ICEberg
Browse by ICE    |    Browse by Organism   |    Browse by ICE family
ICE family: SXT/R391
The SXT/R391 family was defined by Burrus et al (2006).They proposed that any ICE that encodes an integrase gene closely related to intSXT and that integrates into prfC be considered part of the SXT/R391 family of ICEs. In addition the tra genes, which encode the ICE conjugation apparatus, are also a defining feature of this family of ICEs. However, there are some exceptions for those that share a syntenic ‘core’ structure and features but have a different integrase

#IDICE nameStrainReplicon
15 experimental ICEVchAng1Vibrio cholerae O1 582-
26 experimental ICEVchAng2Vibrio cholerae Non-O1 698-
37 experimental ICEVchAng3Vibrio cholerae O1 175-
48 experimental ICEVchBan1Vibrio cholerae O1-
59 experimental ICEVchBan2Vibrio cholerae O1 AC1923-
610 experimental ICEVchBan3Vibrio cholerae O1 AC1924-
711 experimental ICEVchBan4Vibrio cholerae O1-
812 experimental ICEVchBan5Vibrio cholerae O1 Ban5-
913 experimental ICEVchBan6Vibrio cholerae O1-
1014 experimental ICEVchBan7Vibrio cholerae O139-
1115 in_silico ICEVchBan8Vibrio cholerae MZO-3-
1216 experimental ICEVchBan9Vibrio cholerae MJ-1236NC_012668
1317 ICEVchBan10Vibrio cholerae-
1418 experimental ICEVchInd1Vibrio cholerae O1 BI142-
1519 experimental ICEVchInd2Vibrio cholerae O1-
1620 experimental ICEVchInd3Vibrio cholerae O1-
1721 experimental ICEVchInd4Vibrio cholerae O139 Ind4-
1822 experimental ICEVchInd5 [ICEVchHai1]Vibrio cholerae O1 Ind5-
1923 experimental ICEVchMex1Vibrio cholerae non O1-O139 Mex1-
2024 ICEVchMoz1Vibrio cholerae O1-
2125 experimental ICEVchMoz2Vibrio cholerae 3AMOZ-
2226 experimental ICEVchMoz3Vibrio cholerae Non-O1 7AMOZ-
2327 experimental ICEVchMoz4Vibrio cholerae 8AMOZ-
2428 experimental ICEVchMoz5Vibrio cholerae 15AMOZ-
2529 experimental ICEVchMoz6Vibrio cholerae 16AMOZ-
2630 experimental ICEVchMoz7Vibrio cholerae 5594-
2731 experimental ICEVchMoz8Vibrio cholerae 5556-
2832 experimental ICEVchMoz9Vibrio cholerae 7698-
2933 in_silico ICEVchMoz10Vibrio cholerae B33-
3034 experimental ICEVchSL1Vibrio cholerae O139-
3135 experimental ICEVchVie1Vibrio cholerae V21-
3236 experimental ICEVflInd1Vibrio fluvialis Ind1-
3337 experimental ICEPalBan1Providencia alcalifaciens Ban1-
3438 experimental ICEPdaSpa1Photobacterium damselae subsp. piscicida PC554.2-
3539 experimental ICESpuPO1Shewanella putrefaciens W3-18-1NC_008750
3640 experimental ICEPmiUSA1Proteus mirabilis HI4320NC_010554
3741 experimental ICEPmiJpn1Proteus mirabilis TUM4660-
3842 experimental pMERPHShewanella putrefaciens-
3943 experimental R391Providencia rettgeri-
4044 experimental SXT(MO10)Vibrio cholerae O139 MO10-
4189 experimental SXT(ET)Vibrio cholerae O1 biovar El Tor 1999-
42108 experimental pJY1Vibrio cholerae 204-
43109 experimental R997Proteus mirabilis-
44134 ICEVchAlg1Vibrio cholerae O1-
45135 experimental ICEVchHKo1Vibrio cholerae HKO139-SXT-
46136 experimental ICEVchLao1Vibrio cholerae 00LA1-
47137 experimental ICEVchSaf1Vibrio cholerae O1-
48138 ICEVchSwa1Vibrio cholerae-
49139 experimental ICEVchVie0Vibrio cholerae O1 90-
50140 ICEVchZim1Vibrio cholerae-
51141 experimental ICEVpaAng1Vibrio parahaemolyticus-
52142 experimental R392Providencia rettgeri-
53143 experimental R397Providencia rettgeri-
54144 experimental R705Proteus vulgaris-
55145 experimental R706Proteus vulgaris-
56146 experimental R748Providencia rettgeri-
