71. [PudMed:10220904] experimental
(76) Wojciak JM et al. (1999). NMR structure of the Tn916 integrase-DNA complex. Nat Struct Biol. 6(4):366-73. [PudMed:10201406] experimental
(77) Marra D et al. (1999). Regulation of excision of the conjugative transposon Tn916. Mol Microbiol. 31(2):609-21. [PudMed:10027977] experimental
(78) McDougal LK et al. (1998). Detection of Tn917-like sequences within a Tn916-like conjugative transposon (Tn3872) in erythromycin-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 42(9):2312-8. [PudMed:9736555] experimental
(79) Nelson KE et al. (1997). Tn916 transposition in Haemophilus influenzae Rd: preferential insertion into noncoding DNA. Microb Comp Genomics. 2(4):313-21. [PudMed:9689229] experimental
(80) Connolly KM et al. (1998). Site-specific DNA binding using a variation of the double stranded RNA binding motif. Nat Struct Biol. 5(7):546-50. [PudMed:9665166] experimental
(81) Celli J et al. (1998). Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol Microbiol. 28(1):103-17. [PudMed:9593300] experimental
(82) Manganelli R et al. (1997). The joint of Tn916 circular intermediates is a homoduplex in Enterococcus faecalis. Plasmid. 38(2):71-8. [PudMed:9339464] experimental
(83) Rudy C et al. (1997). Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res. 25(20):4061-6. [PudMed:9321658] experimental
(84) Celli J et al. (1997). Use of an excision reporter plasmid to study the intracellular mobility of the conjugative transposon Tn916 in gram-positive bacteria. Microbiology. 143 ( Pt 4):1253-61. [PudMed:9141688] experimental
(85) Rudy CK et al. (1997). DNA binding by the Xis protein of the conjugative transposon Tn916. J Bacteriol. 179(8):2567-72. [PudMed:9098054] experimental
(86) Taylor KL et al. (1997). Specific DNA cleavage mediated by the integrase of conjugative transposon Tn916. J Bacteriol. 179(4):1117-25. [PudMed:9023193] experimental
(87) Jaworski DD et al. (1996). Analyses of traA, int-Tn, and xis-Tn mutations in the conjugative transposon Tn916 in Enterococcus faecalis. Plasmid. 36(3):201-8. [PudMed:9007015] experimental
(88) Mullany P et al. (1996). A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene. 174(1):145-50. [PudMed:8863741] experimental
(89) Manganelli R et al. (1996). Conjugative transposon Tn916: evidence for excision with formation of 5'-protruding termini. J Bacteriol. 178(19):5813-6. [PudMed:8824634] experimental
(90) Showsh SA et al. (1996). Functional comparison of conjugative transposons Tn916 and Tn925. Plasmid. 35(3):164-73. [PudMed:8812783] experimental
(91) Hedberg PJ et al. (1996). Identification and characterization of the genes of Enterococcus faecalis plasmid pCF10 involved in replication and in negative control of pheromone-inducible conjugation. Plasmid. 35(1):46-57. [PudMed:8693026] experimental
(92) Provvedi R et al. (1996). Characterization of conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMS Microbiol Lett. 135(2-3):231-6. [PudMed:8595862] experimental
(93) Clewell DB et al. (1995). The conjugative transposon Tn916 of Enterococcus faecalis: structural analysis and some key factors involved in movement. Dev Biol Stand. 85:11-7. [PudMed:8586160] experimental
(94) Ruhfel RE et al. (1993). Cloning and characterization of a region of the Enterococcus faecalis conjugative plasmid, pCF10, encoding a sex pheromone-binding function. J Bacteriol. 175(16):5253-9. [PudMed:8349565] experimental
(95) Su YA et al. (1993). Characterization of the left 4 kb of conjugative transposon Tn916: determinants involved in excision. Plasmid. 30(3):234-50. [PudMed:8302931] experimental
(96) Jaworski DD et al. (1994). Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J Bacteriol. 176(11):3328-35. [PudMed:8195088] experimental
(97) Lu F et al. (1994). Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 13(7):1541-8. [PudMed:8156992] experimental
(98) Flannagan SE et al. (1994). Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid. 32(3):350-4. [PudMed:7899523] experimental
(99) Mullany P et al. (1995). Transfer of macrolide-lincosamide-streptogramin B (MLS) resistance in Clostridium difficile is linked to a gene homologous with toxin A and is mediated by a conjugative transposon, Tn5398. J Antimicrob Chemother. 35(2):305-15. [PudMed:7759394] experimental
(100) Lu F et al. (1995). Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J Bacteriol. 177(8):1938-46. [PudMed:7721684] experimental
(101) Jaworski DD et al. (1995). A functional origin of transfer (oriT) on the conjugative transposon Tn916. J Bacteriol. 177(22):6644-51. [PudMed:7592445] experimental
(102) Nakayama J et al. (1994). The prgQ gene of the Enterococcus faecalis tetracycline resistance plasmid pCF10 encodes a peptide inhibitor, iCF10. J Bacteriol. 176(23):7405-8. [PudMed:7545961] experimental
(103) Manganelli R et al. (1995). Dosage of Tn916 circular intermediates in Enterococcus faecalis. Plasmid. 34(1):48-57. [PudMed:7480170] experimental
(104) Gawron-Burke C et al. (1984). Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria. J Bacteriol. 159(1):214-21. [PudMed:6330031] experimental