57147 experimental R749Providencia rettgeri-
58148 SXT(HN1)Vibrio cholerae O1 biovar El tor HN1-
59149 experimental ICEVflH-08942Vibrio fluvialis H-08942-
60273 SXT(KN14)Vibrio cholerae O1 biovar El Tor KN14-
61274 experimental SXT(MCV09)Vibrio cholerae MCV09-
62275 ICEVchVC115Vibrio cholerae VC115-
63276 ICEVchVC124Vibrio cholerae VC124-
64277 ICEVchMO45Vibrio cholerae MO45-
65278 ICEVchVE150Vibrio cholerae VE150-
66279 ICEVchVC149Vibrio cholerae VC149-
67280 ICEVchVC132Vibrio cholerae VC132-
68281 ICEVchVC120Vibrio cholerae VC120-
69282 ICEVchVE140Vibrio cholerae VE140-
70283 ICEVchVC108Vibrio cholerae VC108-
71284 ICEVchVE47Vibrio cholerae VE47-
72285 ICEVchVC138Vibrio cholerae VC138-
73286 ICEVchVE146Vibrio cholerae VE146-
74287 ICEEcoJ53Escherichia coli J53-
75446 experimental ICEVspPor3Vibrio splendidus V69-
76447 experimental ICEValSpa1Vibrio alginolyticus V86-
77450 experimental ICEVscSpa1Vibrio scophthalmi ACC7-
78451 experimental ICEVscSpa2Vibrio scophthalmi NC1-
79452 experimental ICEVscSpa3Vibrio scophthalmi YF7-
80453 experimental ICEVspPor1Vibrio splendidus ZD4-
81454 experimental ICEVspPor2Vibrio splendidus ZD5-
82455 experimental ICEVspSpa1Vibrio splendidus ZF2-
83456 experimental ICEVspSpa2Vibrio splendidus EB5-
84457 experimental ICEVspSpa3Vibrio splendidus 14-3-
85458 experimental ICEEniSpa1Enterovibrio nigricans VA8-
86459 experimental ICEEniSpa2Enterovibrio nigricans SH5-
87460 experimental ICEValPor1Vibrio alginolyticus HI5-
88461 experimental ICEShaPor1Shewanella haliotis AC6-
89955 in_silico ICEAmaAgS1Alteromonas mediterranea MED64-
90956 in_silico ICEAmaAnS1Alteromonas macleodii D7-
91957 in_silico ICEAmaAS1Alteromonas mediterranea DE1-UM7-UM8-U10-
92958 in_silico ICEAmaAS2Alteromonas mediterranea UM4b-
93961 experimental ICEApl2Actinobacillus pleuropneumoniae serovar 8-
94962 in_silico ICEAspBS1Alteromonas sp. RW2A1-
95963 in_silico ICEAspMex1Alteromonas sp. Mex14
96985 in_silico ICEMfuInd1aMarinomonas fungiae JCM 18476-
97986 in_silico ICEMfuInd1bMarinomonas fungiae JCM 18476-
981007 in_silico ICEMprChn1Marinomonas profundimaris D104-
991016 experimental ICEPmiChn1Proteus mirabilis-
1001017 experimental ICEPmiCHN1586Proteus mirabilis 08MAS1586-
1011018 experimental ICEPmiCHN1809Proteus mirabilis TJ1809-
1021019 experimental ICEPmiChn2Proteus mirabilis JN7-
1031020 experimental ICEPmiCHN2407Proteus mirabilis 09MAS2407-
1041021 in_silico ICEPmiCHN2410Proteus mirabilis 09MAS2410-
1051022 in_silico ICEPmiCHN2416Proteus mirabilis 09MAS2416-
1061023 in_silico ICEPmiChn3Proteus mirabilis JN28-
1071024 in_silico ICEPmiCHN3237Proteus mirabilis TJ3237-
1081025 in_silico ICEPmiCHN3277Proteus mirabilis TJ3277-
1091026 in_silico ICEPmiCHN3300Proteus mirabilis TJ3300-
1101027 experimental ICEPmiCHN3335Proteus mirabilis TJ3335-
1111028 experimental ICEPmiChn4Proteus mirabilis JN14-
1121029 in_silico ICEPmiCHN901Proteus mirabilis MD20140901-
1131030 in_silico ICEPmiCHN902Proteus mirabilis MD20140902-
1141031 in_silico ICEPmiCHN903Proteus mirabilis MD20140903-
1151032 in_silico ICEPmiCHN904Proteus mirabilis MD20140904-
1161033 in_silico ICEPmiCHN905Proteus mirabilis MD20140905-
1171034 experimental ICEPspSpa1Pseudoalteromonas sp. BSi20311-
1181035 experimental ICEPvuCHN2213Proteus vulgaris 08MAS2213-
1191036 experimental ICESh95Shewanella sp. Sh95-
1201040 in_silico ICEValA056-1Vibrio alginolyticus A056-
1211041 in_silico ICEValA056-2Vibrio alginolyticus 103826-
1221042 in_silico ICEValChn1Vibrio alginolyticus Chn4-
1231043 in_silico ICEValE0601Vibrio alginolyticus E0601-
1241044 in_silico ICEValHN396Vibrio alginolyticus HN396-
1251045 in_silico ICEValHN437Vibrio alginolyticus HN437-
1261046 in_silico ICEValHN492Vibrio alginolyticus HN492-
1271047 ICEVchBan11Vibrio cholerae 462-
1281048 in_silico ICEVchChn1Vibrio cholerae Chn5-
1291049 in_silico ICEVchCHN143Vibrio cholerae ICDC-143-
1301050 in_silico ICEVchCHN1605Vibrio cholerae ICDC-1605-
1311051 in_silico ICEVchCHN1627Vibrio cholerae ICDC-1627-
1321052 in_silico ICEVchCHN1909Vibrio cholerae ICDC-1909-
1331053 in_silico ICEVchCHN1944Vibrio cholerae ICDC-1944-
1341054 in_silico ICEVchChn2Vibrio cholerae Chn64-
1351055 in_silico ICEVchChn2255Vibrio cholerae ICDC-VC2255-
1361056 in_silico ICEVchCHN2605Vibrio cholerae ICDC-2605-
1371057 in_silico ICEVchChn3Vibrio cholerae Chn86-
1381058 in_silico ICEVchChn4Vibrio cholerae Chn91-
1391059 in_silico ICEVchCHN4210Vibrio cholerae ICDC-4210-
1401060 in_silico ICEVchChn5Vibrio cholerae Chn92-
1411061 in_silico ICEVchCHN57Vibrio cholerae ICDC-57-
1421062 experimental ICEVchChn6Vibrio cholerae Chn108-
1431063 in_silico ICEVchCHN956Vibrio cholerae ICDC-956-
1441064 in_silico ICEVchChnAHV1003Vibrio cholerae AHV1003-
1451065 in_silico ICEVchHai2Vibrio cholerae HC-1A2-
1461066 ICEVchInd6Vibrio cholerae 4605-
1471067 in_silico ICEVchInd9Vibrio cholerae MJ-1236-
1481068 experimental ICEVchNep1Vibrio cholerae O1 VC504-
1491069 experimental ICEVchNig1Vibrio cholerae O1 VC833-
1501070 in_silico ICEVnaChn1Vibrio natriegens Chn64-
1511071 in_silico ICEVpaCan1Vibrio parahaemolyticus S107-1
1521072 experimental ICEVpaChn1Vibrio parahaemolyticus Chn25-
1531073 in_silico ICEVpaChn2Vibrio parahaemolyticus Chn46-
1541074 in_silico ICEVpaChn3Vibrio parahaemolyticus Chn66-
1551075 in_silico ICEVpaMoz1Vibrio parahaemolyticus 21AMOZ-
experimental Data derived from experimental literature
in_silico Putative ICEs predicted by bioinformatic methods
(1) Bioteau A et al. (2018). Redefinition and unification of the SXT/R391 family of integrative and conjugative elements. Appl Environ Microbiol. . [PudMed:29654185]
(2) Li Y et al. (2018). Characterization of the Actinobacillus pleuropneumoniae SXT-related integrative and conjugative element ICEApl2 and analysis of the encoded FloR protein: hydrophobic residues in transmembrane domains contribute dynamically to florfenicol and chloramphenicol efflux. J Antimicrob Chemother. 73(1):57-65. [PudMed:29029160]
(3) Ryan MP et al. (2017). Analysis and comparative genomics of R997, the first SXT/R391 integrative and conjugative element (ICE) of the Indian Sub-Continent. Sci Rep. 7(1):8562. [PudMed:28819148]
(4) Bie L et al. (2017). Identification and characterization of new members of the SXT/R391 family of integrative and conjugative elements (ICEs) in Proteus mirabilis. Int J Antimicrob Agents. 50(2):242-246. [PudMed:28602701] experimental in_silico
(5) Lopez-Perez M et al. (2017). Networking in microbes: conjugative elements and plasmids in the genus Alteromonas. BMC Genomics. 18(1):36. [PudMed:28056800] in_silico
(6) Badhai J et al. (2016). Characterization of Three Novel SXT/R391 Integrating Conjugative Elements ICEMfuInd1a and ICEMfuInd1b, and ICEMprChn1 Identified in the Genomes of Marinomonas fungiae JCM 18476(T) and Marinomonas profundimaris Strain D104. Front Microbiol. 1.608333333. [PudMed:27933056] experimental in_silico