(105) Hartley DL et al. (1984). Disseminated tetracycline resistance in oral streptococci: implication of a conjugative transposon. Infect Immun. 45(1):13-7. [PudMed:6329954] experimental
(106) Franke AE et al. (1981). Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of "conjugal" transfer in the absence of a conjugative plasmid. J Bacteriol. 145(1):494-502. [PudMed:6257641] experimental
(107) Murray BE et al. (1988). Plasmids and pheromone response of the beta-lactamase producer Streptococcus (Enterococcus) faecalis HH22. Antimicrob Agents Chemother. 32(4):547-51. [PudMed:3132094]
(108) Christie PJ et al. (1987). Two conjugation systems associated with Streptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis. J Bacteriol. 169(6):2529-36. [PudMed:3034859] experimental
(109) Fitzgerald GF et al. (1985). A conjugative transposon (Tn919) in Streptococcus sanguis. Infect Immun. 47(2):415-20. [PudMed:2981772] experimental
(110) Hill C et al. (1988). Cloning and characterization of the tetracycline resistance determinant of and several promoters from within the conjugative transposon Tn919. Appl Environ Microbiol. 54(5):1230-6. [PudMed:2839111] experimental
(111) Scott JR et al. (1988). An intermediate in transposition of the conjugative transposon Tn916. Proc Natl Acad Sci U S A. 85(13):4809-13. [PudMed:2838847] experimental
(112) Clewell DB et al. (1988). Sequence analysis of termini of conjugative transposon Tn916. J Bacteriol. 170(7):3046-52. [PudMed:2838457] experimental
(113) Senghas E et al. (1988). Genetic organization of the bacterial conjugative transposon Tn916. J Bacteriol. 170(1):245-9. [PudMed:2826394] experimental
(114) Woolley RC et al. (1989). Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum. Plasmid. 22(2):169-74. [PudMed:2560219] experimental
(115) Fletcher HM et al. (1989). Transposon-916-like elements in clinical isolates of Enterococcus faecium. J Gen Microbiol. 135(11):3067-77. [PudMed:2559146] experimental
(116) Caparon MG et al. (1989). Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell. 59(6):1027-34. [PudMed:2557157] experimental
(117) Poyart-Salmeron C et al. (1989). Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J. 8(8):2425-33. [PudMed:2551683] experimental
(118) Horaud T et al. (1990). Tn3702, a conjugative transposon in Enterococcus faecalis. FEMS Microbiol Lett. 60(1-2):189-94. [PudMed:2178139] experimental
(119) Kathariou S et al. (1990). Transposition of Tn916 to different sites in the chromosome of Neisseria meningitidis: a genetic tool for meningococcal mutagenesis. Mol Microbiol. 4(5):729-35. [PudMed:2167422] experimental
(120) Trieu-Cuot P et al. (1990). Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545. Nucleic Acids Res. 18(12):3660. [PudMed:2163525] experimental
(121) Poyart-Salmeron C et al. (1990). The integration-excision system of the conjugative transposon Tn 1545 is structurally and functionally related to those of lambdoid phages. Mol Microbiol. 4(9):1513-21. [PudMed:1962839] experimental
(122) Kao SM et al. (1991). Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J Bacteriol. 173(23):7650-64. [PudMed:1938961] experimental
(123) Torres OR et al. (1991). The conjugative transposon Tn925: enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis. Mol Gen Genet. 225(3):395-400. [PudMed:1850085] experimental
(124) Doucet-Populaire F et al. (1991). Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother. 35(1):185-7. [PudMed:1849709] experimental
(125) Guffanti AA et al. (1991). Transfer of Tn925 and plasmids between Bacillus subtilis and alkaliphilic Bacillus firmus OF4 during Tn925-mediated conjugation. J Bacteriol. 173(5):1686-9. [PudMed:1847906] experimental
(126) Ayoubi P et al. (1991). Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol. 173(5):1617-22. [PudMed:1847905] experimental
(127) Bertram J et al. (1991). Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J Bacteriol. 173(2):443-8. [PudMed:1846142] experimental
(128) Norgren M et al. (1991). The presence of conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element. J Bacteriol. 173(1):319-24. [PudMed:1846138] experimental
(129) Flannagan SE et al. (1991). Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons. J Bacteriol. 173(22):7136-41. [PudMed:1657880] experimental
(130) Stephens DS et al. (1991). Insertion of Tn916 in Neisseria meningitidis resulting in loss of group B capsular polysaccharide. Infect Immun. 59(11):4097-102. [PudMed:1657783] experimental
(131) Storrs MJ et al. (1991). Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J Bacteriol. 173(14):4347-52. [PudMed:1648556] experimental
(132) Mullany P et al. (1991). Transfer of Tn916 and Tn916 delta E into Clostridium difficile: demonstration of a hot-spot for these elements in the C. difficile genome. FEMS Microbiol Lett. 63(2-3):191-4. [PudMed:1647998] experimental
(133) Rice LB et al. (1992). Tn5381, a conjugative transposon identifiable as a circular form in Enterococcus faecalis. J Bacteriol. 174(22):7308-15. [PudMed:1331026] experimental
(134) Su YA et al. (1992). Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother. 36(4):769-78. [PudMed:1323953] experimental
experimental experimental literature
in_silico in silico analysis literature