(7) Li X et al. (2016). SXT/R391 integrative and conjugative elements in Proteus species reveal abundant genetic diversity and multidrug resistance. Sci Rep. 6:37372. [PudMed:27892525] experimental in_silico
(8) Carraro N et al. (2016). IncA/C Conjugative Plasmids Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-O1/Non-O139 Isolates from Haiti. MBio. 7(4). [PudMed:27435459]
(9) Rodriguez-Blanco A et al. (2016). Unveiling the pan-genome of the SXT/R391 family of ICEs: molecular characterisation of new variable regions of SXT/R391-like ICEs detected in Pseudoalteromonas sp. and Vibrio scophthalmi. Antonie Van Leeuwenhoek. 109(8):1141-52. [PudMed:27230650]
(10) Parmeciano Di Noto G et al. (2016). Genome analysis of a clinical isolate of Shewanella sp. uncovered an active hybrid integrative and conjugative element carrying an integron platform inserted in a novel genomic locus. Microbiology. 162(8):1335-45. [PudMed:27215217]
(11) Luo P et al. (2016). Comparative genomic analysis of six new-found integrative conjugative elements (ICEs) in Vibrio alginolyticus. BMC Microbiol. 0.721527778. [PudMed:27145747]
(12) Wang R et al. (2016). Variations in SXT elements in epidemic Vibrio cholerae O1 El Tor strains in China. Sci Rep. 6:22733. [PudMed:26956038] in_silico
(13) Lei CW et al. (2016). Characterization of SXT/R391 Integrative and Conjugative Elements in Proteus mirabilis Isolates from Food-Producing Animals in China. Antimicrob Agents Chemother. 60(3):1935-8. [PudMed:26824957] experimental in_silico
(14) Marin MA et al. (2014). Worldwide occurrence of integrative conjugative element encoding multidrug resistance determinants in epidemic Vibrio cholerae O1. PLoS One. 9(9):e108728. [PudMed:25265418]
(15) Spagnoletti M et al. (2014). Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage. MBio. 5(4). [PudMed:25139901] in_silico
(16) Song Y et al. (2013). The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and environment in the Yangtze River Estuary, China. BMC Microbiol. 0.690277778. [PudMed:24074349]
(17) Ceccarelli D et al. (2013). A new integrative conjugative element detected in Haitian isolates of Vibrio cholerae non-O1/non-O139. Res Microbiol. 164(9):891-893. [PudMed:23994142]
(18) Daccord A et al. (2013). Comparative analysis of mobilizable genomic islands. J Bacteriol. 195(3):606-14. [PudMed:23204461] experimental in_silico
(19) Badhai J et al. (2012). Presence of SXT integrating conjugative element in marine bacteria isolated from the mucus of the coral Fungia echinata from Andaman Sea. FEMS Microbiol Lett. . [PudMed:23083057] experimental
(20) Balado M et al. (2012). Integrating conjugative elements of the SXT/R391 family from fish-isolated Vibrios encode restriction-modification systems that confer resistance to bacteriophages. FEMS Microbiol Ecol. . [PudMed:22974320] experimental
(21) Daccord A et al. (2012). Dynamics of the SetCD-Regulated Integration and Excision of Genomic Islands Mobilized by Integrating Conjugative Elements of the SXT/R391 Family. J Bacteriol. 194(21):5794-802. [PudMed:22923590] experimental
(22) Taviani E et al. (2012). Genomic analysis of ICEVchBan8: An atypical genetic element in Vibrio cholerae. FEBS Lett. 586(11):1617-21. [PudMed:22673571] in_silico
(23) Pande K et al. (2012). SXT constin among Vibrio cholerae isolates from a tertiary care hospital. Indian J Med Res. 135:346-50. [PudMed:22561621] experimental
(24) Rodriguez-Blanco A et al. (2012). Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments. Antimicrob Agents Chemother. 56(5):2619-26. [PudMed:22314526] experimental
(25) Sjolund-Karlsson M et al. (2011). Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg Infect Dis. 17(11):2151-4. [PudMed:22099122]
(26) Spagnoletti M et al. (2012). Rapid detection by multiplex PCR of Genomic Islands, prophages and Integrative Conjugative Elements in V. cholerae 7th pandemic variants. J Microbiol Methods. 88(1):98-102. [PudMed:22062086] experimental
(27) Mata C et al. (2011). Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis. J Antimicrob Chemother. 66(10):2266-70. [PudMed:21752830] experimental
(28) Flannery EL et al. (2011). Self-Transmissibility of the Integrative and Conjugative Element ICEPm1 between Clinical Isolates Requires a Functional Integrase, Relaxase, and Type IV Secretion System. J Bacteriol. 193(16):4104-12. [PudMed:21665966] experimental
(29) Chen WY et al. (2011). Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae. BMC Mol Biol. 12(1):16. [PudMed:21501469] experimental
(30) Ceccarelli D et al. (2011). ICEVchInd5 is prevalent in epidemic Vibrio cholerae O1 El Tor strains isolated in India. Int J Med Microbiol. 301(4):318-24. [PudMed:21276749] experimental
(31) Daccord A et al. (2010). Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol Microbiol. 78(3):576-88. [PudMed:20807202] experimental
(32) Harada S et al. (2010). Chromosomally encoded blaCMY-2 located on a novel SXT/R391-related integrating conjugative element in a Proteus mirabilis clinical isolate. Antimicrob Agents Chemother. 54(9):3545-50. [PudMed:20566768] experimental
(33) Grim CJ et al. (2010). Genome sequence of hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and comparative genomics with V. cholerae. J Bacteriol. 192(13):3524-33. [PudMed:20348258]
(34) Wozniak RA et al. (2009). Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet. 5(12):e1000786. [PudMed:20041216] in_silico
(35) Kumar P et al. (2010). Characterization of an SXT variant Vibrio cholerae O1 Ogawa isolated from a patient in Trivandrum, India. FEMS Microbiol Lett. 303(2):132-6. [PudMed:20030727] experimental
(36) Garriss G et al. (2009). Mobile antibiotic resistance encoding elements promote their own diversity. PLoS Genet. 5(12):e1000775. [PudMed:20019796] experimental
(37) Bordeleau E et al. (2010). Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol. 12(2):510-23. [PudMed:19888998] experimental
(38) Taviani E et al. (2009). Genomic analysis of a novel integrative conjugative element in Vibrio cholerae. FEBS Lett. 583(22):3630-6. [PudMed:19850044]
(39) Flannery EL et al. (2009). Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun. 77(11):4887-94. [PudMed:19687197] experimental
(40) Wozniak RA et al. (2009). A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genet. 5(3):e1000439. [PudMed:19325886] experimental
(41) Ceccarelli D et al. (2008). Identification of the origin of transfer (oriT) and a new gene required for mobilization of the SXT/R391 family of integrating conjugative elements. J Bacteriol. 190(15):5328-38. [PudMed:18539733] experimental
(42) Osorio CR et al. (2008). Genomic and functional analysis of ICEPdaSpa1, a fish-pathogen-derived SXT-related integrating conjugative element that can mobilize a virulence plasmid. J Bacteriol. 190(9):3353-61. [PudMed:18326579] experimental
(43) Taviani E et al. (2008). Environmental Vibrio spp., isolated in Mozambique, contain a polymorphic group of integrative conjugative elements and class 1 integrons. FEMS Microbiol Ecol. 64(1):45-54. [PudMed:18318712] experimental
(44) Marrero J et al. (2007). Determinants of entry exclusion within Eex and TraG are cytoplasmic. J Bacteriol. 189(17):6469-73. [PudMed:17573467] experimental
(45) O'Halloran JA et al. (2007). The orf4 gene of the enterobacterial ICE, R391, encodes a novel UV-inducible recombination directionality factor, Jef, involved in excision and transfer of the ICE. FEMS Microbiol Lett. 272(1):99-105. [PudMed:17504243] experimental
(46) Marrero J et al. (2007). The SXT/R391 family of integrative conjugative elements is composed of two exclusion groups. J Bacteriol. 189(8):3302-5. [PudMed:17307849] experimental
(47) Mead S et al. (2007). Characterization of polVR391: a Y-family polymerase encoded by rumA'B from the IncJ conjugative transposon, R391. Mol Microbiol. 63(3):797-810. [PudMed:17302804] experimental
(48) Bani S et al. (2007). Molecular characterization of ICEVchVie0 and its disappearance in Vibrio cholerae O1 strains isolated in 2003 in Vietnam. FEMS Microbiol Lett. 266(1):42-8. [PudMed:17233716] experimental
(49) Pembroke JT et al. (2006). A novel ICE in the genome of Shewanella putrefaciens W3-18-1: comparison with the SXT/R391 ICE-like elements. FEMS Microbiol Lett. 264(1):80-8. [PudMed:17020552]
(50) McLeod SM et al. (2006). Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer. J Bacteriol. 188(16):5704-11. [PudMed:16885438] experimental
(51) Burrus V et al. (2006). SXT-related integrating conjugative element in New World Vibrio cholerae. Appl Environ Microbiol. 72(4):3054-7. [PudMed:16598018] experimental
(52) Juiz-Rio S et al. (2005). Subtractive hybridization reveals a high genetic diversity in the fish pathogen Photobacterium damselae subsp. piscicida: evidence of a SXT-like element. Microbiology. 151(Pt 8):2659-69. [PudMed:16079344] experimental
(53) Marrero J et al. (2005). Interactions between inner membrane proteins in donor and recipient cells limit conjugal DNA transfer. Dev Cell. 8(6):963-70. [PudMed:15935784] experimental
(54) McGrath BM et al. (2005). Pre-exposure to UV irradiation increases the transfer frequency of the IncJ conjugative transposon-like elements R391, R392, R705, R706, R997 and pMERPH and is recA+ dependent. FEMS Microbiol Lett. 243(2):461-5. [PudMed:15686850] experimental
(55) Ahmed AM et al. (2005). A variant type of Vibrio cholerae SXT element in a multidrug-resistant strain of Vibrio fluvialis. FEMS Microbiol Lett. 242(2):241-7. [PudMed:15621444] experimental
(56) Beaber JW et al. (2004). Identification of operators and promoters that control SXT conjugative transfer. J Bacteriol. 186(17):5945-9. [PudMed:15317801] experimental
(57) McGrath BM et al. (2004). Detailed analysis of the insertion site of the mobile elements R997, pMERPH, R392, R705 and R391 in E. coli K12. FEMS Microbiol Lett. 237(1):19-26. [PudMed:15268933] experimental
(58) Iwanaga M et al. (2004). Antibiotic resistance conferred by a class I integron and SXT constin in Vibrio cholerae O1 strains isolated in Laos. Antimicrob Agents Chemother. 48(7):2364-9. [PudMed:15215082] experimental
(59) Sabater-Munoz B et al. (2004). Evolution of the leucine gene cluster in Buchnera aphidicola: insights from chromosomal versions of the cluster. J Bacteriol. 186(9):2646-54. [PudMed:15090505] experimental
(60) Burrus V et al. (2004). Formation of SXT tandem arrays and SXT-R391 hybrids. J Bacteriol. 186(9):2636-45. [PudMed:15090504] experimental
(61) Boltner D et al. (2004). Structural comparison of the integrative and conjugative elements R391, pMERPH, R997, and SXT. Plasmid. 51(1):12-23. [PudMed:14711525] experimental
(62) Beaber JW et al. (2004). SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 427(6969):72-4. [PudMed:14688795] experimental
(63) Burrus V et al. (2003). Control of SXT integration and excision. J Bacteriol. 185(17):5045-54. [PudMed:12923077] experimental
(64) Boltner D et al. (2002). R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J Bacteriol. 184(18):5158-69. [PudMed:12193633] experimental
(65) Thungapathra M et al. (2002). Occurrence of antibiotic resistance gene cassettes aac(6')-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob Agents Chemother. 46(9):2948-55. [PudMed:12183252] experimental
(66) Beaber JW et al. (2002). Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol. 184(15):4259-69. [PudMed:12107144] experimental
(67) Dalsgaard A et al. (2001). Vibrio cholerae O1 outbreak isolates in Mozambique and South Africa in 1998 are multiple-drug resistant, contain the SXT element and the aadA2 gene located on class 1 integrons. J Antimicrob Chemother. 48(6):827-38. [PudMed:11733467] experimental
(68) Hochhut B et al. (2001). Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother. 45(11):2991-3000. [PudMed:11600347] experimental
(69) Hochhut B et al. (2001). Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J Bacteriol. 183(4):1124-32. [PudMed:11157923] experimental
(70) Hochhut B et al. (2000). Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J Bacteriol. 182(7):2043-7. [PudMed:10715015] experimental
(71) Murphy DB et al. (1999). Monitoring of chromosomal insertions of the IncJ elements R391 and R997 in Escherichia coli K-12. FEMS Microbiol Lett. 174(2):355-61. [PudMed:10339829] experimental
(72) Hochhut B et al. (1999). Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol. 32(1):99-110. [PudMed:10216863] experimental
(73) Waldor MK et al. (1996). A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol. 178(14):4157-65. [PudMed:8763944] experimental
(74) Murphy DB et al. (1995). Transfer of the IncJ plasmid R391 to recombination deficient Escherichia coli K12: evidence that R391 behaves as a conjugal transposon. FEMS Microbiol Lett. 134(2-3):153-8. [PudMed:8586262] experimental
(75) Coetzee JN et al. (1972). R factors from Proteus rettgeri. J Gen Microbiol. 72(3):543-52. [PudMed:4564689] experimental
(76) Hedges RW (1974). R factors from Providence. J Gen Microbiol. 81(1):171-81. [PudMed:4362618] experimental
(77) Peters SE et al. (1991). Novel mercury resistance determinants carried by IncJ plasmids pMERPH and R391. Mol Gen Genet. 228(1-2):294-9. [PudMed:1886614] experimental
(78) Hedges RW (1975). R factors from Proteus mirabilis and P. vulgaris. J Gen Microbiol. 87(2):301-11. [PudMed:1095684] experimental
(79) Matthew M et al. (1979). Types of beta-lactamase determined by plasmids in gram-negative bacteria. J Bacteriol. 138(3):657-62. [PudMed:378931] experimental
(80) Yokota T et al. (1977). Temperature-sensitive R plasmid obtained from naturally isolated drug-resistant Vibrio cholerae (biotype El Tor). Antimicrob Agents Chemother. 11(1):13-20. [PudMed:319746] experimental
 
experimental experimental literature
in_silico in silico analysis literature